

Received 31 July 2014 Accepted 29 August 2014

Edited by S. Bernès, UANL, México

Keywords: crystal structure; cycloocta[b]pyridine; hydrogen bonding; Schiff bases

CCDC reference: 1021949 **Supporting information**: this article has supporting information at journals.iucr.org/e

Crystal structure of 1-benzyl-4-(4-chlorophenyl)-2imino-1,2,5,6,7,8,9,10-octahydrocycloocta[*b*]pyridine-3-carbonitrile

R. A. Nagalakshmi,^a J. Suresh,^a S. Maharani,^b R. Ranjith Kumar^b and P. L. Nilantha Lakshman^c*

^aDepartment of Physics, The Madura College, Madurai 625 011, India, ^bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and ^cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka. *Correspondence e-mail: plakshmannilantha@ymail.com

The title compound, $C_{25}H_{24}ClN_3$, comprises a 2-iminopyridine ring fused with a cyclooctane ring, which adopts a twist boat-chair conformation. In the crystal, $C-H\cdots N$ interactions form $R_2^2(14)$ ring motifs and molecules are further connected by weak $C-H\cdots \pi$ interactions. The resulting supramolecular structure is a two-dimensional framework parallel to the *ab* plane.

1. Chemical context

Schiff bases are compounds carrying an imine or azomethine (-C=N-) functional group. They have gained importance in the medicinal and pharmaceutical fields due to their broad spectrum of biological activity, including anti-inflammatory, analgesic, antimicrobial, anticonvulsant, antitubercular (Aboul-Fadl *et al.*, 2003), anticancer, antioxidant and anti-helminthic, among others. Schiff base derivatives are present in a number of processes, which prompted researchers to design novel heterocyclic/aryl Schiff bases with the aim of developing new environmentally friendly technologies (Bhattacharya *et al.*, 2003). Schiff bases are also used as ligands for catalysts, intermediates in organic synthesis, dyes, pigments, and polymer stabilizers (Dhar & Taploo, 1982).

Iminopyridine complexes can be useful catalysts, and pyridones have been investigated extensively as valuable building blocks for many fused heterocyclic systems (Johns *et al.*, 2003) displaying a wide range of biological and pharmacological activities. They exhibit, for example, antiproliferative and antitubolin activities (Magedov *et al.*, 2008). Many pyridin-2one and 3-cyano-2-iminopyridine derivatives also exhibit antiproliferative activity (McNamara & Cook, 1987). As part of our studies in this area, the title compound was synthesized

research communications

Figure 1

The molecular structure of the title compound, showing 20% probability displacement ellipsoids. All H atoms have been omitted for clarity.

and we report herein on the molecular and crystal structures of this compound.

2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1. The cyclooctane ring adopts a twist boat-chair conformation (Wiberg, 2003), as found in similar structures (Vishnupriya et al., 2014a,b). As expected, the pyridine ring (atoms C1-C5/N3) is almost planar, with an r.m.s. deviation of 0.002 Å. The chlorobenzene (C31-C36) and phenyl (C13-C18) rings are almost planar, with r.m.s. deviations of 0.005 and 0.004 Å, respectively. The sum of the angles around atom N3 is 359.8°, indicating that atom N3 is sp^2 -hybridized. The C2-C38=N2 bond angle of 176.07 $(19)^{\circ}$ shows the linearity of the cyano group, a feature systematically observed in carbonitrile compounds. Nitrile atoms C38 and N2 are displaced from the mean plane of the pyridine ring by 0.0258 (1) and 0.0363 (1) Å, respectively. The imino C1=N1 bond length is 1.286 (2) Å. The imino group is nearly coplanar with the pyridine ring, as indicated by the N1=C1-N3-C5

Figure 2

Partial packing diagram of the title compound. Dashed lines represent intermolecular hydrogen bonds and $C-H\cdots\pi$ contacts. For clarity, H atoms not involved in hydrogen bonding have been omitted.

Table 1	
Hydrogen-bond geome	try (Å, °).

Cg1 is the centroid of the phenyl ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C32-H32\cdots N1^{i}$	0.93	2.55	3.423 (2)	156
$CII - HIIB \cdots CgI^{n}$	0.97	2.91	3.5642 (2)	126

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x, -y + 1, -z + 1.

torsion angle of $-178.89 (14)^{\circ}$. The chlorobenzene ring is attached to the pyridine ring with a C2=C3-C31-C36 torsion angle of 100.99 (19)°, indicating a (+)anticlinal conformation. The C33-C34-C35 bond angle of 121.11 (15)° deviates from 120° due to the presence of the chlorine substituent. The chlorine atom bonded to C34 deviates by 0.0446 (1) Å from the mean plane of the phenyl ring. The chlorine is attached to the benzene ring with a C32-C33-C34-Cl1 torsion angle of 178.95 (13)°. In the pyridine ring, the formal double bonds [C4=C5 = 1.375 (2) and C2=C3 = 1.369 (2) Å] are longer than standard C=C bonds (1.34 Å), while the other bond lengths are slightly shorter than standard C-C and C-N bond lengths, evidencing that there is a homo-conjugation effect for this ring.

3. Supramolecular features

In the crystal, pairs of C-H···N interactions form $R_2^2(14)$ ring motifs (Bernstein *et al.*, 1995), and the resulting dimers are further connected through weak C-H··· π interactions involving the phenyl ring as acceptor (Table 1 and Fig. 2). The resulting supramolecular structure is a two-dimensional framework parallel to the crystallographic *ab* plane.

4. Database survey

Similar structures reported in the literature are 2-methoxy-4-(2-methoxyphenyl)-5,6,7,8,9,10-hexahydrocycloocta[b]pyridine-3-carbonitrile (Vishnupriya et al., 2014a) and 4-(2fluorophenyl)-2-methoxy-5,6,7,8,9,10-hexahydrocycloocta[b]pyridine-3-carbonitrile (Vishnupriya et al., 2014b). In the structure reported here, the twisted conformation of the cyclooctane ring and the planar conformation of the pyridine are similar to those found in the related structures. However, the C-NH functional group present in the title compound allows the formation of $C-H \cdot \cdot \cdot N$ hydrogen bonds, which are not present in the above-cited compounds. In the title compound, the bond lengths in the central pyridine ring span the range 1.369–1.447 Å, which compares well with the ranges observed in the similar structures (1.314-1.400 Å), but these bonds are systematically longer in the title compound, due to the substitution of the pyridine N atom by a benzyl group.

5. Synthesis and crystallization

Cyclooctanone (1 mmol), 4-chlorobenzaldehyde (1 mmol) and malononitrile (1 mmol) were mixed in ethanol (10 ml),

Table 2	
Experimental	details.

Crystal data	
Chemical formula	$C_{25}H_{24}ClN_3$
M _r	401.92
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	293
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.2319 (3), 10.5228 (3), 11.7767 (4)
$lpha,eta,\gamma(^\circ)$	101.088 (2), 107.524 (2), 114.008 (2)
$V(Å^3)$	1029 87 (5)
Z	2
Radiation type	Δο Κα
$\mu \text{ (mm}^{-1})$	0.20
Crystal size (mm)	$0.21 \times 0.19 \times 0.18$
Data collection	
Diffractometer	Bruker Kappa APEXII
Absorption correction	Multi-scan (SADABS; Bruker, 2004)
T_{\min}, T_{\max}	0.967, 0.974
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	26728, 3842, 3094
R _{int}	0.027
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.606
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.105, 1.05
No. of reflections	3842
No. of parameters	266
No. of restraints	2
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.29, -0.33

Computer programs: *APEX2* and *SAINT* (Bruker, 2004), *SHELXS97* and *SHELXL97* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

and *p*-toluenesulfonic acid (0.5 mmol) was added. The reaction mixture was refluxed for 2–3 h. After completion of the reaction (followed by thin-layer chromatography), the mixture was poured into crushed ice and extracted with ethyl acetate. The excess of solvent was removed under reduced pressure and the residue was chromatographed using a petroleum ether/ethyl acetate mixture (97:3 v/v) as eluent, to afford the pure product. The product was recrystallized from ethyl acetate, affording colourless crystals (m.p. 493 K; yield 71%).

6. Refinement

C-bound H atoms were placed in calculated positions and allowed to ride on their carrier atoms, with C-H = 0.93 (aromatic CH) or 0.97 Å (methylene CH₂). Imine atom H1 was found in a difference map and refined freely, with the N-H distance restrained to 0.84 (2) Å. Isotropic displacement parameters for H atoms were calculated as $U_{\rm iso}({\rm H}) =$ $1.2U_{\rm eq}({\rm C})$ for CH and CH₂ groups, while the $U_{\rm iso}$ factor for H1 was refined. Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

JS and RAN thank the management of The Madura College (Autonomous), Madurai, for their encouragement and support. RRK thanks the University Grants Commission, New Delhi, for funds through Major Research Project F. No. 42–242/2013 (SR).

References

- Aboul-Fadl, T., Mohammed, F. A.-H. & Hassan, E. A.-S. (2003). Arch. Pharm. Res. 26, 778–784.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bhattacharya, A., Purohit, V. C. & Rinaldi, F. (2003). Org. Process Res. Dev. 7, 254–258.

Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Dhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501-506.
- Johns, B. A., Gudmundsson, K. S., Turner, E. M., Allen, S. H., Jung, D. K., Sexton, C. J., Boyd, F. L. Jr & Peel, M. R. (2003). *Tetrahedron*, **59**, 9001–9011.
- Magedov, I. V., Manpadi, M., Ogasawara, M. A., Dhawan, A. S., Rogelj, S., Van Slambrouck, S., Steelant, W. F. A., Evdokimov, N. M., Unglinskii, P. Y., Elias, E. M., et al. (2008). J. Med. Chem. 51, 2561–2570.
- McNamara, D. J. & Cook, P. D. (1987). J. Med. Chem. 30, 340-347.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Vishnupriya, R., Suresh, J., Maharani, S., Kumar, R. R. & Lakshman, P. L. N. (2014a). Acta Cryst. E70, o656.
- Vishnupriya, R., Suresh, J., Maharani, S., Kumar, R. R. & Lakshman, P. L. N. (2014b). Acta Cryst. E70, 0872.
- Wiberg, K. B. (2003). J. Org. Chem. 68, 9322-9329.

supporting information

Acta Cryst. (2014). E70, 167-169 [doi:10.1107/S160053681401962X]

Crystal structure of 1-benzyl-4-(4-chlorophenyl)-2-imino-1,2,5,6,7,8,9,10-octahydrocycloocta[*b*]pyridine-3-carbonitrile

R. A. Nagalakshmi, J. Suresh, S. Maharani, R. Ranjith Kumar and P. L. Nilantha Lakshman

Computing details

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

1-Benzyl-4-(4-chlorophenyl)-2-imino-1,2,5,6,7,8,9,10-octahydrocycloocta[b]pyridine-3-carbonitrile

Crystal data

C₂₅H₂₄ClN₃ $M_r = 401.92$ Triclinic, *P*1 Hall symbol: -P 1 a = 10.2319 (3) Å b = 10.5228 (3) Å c = 11.7767 (4) Å a = 101.088 (2)° $\beta = 107.524$ (2)° $\gamma = 114.008$ (2)° V = 1029.87 (5) Å³

Data collection

Bruker Kappa APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\min} = 0.967, T_{\max} = 0.974$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.105$ S = 1.053842 reflections 266 parameters Z = 2 F(000) = 424 $D_x = 1.296 \text{ Mg m}^{-3}$ Melting point: 493 K Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 2000 reflections $\theta = 2-31^{\circ}$ $\mu = 0.20 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.21 \times 0.19 \times 0.18 \text{ mm}$

26728 measured reflections 3842 independent reflections 3094 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 25.5^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -12 \rightarrow 12$ $k = -12 \rightarrow 12$ $l = -14 \rightarrow 14$

2 restraints
0 constraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0436P)^2 + 0.4103P] \\ &\text{where } P = (F_o^2 + 2F_c^2)/3 \\ &(\Delta/\sigma)_{\text{max}} < 0.001 \\ &\Delta\rho_{\text{max}} = 0.29 \text{ e } \text{ Å}^{-3} \\ &\Delta\rho_{\text{min}} = -0.33 \text{ e } \text{ Å}^{-3} \end{split}$$

F 1		1	1	• , •		• 1 /	• , •	1.	1 ,	,	1 87	2١
Fractional	atomic c	roordinates	and	isofronic i	or i	eauwalent	isotronic	disn	acement	narameters	1 A -	·]
i ractionat	aronne e	oorainaics	ana	isonopie	01	cynivaieni	isonopie	aispi	accment	parameters	(11)	/

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.41432 (18)	0.89760 (17)	0.60601 (14)	0.0337 (3)	
C2	0.43550 (18)	0.80064 (17)	0.51697 (14)	0.0335 (3)	
C3	0.31232 (18)	0.67411 (17)	0.41791 (14)	0.0333 (3)	
C4	0.15512 (18)	0.63430 (17)	0.39917 (14)	0.0353 (3)	
C5	0.13131 (18)	0.72425 (17)	0.48236 (14)	0.0335 (3)	
C6	-0.03192 (19)	0.6888 (2)	0.46876 (16)	0.0423 (4)	
H6A	-0.0265	0.7273	0.5528	0.051*	
H6B	-0.0988	0.5812	0.4361	0.051*	
C7	-0.1099 (2)	0.7521 (2)	0.38092 (18)	0.0551 (5)	
H7A	-0.1975	0.7499	0.3983	0.066*	
H7B	-0.0338	0.8559	0.4038	0.066*	
C8	-0.1713 (2)	0.6742 (3)	0.23817 (19)	0.0593 (5)	
H8A	-0.2427	0.5691	0.2160	0.071*	
H8B	-0.2325	0.7141	0.1940	0.071*	
C9	-0.0483 (2)	0.6871 (2)	0.18839 (19)	0.0578 (5)	
H9A	0.0513	0.7749	0.2484	0.069*	
H9B	-0.0788	0.7029	0.1083	0.069*	
C10	-0.0220 (2)	0.5534 (2)	0.16653 (17)	0.0557 (5)	
H10A	0.0628	0.5763	0.1392	0.067*	
H10B	-0.1169	0.4690	0.0970	0.067*	
C11	0.0186 (2)	0.50636 (19)	0.28133 (17)	0.0456 (4)	
H11A	-0.0733	0.4650	0.2993	0.055*	
H11B	0.0448	0.4287	0.2603	0.055*	
C12	0.2287 (2)	0.95489 (18)	0.66307 (15)	0.0397 (4)	
H12A	0.1371	0.9574	0.6102	0.048*	
H12B	0.3189	1.0545	0.6960	0.048*	
C13	0.20272 (19)	0.91624 (18)	0.77398 (15)	0.0386 (4)	
C14	0.0786 (2)	0.9164 (2)	0.79756 (18)	0.0550 (5)	
H14	0.0085	0.9357	0.7426	0.066*	
C15	0.0579 (3)	0.8877 (3)	0.9030 (2)	0.0687 (7)	
H15	-0.0265	0.8871	0.9179	0.082*	
C16	0.1608 (3)	0.8603 (2)	0.98475 (19)	0.0672 (6)	
H16	0.1475	0.8427	1.0560	0.081*	
C17	0.2835 (2)	0.8589 (2)	0.96164 (18)	0.0570 (5)	
H17	0.3531	0.8395	1.0171	0.068*	
C18	0.3047 (2)	0.88603 (19)	0.85687 (16)	0.0444 (4)	
H18	0.3881	0.8841	0.8417	0.053*	
C31	0.34478 (18)	0.57918 (17)	0.33174 (15)	0.0352 (3)	
C32	0.3811 (2)	0.61741 (19)	0.23496 (17)	0.0434 (4)	
H32	0.3887	0.7054	0.2250	0.052*	

C33	0.4064 (2)	0.5266 (2)	0.15252 (17)	0.0458 (4)	
H33	0.4291	0.5523	0.0868	0.055*	
C34	0.39752 (19)	0.39863 (18)	0.16899 (15)	0.0394 (4)	
C35	0.3645 (2)	0.3594 (2)	0.26548 (18)	0.0488 (4)	
H35	0.3603	0.2728	0.2764	0.059*	
C36	0.3376 (2)	0.4497 (2)	0.34654 (17)	0.0472 (4)	
H36	0.3143	0.4229	0.4118	0.057*	
C38	0.59554 (19)	0.84653 (18)	0.53780 (15)	0.0384 (4)	
N1	0.52304 (18)	1.01684 (16)	0.70223 (14)	0.0466 (4)	
N2	0.72609 (18)	0.88953 (19)	0.56079 (16)	0.0557 (4)	
N3	0.25617 (15)	0.85167 (14)	0.58174 (11)	0.0328 (3)	
Cl1	0.42569 (7)	0.28161 (6)	0.06488 (5)	0.06290 (17)	
H1	0.612 (2)	1.031 (2)	0.703 (2)	0.063 (6)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0364 (8)	0.0339 (8)	0.0297 (8)	0.0161 (7)	0.0126 (6)	0.0147 (7)
C2	0.0346 (7)	0.0360 (8)	0.0313 (8)	0.0174 (7)	0.0139 (6)	0.0156 (6)
C3	0.0372 (8)	0.0341 (8)	0.0315 (8)	0.0188 (7)	0.0147 (7)	0.0148 (7)
C4	0.0340 (8)	0.0334 (8)	0.0342 (8)	0.0153 (7)	0.0123 (7)	0.0103 (7)
C5	0.0348 (8)	0.0348 (8)	0.0318 (8)	0.0170 (7)	0.0133 (6)	0.0154 (7)
C6	0.0387 (9)	0.0476 (10)	0.0403 (9)	0.0205 (8)	0.0198 (7)	0.0125 (8)
C7	0.0475 (10)	0.0707 (13)	0.0534 (11)	0.0388 (10)	0.0184 (9)	0.0181 (10)
C8	0.0463 (11)	0.0748 (14)	0.0540 (12)	0.0336 (10)	0.0132 (9)	0.0229 (10)
C9	0.0490 (11)	0.0732 (14)	0.0458 (10)	0.0252 (10)	0.0167 (9)	0.0278 (10)
C10	0.0427 (10)	0.0670 (13)	0.0362 (9)	0.0196 (9)	0.0110 (8)	0.0034 (9)
C11	0.0360 (9)	0.0398 (9)	0.0466 (10)	0.0141 (7)	0.0141 (8)	0.0030 (8)
C12	0.0460 (9)	0.0373 (9)	0.0376 (9)	0.0256 (8)	0.0151 (7)	0.0101 (7)
C13	0.0387 (8)	0.0359 (8)	0.0334 (8)	0.0168 (7)	0.0141 (7)	0.0028 (7)
C14	0.0465 (10)	0.0593 (12)	0.0484 (11)	0.0274 (9)	0.0172 (9)	0.0002 (9)
C15	0.0530 (12)	0.0728 (14)	0.0585 (13)	0.0171 (11)	0.0346 (11)	-0.0048 (11)
C16	0.0625 (13)	0.0677 (14)	0.0382 (10)	0.0069 (11)	0.0264 (10)	0.0034 (10)
C17	0.0534 (11)	0.0595 (12)	0.0379 (10)	0.0146 (9)	0.0149 (9)	0.0155 (9)
C18	0.0399 (9)	0.0479 (10)	0.0389 (9)	0.0179 (8)	0.0162 (7)	0.0127 (8)
C31	0.0320 (8)	0.0351 (8)	0.0345 (8)	0.0160 (7)	0.0117 (7)	0.0099 (7)
C32	0.0541 (10)	0.0374 (9)	0.0494 (10)	0.0248 (8)	0.0291 (8)	0.0203 (8)
C33	0.0572 (11)	0.0464 (10)	0.0460 (10)	0.0272 (9)	0.0319 (9)	0.0211 (8)
C34	0.0371 (8)	0.0394 (9)	0.0397 (9)	0.0203 (7)	0.0152 (7)	0.0090 (7)
C35	0.0627 (11)	0.0458 (10)	0.0535 (11)	0.0357 (9)	0.0273 (9)	0.0245 (9)
C36	0.0631 (11)	0.0526 (11)	0.0452 (10)	0.0362 (9)	0.0304 (9)	0.0270 (8)
C38	0.0372 (8)	0.0421 (9)	0.0357 (8)	0.0188 (7)	0.0153 (7)	0.0162 (7)
N1	0.0411 (8)	0.0414 (8)	0.0408 (8)	0.0139 (7)	0.0126 (7)	0.0049 (7)
N2	0.0407 (9)	0.0659 (11)	0.0566 (10)	0.0236 (8)	0.0201 (7)	0.0214 (8)
N3	0.0374 (7)	0.0333 (7)	0.0289 (6)	0.0190 (6)	0.0136 (5)	0.0112 (5)
Cl1	0.0826 (4)	0.0577 (3)	0.0635 (3)	0.0439 (3)	0.0404 (3)	0.0156 (2)

Geometric parameters (Å, °)

C1—N1	1.286 (2)	C12—N3	1.4786 (19)
C1—N3	1.402 (2)	C12—C13	1.506 (2)
C1—C2	1.447 (2)	C12—H12A	0.9700
C2—C3	1.369 (2)	C12—H12B	0.9700
C2—C38	1.430 (2)	C13—C14	1.380 (2)
C3—C4	1.419 (2)	C13—C18	1.385 (2)
C3—C31	1.490 (2)	C14—C15	1.388 (3)
C4—C5	1.375 (2)	C14—H14	0.9300
C4—C11	1.508 (2)	C15—C16	1.365 (3)
C5—N3	1.379 (2)	C15—H15	0.9300
C5—C6	1.504 (2)	C16—C17	1.368 (3)
C6—C7	1.533 (3)	C16—H16	0.9300
C6—H6A	0.9700	C17—C18	1.377 (2)
C6—H6B	0.9700	C17—H17	0.9300
C7—C8	1.519 (3)	C18—H18	0.9300
C7—H7A	0.9700	$C_{31} - C_{32}$	1 382 (2)
C7—H7B	0.9700	C31—C36	1.382 (2)
C8—C9	1 510 (3)	C_{32} — C_{33}	1 385 (2)
C8—H8A	0.9700	C32—H32	0.9300
C8—H8B	0.9700	C33—C34	1.367 (2)
C9—C10	1.527 (3)	C33—H33	0.9300
С9—Н9А	0.9700	C34—C35	1.369 (2)
С9—Н9В	0.9700	C34—C11	1.7387 (16)
C10—C11	1.527 (3)	C35—C36	1.383 (2)
C10—H10A	0.9700	С35—Н35	0.9300
C10—H10B	0.9700	С36—Н36	0.9300
C11—H11A	0.9700	C38—N2	1.143 (2)
C11—H11B	0.9700	N1—H1	0.861 (15)
N1—C1—N3	118.60 (15)	C10—C11—H11B	109.1
N1—C1—C2	127.15 (15)	H11A—C11—H11B	107.8
N3—C1—C2	114.24 (13)	N3—C12—C13	115.09 (13)
C3—C2—C38	121.37 (14)	N3—C12—H12A	108.5
C3—C2—C1	123.18 (14)	C13—C12—H12A	108.5
C38—C2—C1	115.45 (14)	N3—C12—H12B	108.5
C2—C3—C4	119.51 (14)	C13—C12—H12B	108.5
C2—C3—C31	119.70 (14)	H12A—C12—H12B	107.5
C4—C3—C31	120.79 (13)	C14—C13—C18	118.66 (17)
C5—C4—C3	118.62 (14)	C14—C13—C12	119.81 (16)
C5—C4—C11	121.18 (14)	C18—C13—C12	121.48 (15)
C3—C4—C11	119.80 (14)	C13—C14—C15	120.3 (2)
C4—C5—N3	121.43 (14)	C13—C14—H14	119.9
C4—C5—C6	121.59 (14)	C15—C14—H14	119.9
N3—C5—C6	116.98 (13)	C16—C15—C14	120.32 (19)
C5—C6—C7	114.83 (14)	C16—C15—H15	119.8
С5—С6—Н6А	108.6	C14—C15—H15	119.8

С7—С6—Н6А	108.6	C15—C16—C17	119.81 (19)
С5—С6—Н6В	108.6	C15—C16—H16	120.1
С7—С6—Н6В	108.6	C17—C16—H16	120.1
H6A—C6—H6B	107.5	C16—C17—C18	120.5 (2)
C8—C7—C6	116.81 (16)	С16—С17—Н17	119.8
C8—C7—H7A	108.1	С18—С17—Н17	119.8
С6—С7—Н7А	108.1	C17—C18—C13	120.46 (17)
С8—С7—Н7В	108.1	C17—C18—H18	119.8
С6—С7—Н7В	108.1	C13—C18—H18	119.8
H7A—C7—H7B	107.3	C32—C31—C36	118.56 (15)
C9—C8—C7	116.28 (16)	C32—C31—C3	121.06 (14)
C9—C8—H8A	108.2	C36—C31—C3	120.38 (14)
С7—С8—Н8А	108.2	C31—C32—C33	120.92 (15)
С9—С8—Н8В	108.2	С31—С32—Н32	119.5
С7—С8—Н8В	108.2	С33—С32—Н32	119.5
H8A—C8—H8B	107.4	C34—C33—C32	119.21 (16)
C8—C9—C10	115.62 (18)	С34—С33—Н33	120.4
С8—С9—Н9А	108.4	С32—С33—Н33	120.4
С10—С9—Н9А	108.4	C33—C34—C35	121.11 (15)
С8—С9—Н9В	108.4	C33—C34—C11	119.88 (13)
С10—С9—Н9В	108.4	C35—C34—C11	119.00 (13)
Н9А—С9—Н9В	107.4	C34—C35—C36	119.39 (16)
C9—C10—C11	115.86 (15)	С34—С35—Н35	120.3
С9—С10—Н10А	108.3	С36—С35—Н35	120.3
C11—C10—H10A	108.3	C31—C36—C35	120.79 (16)
С9—С10—Н10В	108.3	С31—С36—Н36	119.6
C11—C10—H10B	108.3	С35—С36—Н36	119.6
H10A—C10—H10B	107.4	N2—C38—C2	176.07 (19)
C4—C11—C10	112.58 (15)	C1—N1—H1	107.2 (15)
C4—C11—H11A	109.1	C5—N3—C1	123.00 (13)
C10-C11-H11A	109.1	C5—N3—C12	120.87 (13)
C4—C11—H11B	109.1	C1—N3—C12	115.95 (13)
N1—C1—C2—C3	178.97 (16)	C15—C16—C17—C18	0.5 (3)
N3—C1—C2—C3	-0.5 (2)	C16—C17—C18—C13	0.5 (3)
N1-C1-C2-C38	-1.8 (2)	C14—C13—C18—C17	-0.9 (3)
N3—C1—C2—C38	178.71 (13)	C12-C13-C18-C17	176.46 (16)
C38—C2—C3—C4	-178.72 (14)	C2—C3—C31—C32	-79.6 (2)
C1—C2—C3—C4	0.4 (2)	C4—C3—C31—C32	100.90 (19)
C38—C2—C3—C31	1.8 (2)	C2—C3—C31—C36	100.99 (19)
C1—C2—C3—C31	-179.06 (13)	C4—C3—C31—C36	-78.5 (2)
C2—C3—C4—C5	-0.5 (2)	C36—C31—C32—C33	1.4 (3)
C31—C3—C4—C5	179.02 (14)	C3—C31—C32—C33	-177.97 (15)
C2—C3—C4—C11	172.41 (14)	C31—C32—C33—C34	-1.1 (3)
C31—C3—C4—C11	-8.1 (2)	C32—C33—C34—C35	-0.1 (3)
C3—C4—C5—N3	0.6 (2)	C32—C33—C34—Cl1	178.95 (13)
C11—C4—C5—N3	-172.17 (14)	C33—C34—C35—C36	0.9 (3)
C3—C4—C5—C6	-179.76 (14)	Cl1—C34—C35—C36	-178.19 (14)

	C_{3} C_{4} C_{11} C_{10} -64.33 (19) C_{9} C_{10} C_{11} C_{10} -52.2 (2) N_{3} C_{12} C_{13} C_{14} -132.69 (16) N_{3} C_{12} C_{13} C_{13} 49.9 (2) C_{18} C_{13} C_{14} C_{15} 0.4 (3) C_{12} C_{13} C_{14} C_{15} -177.01 (17) C_{13} C_{14} C_{15} C_{16} 0.5 (3)	$\begin{array}{c} C6 & -C5 & -N3 & -C12 \\ C6 & -C5 & -N3 & -C12 \\ N1 & -C1 & -N3 & -C5 \\ C2 & -C1 & -N3 & -C12 \\ C2 & -C1 & -N3 & -C12 \\ C13 & -C12 & -N3 & -C12 \\ C13 & -C12 & -N3 & -C1 \end{array}$	$\begin{array}{c} -5.5 (2) \\ -178.89 (14) \\ 0.6 (2) \\ 6.0 (2) \\ -174.52 (12) \\ 86.24 (17) \\ -98.50 (16) \end{array}$
--	---	--	--

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the phenyl ring.

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C32—H32…N1 ⁱ	0.93	2.55	3.423 (2)	156
C11—H11 B ···Cg1 ⁱⁱ	0.97	2.91	3.5642 (2)	126

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) -*x*, -*y*+1, -*z*+1.