

OPEN 3 ACCESS

Crystal structure of (3*R*)-3-benzyl-4-[(*tert*-butoxycarbonyl)amino]butanoic acid

Karol Jędrzejczak,^a Małgorzata Szczesio,^b Monika Oracz,^b Stefan Jankowski^a and Marek L. Główka^b*

^aInstitute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź, Poland, and ^bInstitute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź, Poland. *Correspondence e-mail: marek.glowka@p.lodz.pl

Received 9 June 2014; accepted 28 August 2014

Edited by M. Gdaniec, Adam Mickiewicz University, Poland

The characteristic feature of the title molecule, $C_{16}H_{23}NO_4$, is the *syn* configuration of the partially double amide C–N bond [C–N–C–O torsion angle = -14.8 (2)°]. The crystal packing is determined by intermolecular O–H···O and N–H···O hydrogen bonds, which link the molecules into a double-chain structure extending along [010].

Keywords: crystal structure; butanoic acid; monosubstituted γ -amino acids; hydrogen bonding.

CCDC reference: 938020

1. Related literature

The title enantiomeric compound was synthesized according to Loukas *et al.* (2003) and Felluga *et al.* (2008). For related structures, see: Pihko & Koskinen (1998); Jimeno *et al.* (2011). For solution conformation of oligomers based on monosubstituted γ -amino acids, see: Guo *et al.* (2012); Kang & Byun (2012). For amino acid analysis by HPLC after derivatization with Marfey's reagent, see: Marfey (1984).

V = 1619.89 (17) Å³

 $0.4 \times 0.04 \times 0.04 \text{ mm}$

8769 measured reflections 2880 independent reflections

2805 reflections with $I > 2\sigma(I)$

Cu $K\alpha$ radiation

 $\mu = 0.70 \text{ mm}^-$

T = 100 K

 $R_{\rm int} = 0.036$

 $\Delta \rho_{\text{max}} = 0.16 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

1138 Friedel pairs

0.05(15)

Absolute structure: Flack (1983),

Absolute structure parameter:

Z = 4

2. Experimental

2.1. Crystal data

 $C_{16}H_{23}NO_4$ $M_r = 293.35$ Monoclinic, C2 a = 19.5872 (12) Å b = 6.5263 (4) Å c = 14.7598 (9) Å $\beta = 120.846 (2)^{\circ}$

2.2. Data collection

Bruker SMART APEX CCD diffractometer

Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{min} = 0.738, T_{max} = 0.973$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.073$ S = 1.06 2880 reflections 197 parameters1 restraint

H atoms treated by a mixture of independent and constrained refinement

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
01-H1···O6 ⁱ	0.82	1.83	2.6368 (15)	170
$N5-H5\cdots O2^{ii}$	0.846 (18)	2.131 (18)	2.8856 (16)	148.2 (15)

Symmetry codes: (i) -x + 2, y + 1, -z + 1; (ii) x, y - 1, z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2008); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *PLATON*.

Supporting information for this paper is available from the IUCr electronic archives (Reference: GK2614).

References

- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2008). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Felluga, F., Pitacco, G., Valentin, E. & Venneri, C. D. (2008). *Tetrahedron* Asymmetry, **19**, 945–955.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Guo, L., Zhang, W., Guzei, I. A., Spencer, L. C. & Gellman, S. H. (2012). *Tetrahedron*, 68, 4413–4417.
- Jimeno, C., Pericas, M. A., Wessel, H. P., Alker, A. & Muller, K. (2011). *ChemMedChem*, 6, 1792–1795.
- Kang, Y. K. & Byun, B. J. (2012). Biopolymers, 97, 1018-1025.
- Loukas, V., Noula, C. & Kokotos, G. (2003). J. Pept. Sci. 9, 312-319.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor,
- R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Marfey, P. (1984). Carlsberg Res. Commun. 49, 591-596.
- Pihko, P. M. & Koskinen, A. M. P. (1998). J. Org. Chem. 63, 92-98.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2014). E70, o1081–o1082 [doi:10.1107/S1600536814019497]

Crystal structure of (3*R*)-3-benzyl-4-[(*tert*-butoxycarbonyl)amino]butanoic acid

Karol Jędrzejczak, Małgorzata Szczesio, Monika Oracz, Stefan Jankowski and Marek L. Główka

S1. Comment

 γ -Amino acids are important components of α , γ -peptide hybrids, which are resistant towards enzymatic degradation and, as a result, display useful biological activity, including antibiotic, antiviral and anticancer properties. The acids are also important elements of foldamers. In comparison with the α -amino acids, they show significant flexibility due to the two additional single bonds between the carboxylic and amine functions. Still, their oligomers form well defined conformations in solutions, in particular helical ones in the case of monosubstituted γ -amino acids (Guo *et al.*, 2012, Kang *et al.*, 2012). Thus, the structures and common conformations of γ -amino acids and their derivatives are of interest. The molecular structure is shown in Figure 1. The crystal packing is determined by intermolecular N5—H…O2 and O1—H…O6 hydrogen bonds, which organize the molecules into infinite double chains parallel to the [010] direction (Fig.2). The geometrical parameters of the hydrogen bonds are listed in Table 1.

S2. Experimental

(3R)-4-((tert-Butoxycarbonyl)amino-)-3-benzyl-butanoic acid was obtained from racemic (±)-3-aminomethyl-4-phenylbutanoic acid hydrochloride, which was synthesized following earlier published procedure (Felluga *et al.*, 2008), with some modifications. Ethyl (±)-3-nitromethyl-4-phenylbutanoate was hydrolyzed and then hydrogenated using 10% Pd/C to get acid, which was transformed into Boc-derivative and purified by crystallization from ethyl acetate/hexane.

Enantiomeric resolution of racemic (±)-3-aminomethyl-4-phenylbutanoic acid (1 g) was achieved by crystallization from ethyl acetate (110 mL) in the presence of (*S*)-(-)-methylbenzylamine (0.41 g). The solution was left for 24 h at +5°C for crystallization, which was repeated four times to obtain (3*S*)-4-((*tert*-butoxycarbonyl)amino-)-3-benzyl-butanoic acid (0.151 g) with ee = 97.4 %. (*R*)-(+)-Methylbenzylamine (0.17 g) was applied to the mother liquor after the first crystallization of (3*S*)-4-((*tert*-butoxycarbonyl)amino-)-3-benzyl-butanoic acid ammonium salt. Three subsequent crystallizations led to (3*R*)-(-)-4-((*tert*-butoxycarbonyl)amino-)-3-phenyl-pentanoic acid (0.196 g) with ee = 98.1 %. Acids were recovered from ethyl acetate solution using 1M NaHSO₄ solution.

The enantiomeric purity was determined according to the known procedure using N_{α} -(2,4-dinitro-5-fluorophenyl)-L-valinamide as derivating reagent (Marfey, 1984). Sample of enantiomer (5 mg) was dissolved in TFA – dichloromethane (1:1), the solution was shaken for 10 min, then solvents were removed by evaporation. The residue was dissolved in CH₂Cl₂ and the solvent was removed again. This procedure was repeated five times to remove TFA completely. The dry residue was dissolved in 0.2 M NaHCO₃ to obtain 0.05 M solutions (0.5 mL) of (3R)-4-amino–3-benzyl-butanoic acid. Mixture of 0.05 M aqueous solution of deprotected amino acid (25 μ L), 0.2 N NaHCO₃ (50 μ L), 1% solution of N_{α}-(2,4-dinitro-5-fluorophenyl)-L-valine amide in acetone (50 μ L) and 75 μ L of acetone was shaken for 1 minute and then placed in a water bath for 45 min at 45°C. Then mixture was shaken again for 30 sec, 0.1M HCl (170 μ L) and acetone (75 μ L) were added. A yellowish solution was analysed by HPLC (Vydac column C8 (4.6 x 25 cm), gradient 40 - 80, detection at 340 nm), diastereomeric derivative of (3*R*)-4-amino-3-benzyl-butanoic acid was detected at 12.67 min retention time.

Single crystals were obtained by recrystallization from acetonitrile at room temperatute.

S3. Refinement

All H atoms were located in difference Fourier maps but finally their positions were determined geometrically, except H5 that was freely refined. H atoms were refined as riding on their carriers with C—H= 0.95 Å for aromatic CH groups, 0.97 Å for CH₂ groups, 0.96 Å for methyl groups and N—H = 0.86 Å for the amide group, and with $U_{iso}(H) = 1.2U_{eq}(C,N)$, except for methyl group where $U_{iso}(H) = 1.5U_{eq}(C)$. The absolute structure was known from the synthetic procedure and is confirmed by the Flack parameter of 0.05 (15).

Figure 1

The molecular structure with displacement ellipsoids drawn at the 50% probability level.

Figure 2

Packing of the title compound viewed along the [101] direction.

(3R)-3-Benzyl-4-[(tert-butoxycarbonyl)amino]butanoic acid

Crystal data

C₁₆H₂₃NO₄ $M_r = 293.35$ Monoclinic, C2 Hall symbol: C 2y a = 19.5872 (12) Å b = 6.5263 (4) Å c = 14.7598 (9) Å $\beta = 120.846$ (2)° V = 1619.89 (17) Å³ Z = 4

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scan Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) $T_{\min} = 0.738, T_{\max} = 0.973$ F(000) = 632 $D_x = 1.203 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 3858 reflections $\theta = 3.5-64.2^{\circ}$ $\mu = 0.70 \text{ mm}^{-1}$ T = 100 KNeedle, colourless $0.4 \times 0.04 \times 0.04 \text{ mm}$

8769 measured reflections 2880 independent reflections 2805 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 72.4^{\circ}, \theta_{min} = 3.5^{\circ}$ $h = -24 \rightarrow 24$ $k = -7 \rightarrow 8$ $l = -18 \rightarrow 18$ Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H atoms treated by a mixture of independent
$wR(F^2) = 0.073$	and constrained refinement
S = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.0236P)^2 + 0.6631P]$
2880 reflections	where $P = (F_0^2 + 2F_c^2)/3$
197 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
1 restraint	$\Delta ho_{ m max} = 0.16 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
direct methods	Absolute structure: Flack (1983), 1138 Friedel
Secondary atom site location: difference Fourier	pairs
map	Absolute structure parameter: 0.05 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.89784 (7)	0.5954 (2)	0.40885 (10)	0.0213 (3)	
C2	0.88937 (8)	0.3833 (2)	0.44237 (10)	0.0220 (3)	
H2A	0.9309	0.2966	0.4459	0.026*	
H2B	0.8386	0.3268	0.3891	0.026*	
C3	0.89425 (7)	0.3775 (2)	0.54933 (10)	0.0211 (3)	
H3	0.9405	0.4574	0.6005	0.025*	
C4	0.90258 (7)	0.1581 (2)	0.58971 (10)	0.0226 (3)	
H4A	0.8936	0.1582	0.6485	0.027*	
H4B	0.8612	0.0753	0.5341	0.027*	
C6	1.04195 (8)	0.0711 (2)	0.72350 (10)	0.0215 (3)	
C8	1.08942 (8)	0.2534 (2)	0.89211 (11)	0.0285 (3)	
C9	1.05139 (13)	0.4342 (4)	0.91403 (14)	0.0596 (6)	
H9A	1.0502	0.5499	0.8731	0.089*	
H9B	1.0818	0.4680	0.9877	0.089*	
H9C	0.9981	0.3992	0.8952	0.089*	
C10	1.09383 (10)	0.0664 (3)	0.95540 (12)	0.0392 (4)	
H10A	1.0413	0.0302	0.9395	0.059*	
H10B	1.1265	0.0960	1.0293	0.059*	
H10C	1.1165	-0.0457	0.9375	0.059*	
C11	1.17061 (10)	0.3096 (3)	0.90952 (12)	0.0390 (4)	
H11A	1.1938	0.1918	0.8967	0.058*	
H11B	1.2045	0.3549	0.9809	0.058*	
H11C	1.1649	0.4176	0.8619	0.058*	

C30	0.81864 (8)	0.4716 (2)	0.53904 (10)	0.0234 (3)	
H30A	0.8038	0.5900	0.4930	0.028*	
H30B	0.7760	0.3723	0.5048	0.028*	
C31	0.82452 (7)	0.5377 (2)	0.64118 (10)	0.0212 (3)	
C32	0.86972 (9)	0.7077 (2)	0.69501 (12)	0.0290 (3)	
H32	0.9003	0.7720	0.6717	0.035*	
C33	0.86995 (9)	0.7831 (3)	0.78276 (13)	0.0346 (3)	
H33	0.9000	0.8985	0.8171	0.041*	
C34	0.82581 (9)	0.6883 (3)	0.81985 (11)	0.0318 (3)	
H34	0.8254	0.7405	0.8782	0.038*	
C35	0.78253 (9)	0.5154 (3)	0.76924 (12)	0.0348 (4)	
H35	0.7537	0.4484	0.7944	0.042*	
C36	0.78199 (8)	0.4414 (3)	0.68080 (11)	0.0297 (3)	
H36	0.7525	0.3247	0.6473	0.036*	
N5	0.97942 (6)	0.06104 (18)	0.62403 (9)	0.0218 (2)	
Н5	0.9795 (9)	-0.034 (3)	0.5849 (12)	0.026*	
O1	0.88632 (7)	0.59996 (17)	0.31251 (8)	0.0335 (3)	
H1	0.8915	0.7177	0.2976	0.050*	
O2	0.91355 (6)	0.74770 (16)	0.46349 (8)	0.0286 (2)	
O6	1.10102 (6)	-0.03990 (16)	0.75856 (7)	0.0281 (2)	
O7	1.03178 (5)	0.21689 (15)	0.77878 (7)	0.0261 (2)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0191 (6)	0.0193 (7)	0.0236 (6)	-0.0012 (5)	0.0095 (5)	-0.0024 (5)
C2	0.0246 (6)	0.0160 (6)	0.0247 (6)	0.0011 (5)	0.0121 (5)	-0.0020 (5)
C3	0.0216 (6)	0.0175 (7)	0.0217 (6)	-0.0008(5)	0.0093 (5)	-0.0006 (5)
C4	0.0227 (6)	0.0170 (7)	0.0256 (6)	-0.0016 (5)	0.0106 (5)	-0.0009 (5)
C6	0.0293 (7)	0.0125 (6)	0.0242 (6)	-0.0002(5)	0.0147 (5)	-0.0012 (5)
C8	0.0341 (7)	0.0233 (8)	0.0208 (6)	0.0009 (6)	0.0088 (6)	-0.0044 (6)
C9	0.0666 (12)	0.0553 (13)	0.0349 (9)	0.0212 (10)	0.0103 (8)	-0.0206 (9)
C10	0.0449 (9)	0.0405 (10)	0.0286 (7)	-0.0090 (8)	0.0163 (7)	0.0027 (7)
C11	0.0421 (9)	0.0372 (10)	0.0275 (7)	-0.0131 (7)	0.0105 (7)	0.0005 (7)
C30	0.0237 (6)	0.0215 (7)	0.0233 (6)	0.0016 (5)	0.0107 (5)	0.0007 (5)
C31	0.0203 (6)	0.0167 (7)	0.0240 (6)	0.0037 (5)	0.0095 (5)	0.0021 (5)
C32	0.0345 (7)	0.0156 (7)	0.0400 (8)	-0.0024 (6)	0.0214 (7)	0.0001 (6)
C33	0.0384 (8)	0.0207 (8)	0.0414 (8)	-0.0041 (6)	0.0181 (7)	-0.0102 (6)
C34	0.0327 (7)	0.0338 (9)	0.0268 (7)	0.0042 (6)	0.0137 (6)	-0.0057 (6)
C35	0.0343 (7)	0.0409 (10)	0.0330 (8)	-0.0079 (7)	0.0201 (6)	-0.0033 (7)
C36	0.0296 (7)	0.0290 (8)	0.0308 (7)	-0.0097 (6)	0.0156 (6)	-0.0069 (6)
N5	0.0270 (6)	0.0122 (6)	0.0244 (5)	0.0004 (4)	0.0117 (5)	-0.0030 (4)
01	0.0551 (7)	0.0190 (6)	0.0296 (5)	-0.0092(5)	0.0241 (5)	-0.0031 (4)
O2	0.0384 (5)	0.0164 (5)	0.0290 (5)	-0.0035 (4)	0.0159 (4)	-0.0049 (4)
O6	0.0299 (5)	0.0220 (5)	0.0292 (5)	0.0074 (4)	0.0129 (4)	-0.0008 (4)
07	0.0302 (5)	0.0195 (5)	0.0227 (5)	0.0052 (4)	0.0094 (4)	-0.0039 (4)

Geometric parameters (Å, °)

C1—O2	1.2159 (17)	С10—Н10А	0.9600
C1—O1	1.3209 (16)	C10—H10B	0.9600
C1—C2	1.507 (2)	C10—H10C	0.9600
C2—C3	1.5322 (17)	C11—H11A	0.9600
C2—H2A	0.9700	C11—H11B	0.9600
C2—H2B	0.9700	C11—H11C	0.9600
C3—C4	1.5272 (19)	C30—C31	1.5144 (18)
C3—C30	1.5373 (18)	С30—Н30А	0.9700
С3—Н3	0.9800	C30—H30B	0.9700
C4—N5	1.4634 (17)	C31—C32	1.388 (2)
C4—H4A	0.9700	C31—C36	1.3894 (19)
C4—H4B	0.9700	C32—C33	1.383 (2)
C6—O6	1.2318 (16)	С32—Н32	0.9300
С6—О7	1.3332 (16)	C33—C34	1.384 (2)
C6—N5	1.3476 (17)	С33—Н33	0.9300
C8—O7	1.4809 (16)	C34—C35	1.379 (2)
C8—C10	1.512 (2)	С34—Н34	0.9300
C8—C9	1.516 (2)	C35—C36	1.387 (2)
C8—C11	1.520 (2)	С35—Н35	0.9300
С9—Н9А	0.9600	С36—Н36	0.9300
С9—Н9В	0.9600	N5—H5	0.846 (18)
С9—Н9С	0.9600	O1—H1	0.8200
O2—C1—O1	122.74 (13)	C8—C10—H10C	109.5
O2—C1—C2	124.47 (11)	H10A—C10—H10C	109.5
O1—C1—C2	112.79 (11)	H10B-C10-H10C	109.5
C1—C2—C3	113.68 (11)	C8—C11—H11A	109.5
C1—C2—H2A	108.8	C8—C11—H11B	109.5
C3—C2—H2A	108.8	H11A—C11—H11B	109.5
C1—C2—H2B	108.8	C8—C11—H11C	109.5
C3—C2—H2B	108.8	H11A—C11—H11C	109.5
H2A—C2—H2B	107.7	H11B—C11—H11C	109.5
C4—C3—C2	111.29 (11)	C31—C30—C3	115.96 (10)
C4—C3—C30	108.53 (11)	C31—C30—H30A	108.3
C2—C3—C30	109.89 (10)	C3—C30—H30A	108.3
С4—С3—Н3	109.0	C31—C30—H30B	108.3
С2—С3—Н3	109.0	C3—C30—H30B	108.3
С30—С3—Н3	109.0	H30A—C30—H30B	107.4
N5—C4—C3	115.21 (11)	C32—C31—C36	117.71 (13)
N5—C4—H4A	108.5	C32—C31—C30	119.88 (12)
C3—C4—H4A	108.5	C36—C31—C30	122.28 (12)
N5—C4—H4B	108.5	C33—C32—C31	121.01 (14)
C3—C4—H4B	108.5	С33—С32—Н32	119.5
H4A—C4—H4B	107.5	C31—C32—H32	119.5
O6—C6—O7	124.44 (12)	C32—C33—C34	120.58 (14)
O6—C6—N5	124.22 (12)	С32—С33—Н33	119.7

O7—C6—N5	111.34 (11)	С34—С33—Н33	119.7
O7—C8—C10	109.69 (12)	C35—C34—C33	119.14 (14)
O7—C8—C9	101.12 (11)	С35—С34—Н34	120.4
C10—C8—C9	112.02 (15)	С33—С34—Н34	120.4
O7—C8—C11	110.82 (12)	C34—C35—C36	120.05 (14)
C10—C8—C11	111.52 (13)	С34—С35—Н35	120.0
C9—C8—C11	111.23 (16)	С36—С35—Н35	120.0
С8—С9—Н9А	109.5	C35—C36—C31	121.45 (14)
С8—С9—Н9В	109.5	С35—С36—Н36	119.3
H9A—C9—H9B	109.5	С31—С36—Н36	119.3
С8—С9—Н9С	109.5	C6—N5—C4	123.71 (11)
Н9А—С9—Н9С	109.5	C6—N5—H5	117.4 (11)
Н9В—С9—Н9С	109.5	C4—N5—H5	116.2 (11)
C8—C10—H10A	109.5	C1-O1-H1	109.5
C8—C10—H10B	109.5	C6—O7—C8	122.65 (10)
H10A—C10—H10B	109.5		
O2—C1—C2—C3	5.74 (18)	C32—C33—C34—C35	1.1 (2)
O1—C1—C2—C3	-174.26 (11)	C33—C34—C35—C36	-1.6 (2)
C1—C2—C3—C4	-168.26 (10)	C34—C35—C36—C31	0.1 (2)
C1—C2—C3—C30	71.50 (14)	C32—C31—C36—C35	1.9 (2)
C2—C3—C4—N5	70.78 (14)	C30-C31-C36-C35	-174.09 (13)
C30—C3—C4—N5	-168.17 (11)	O6—C6—N5—C4	165.44 (13)
C4—C3—C30—C31	76.50 (15)	O7—C6—N5—C4	-14.81 (18)
C2—C3—C30—C31	-161.60 (11)	C3—C4—N5—C6	89.89 (15)
C3—C30—C31—C32	70.93 (17)	O6—C6—O7—C8	-3.7 (2)
C3—C30—C31—C36	-113.17 (15)	N5—C6—O7—C8	176.54 (11)
C36—C31—C32—C33	-2.4 (2)	C10—C8—O7—C6	-63.08 (17)
C30—C31—C32—C33	173.69 (14)	С9—С8—О7—С6	178.48 (15)
C31—C32—C33—C34	1.0 (2)	С11—С8—О7—С6	60.48 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1…O6 ⁱ	0.82	1.83	2.6368 (15)	170
N5—H5…O2 ⁱⁱ	0.846 (18)	2.131 (18)	2.8856 (16)	148.2 (15)

Symmetry codes: (i) -*x*+2, *y*+1, -*z*+1; (ii) *x*, *y*-1, *z*.