STRUCTURE REPORTS

ISSN 1600-5368

Received 27 June 2014
Accepted 30 July 2014

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; mercury complex; tertiary amine donors

CCDC reference: 1016995
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \odot ACCESS

Crystal structure of (N^{1}-benzyl- N^{1}, N^{2}, N^{2}-tri-methylethane-1,2-diamine- $\left.\kappa^{2} N, N^{\prime}\right)$ dichloridomercury(II)

Sudesh T. Manjare, ${ }^{\text {a }}$ Harkesh B. Singh ${ }^{\text {a }}$ and Ray J. Butcher ${ }^{\text {b* }}$

${ }^{\text {a }}$ Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076 , India, and ${ }^{\mathbf{b}}$ Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA. *Correspondence e-mail:
rbutcher99@yahoo.com

In the structure of the title compound, $\left[\mathrm{HgCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2}\right)\right]$, the $\mathrm{Hg}^{\text {II }}$ atom has a distorted tetrahedral coordination sphere defined by two tertiary amine N -atom donors, as well as two Cl^{-}anions [the dihedral angle between the $\mathrm{N}-\mathrm{Hg}-\mathrm{N}$ and $\mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl}$ planes is $\left.82.80(9)^{\circ}\right]$. The five-membered chelate ring adopts an envelope conformation, with puckering parameters of $Q(2)=0.446$ (6) \AA and $\varphi(2)=88.8(6)^{\circ}$, with the two amine CH_{3} substituents on opposite sides of the ring. In the crystal, the molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions into a zigzag chain parallel to [101].

1. Chemical context

The chemistry of mercuric compounds with multidentate amine ligands is of interest due to the low coordination number and geometry preferences of $\mathrm{Hg}^{\mathrm{II}}$, which facilitates extraordinarily rapid exchange of simple ligands (Bebout et al., 2013; Carra et al., 2013). The enhanced binding thermodynamics of these multidentate ligands has been used to suppress intermolecular ligand-exchange rates for a variety of $\mathrm{Hg}^{\text {II }}$ complexes in solution, greatly enhancing the meaningfulness of NMR characterization. Significantly, under conditions of slow intermolecular exchange the rates of intramolecular isomerization processes for $\mathrm{Hg}^{\mathrm{II}}$ can still exceed both the chemical shift and coupling constant time scale, particularly when bond cleavage is unnecessary and structures of these complexes have been determined (Bebout et al., 2013; Carra et al., 2013).

In view of this interest in the coordination chemistry of mercury with multidentate amine ligands, and the lack of such structures involving tertiary amine donors, we report here the structure of the HgCl_{2} adduct of N^{1}-benzyl- N^{1}, N^{2}, N^{2}-tri-methylethane-1,2-diamine. The o-diamine-substituted aryl bromide, N^{1}-(2-bromobenzyl)- N^{1}, N^{2}, N^{2}-trimethylethane-1,2diamine, can be prepared by the reaction of N^{1}, N^{1}, N^{2}-tri-methylethane-1,2-diamine and ortho-bromobenzyl bromide. The ligand is moisture sensitive and is difficult to purify by

(2)
HgCl_{2} $\mathrm{H}_{2} \mathrm{O}$

(3)

Figure 1
(

Reaction scheme showing the synthesis of the title compound.
column chromatography. However, it could easily be purified by vacuum distillation. The moisture-sensitive ligand, when treated with n-BuLi in tetrahydrofuran (THF) and mercuric chloride, afforded the title compound, $\left[\mathrm{HgCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2}\right)\right]$, (3) (Fig. 1).

2. Structural commentary

In the structure of (3), the $\mathrm{Hg}^{\text {II }}$ atom is four-coordinated by two tertiary amine N -atom donors, as well as two Cl^{-}anions to give a distorted tetrahedral coordination environment (Fig. 2). The distortion from ideal values can be seen by the dihedral angle between the $\mathrm{N} 1-\mathrm{Hg}-\mathrm{N} 2$ and $\mathrm{Cl} 1-\mathrm{Hg}-\mathrm{Cl} 2$ planes of $82.80(9)^{\circ}$. The $\mathrm{Hg}-\mathrm{N}$ and $\mathrm{Hg}-\mathrm{Cl}$ bond lengths are in the normal ranges for such bonds (Allen, 2002). The fivemembered chelate ring adopts an envelope conformation with puckering parameters of $Q(2)=0.446(6) \AA$ and $\varphi(2)=$ 88.8 (6) ${ }^{\circ}$ (Cremer \& Pople, 1975), with the two amine CH_{3} substituents on opposite sides of the ring. Of the two reported structures which contain $\mathrm{Hg}^{\mathrm{II}}$ attached to tertiary N donors (Choi et al., 2005; Niu et al., 2004), only one has $\mathrm{Hg}^{\text {II }}$ in an $\mathrm{N}_{2} \mathrm{Cl}_{2}$ coordination environment (Choi et al., 2005) and thus provides the best comparison. The $\mathrm{Hg}-\mathrm{Cl}[2.3875$ (14) and

Figure 2
The molecular structure of $\left[\mathrm{HgCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2}\right)\right]$, showing the atom labelling and displacement ellipsoids at the 30% probability level.

Table 1
Hydrogen-bond geometry $\left(\AA \AA^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{Cl} 2^{\mathrm{i}}$	0.99	2.78	$3.748(6)$	165

Symmetry code: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$.
2.4397 (13) \AA] and $\mathrm{Hg}-\mathrm{N}$ bond lengths [2.355 (4) and 2.411 (4) \AA] in (3) agree well with those found in the previous example $[\mathrm{Hg}-\mathrm{Cl}=2.397$ (3) and 2.374 (2) $\AA ; \mathrm{Hg}-\mathrm{N}=$ 2.353 (7) and 2.391 (6) Å].

3. Supramolecular features

The molecular adducts are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions (Table 1 and Fig. 3) into a zigzag chain parallel to [101]. As a result of the bulky nature of the complex, with the two amine CH_{3} substituents on opposite sides of the chelate ring, there is no evidence of any $\pi-\pi$ interactions.

4. Database survey

In view of the interest in the coordination chemistry of mercury, it is surprising that a search of the Cambridge Structural Database (Version 5.35, November 2013 with one update; Allen, 2002) for structures of $\mathrm{Hg}^{\mathrm{II}}$ with an $\mathrm{N}_{2} \mathrm{Cl}_{2}$ coordination sphere gave 96 hits, but the vast majority of these involved aromatic N donors such as pyridine and imidazole. There were only six hits involving aliphatic amine N -atom donors and only two (Choi et al., 2005; Niu et al., 2004) where the N atoms involved were both from tertiary amine functionalities.

Figure 3
The molecular packing for $\left[\mathrm{HgCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2}\right)\right]$ viewed along the c axis. $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions are shown as dashed lines.

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}{ }^{\circ}{ }_{8}^{3}\right.$
$V\left(\mathrm{~A}^{3}\right)$
$V\left(\dot{\mathrm{~A}}^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\min }, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)$] reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\left[\mathrm{HgCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2}\right)\right]$
463.79

Monoclinic, $P 2_{1} / n$
200
9.0839 (3), 15.5367 (6), 11.3161 (5)
104.324 (4)
1547.43 (10)

4
Mo $K \alpha$
10.27
$0.79 \times 0.23 \times 0.05$
Agilent Xcalibur
Analytical [CrysAlis PRO
\quad (Agilent, 2014) using a multi-
faceted crystal model based on
expressions derived by Clark \&
\quad Reid (1995)]
$0.026,0.339$
$13173,5125,3248$
0.067
0.758

$0.044,0.074,0.96$
5125
158
H-atom parameters constrained
$1.54,-1.61$

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

5. Synthesis and crystallization

A stirred solution of N^{1}-(2-bromobenzyl)- N^{1}, N^{2}, N^{2}-tri-methylethane-1,2-diamine, (1), ($1.10 \mathrm{ml}, 5.34 \mathrm{mmol}$) in dry THF (15 ml) was treated dropwise with a 1.6 M solution of n-BuLi in hexane ($3.80 \mathrm{ml}, 6.15 \mathrm{mmol}$) via syringe under N_{2} at 273 K . On stirring the reaction mixture for 2 h at this temperature, the lithiated product (2) was obtained. Mercuric chloride ($1.55 \mathrm{~g}, 5.70 \mathrm{mmol}$) was added to the reaction mixture under a brisk flow of N_{2} gas and stirring was continued for an
additional 6 h at room temperature. The reaction mixture was then removed from the N_{2} line and evaporated to dryness to give a colourless hygroscopic solid. The solid was extracted with dry chloroform. The organic phase was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was evaporated to dryness to give a colourless crystalline solid of the HgCl_{2} adduct of N^{1}-benzyl- N^{1}, N^{2}, N^{2}-trimethylethane-1,2-diamine, (3) (yield $1.25 \mathrm{~g}, 51 \%$). The reaction scheme is shown in Fig. 1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.95 (aromatic) and $0.99 \AA$ (methylene), with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, and $\mathrm{C}-\mathrm{H}=$ $0.98 \AA$ for methyl H atoms, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$.

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE0619278) for funds to purchase an X-ray diffractometer.

References

Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bebout, D. C., Bowers, E. V., Freer, R. E., Kastner, M. E., Parrish, D. A., Raymond, J. \& Butcher, R. J. (2013). J. Chem. Crystallogr. 43, 108-115.
Carra, B. J., Berry, S. M., Pike, R. D., Deborah, C. \& Bebout, D. C. (2013). Dalton Trans. 42, 14424-14431.

Choi, S.-N., Kim, S.-Y., Ryu, H.-W. \& Lee, Y.-M. (2005). Acta Cryst. C61, m504-m506.
Clark, R. C. \& Reid, J. S. (1995). Acta Cryst. A51, 887-897.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Niu, W., Wong, E. H., Hill, D. C., Tranchemontage, D. J., Lam, K.-C., Sommer, R. D., Zakharov, L. N. \& Rheingold, A. L. (2004). Dalton Trans. pp. 3536-3547.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Crystal structure of (N^{1}-benzyl- N^{1}, N^{2}, N^{2}-trimethylethane-1,2-diamine$\kappa^{2} N, N^{\prime}$)dichloridomercury(II)

Sudesh T. Manjare, Harkesh B. Singh and Ray J. Butcher

Computing details

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

(N^{1}-Benzyl- N^{1}, N^{2}, N^{2}-trimethylethane-1,2-diamine- $\kappa^{2} N, N^{\prime}$)dichloridomercury(II)

Crystal data

$\left[\mathrm{HgCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2}\right)\right]$
$M_{r}=463.79$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=9.0839$ (3) A
$b=15.5367$ (6) \AA
$c=11.3161(5) \AA$
$\beta=104.324$ (4) ${ }^{\circ}$
$V=1547.43(10) \AA^{3}$
$Z=4$

Data collection

Agilent Xcalibur
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 10.5081 pixels mm^{-1}
ω scans
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2014) using a multifaceted crystal model based on expressions derived by Clark \& Reid (1995)]

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.074$
$S=0.96$
5125 reflections
158 parameters
0 restraints
$F(000)=880$
$D_{\mathrm{x}}=1.991 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1518 reflections
$\theta=5.3-30.8^{\circ}$
$\mu=10.27 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Plate, colorless
$0.79 \times 0.23 \times 0.05 \mathrm{~mm}$
$T_{\text {min }}=0.026, T_{\text {max }}=0.339$
13173 measured reflections
5125 independent reflections
3248 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.067$
$\theta_{\text {max }}=32.6^{\circ}, \theta_{\text {min }}=5.1^{\circ}$
$h=-13 \rightarrow 11$
$k=-16 \rightarrow 23$
$l=-16 \rightarrow 16$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

```
\(w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0132 P)^{2}\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}=0.001\)
\(\Delta \rho_{\max }=1.54 \mathrm{e}^{\AA^{-3}}\)
```

$\Delta \rho_{\text {min }}=-1.61 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.00248 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Hg	0.11248 (2)	0.279066 (14)	0.55937 (2)	0.03718 (9)
Cl1	0.24245 (15)	0.15445 (9)	0.51432 (13)	0.0476 (4)
C12	-0.08589 (15)	0.34782 (10)	0.40263 (13)	0.0502 (4)
N1	0.0504 (5)	0.3190 (3)	0.7420 (4)	0.0402 (11)
N2	0.2991 (5)	0.3891 (3)	0.6352 (4)	0.0423 (11)
C1	-0.0894 (5)	0.1816 (4)	0.7510 (5)	0.0368 (13)
C2	-0.0412 (6)	0.1163 (4)	0.6876 (5)	0.0431 (14)
H2A	0.0635	0.1125	0.6885	0.052*
C3	-0.1412 (7)	0.0563 (4)	0.6228 (5)	0.0511 (16)
H3A	-0.1059	0.0123	0.5784	0.061*
C4	-0.2928 (7)	0.0605 (4)	0.6231 (5)	0.0531 (16)
H4A	-0.3624	0.0194	0.5788	0.064*
C5	-0.3428 (6)	0.1239 (4)	0.6871 (6)	0.0552 (17)
H5A	-0.4470	0.1263	0.6879	0.066*
C6	-0.2417 (6)	0.1853 (4)	0.7516 (5)	0.0481 (15)
H6A	-0.2773	0.2294	0.7957	0.058*
C7	0.0218 (6)	0.2459 (4)	0.8187 (5)	0.0455 (14)
H7A	0.1193	0.2163	0.8541	0.055*
H7B	-0.0163	0.2691	0.8870	0.055*
C8	0.1829 (7)	0.3687 (4)	0.8088 (6)	0.0572 (18)
H8A	0.2647	0.3280	0.8471	0.069*
H8B	0.1540	0.4009	0.8752	0.069*
C9	0.2449 (7)	0.4314 (4)	0.7321 (6)	0.0574 (17)
H9A	0.1644	0.4732	0.6950	0.069*
H9B	0.3298	0.4638	0.7852	0.069*
C10	0.3076 (7)	0.4511 (4)	0.5401 (6)	0.0597 (18)
H10A	0.3811	0.4962	0.5747	0.090*
H10B	0.2074	0.4770	0.5077	0.090*
H10C	0.3401	0.4216	0.4743	0.090*
C11	0.4498 (6)	0.3478 (4)	0.6837 (7)	0.064 (2)
H11A	0.5219	0.3906	0.7281	0.095*

H11B	0.4871	0.3247	0.6158	0.095^{*}
H11C	0.4398	0.3008	0.7390	0.095^{*}
C12	$-0.0886(6)$	$0.3744(4)$	$0.7088(6)$	$0.0575(17)$
H12A	-0.1164	0.3928	0.7833	0.086^{*}
H12B	-0.1725	0.3415	0.6575	0.086^{*}
H12C	-0.0679	0.4251	0.6641	0.086^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg	$0.03850(13)$	$0.03097(13)$	$0.04205(14)$	$-0.00121(10)$	$0.00990(8)$	$-0.00793(11)$
C 11	$0.0585(9)$	$0.0360(8)$	$0.0541(9)$	$0.0049(7)$	$0.0249(7)$	$-0.0088(7)$
C 12	$0.0470(8)$	$0.0549(10)$	$0.0448(9)$	$0.0077(7)$	$0.0037(6)$	$-0.0001(8)$
N 1	$0.050(3)$	$0.032(3)$	$0.041(3)$	$-0.001(2)$	$0.017(2)$	$-0.006(2)$
N 2	$0.047(3)$	$0.031(3)$	$0.046(3)$	$-0.004(2)$	$0.007(2)$	$-0.001(2)$
C 1	$0.034(3)$	$0.039(3)$	$0.037(3)$	$0.007(2)$	$0.008(2)$	$0.012(3)$
C 2	$0.044(3)$	$0.033(3)$	$0.057(4)$	$0.008(3)$	$0.021(3)$	$0.010(3)$
C 3	$0.069(4)$	$0.040(4)$	$0.048(4)$	$0.003(3)$	$0.022(3)$	$0.009(3)$
C 4	$0.068(4)$	$0.050(4)$	$0.039(4)$	$-0.013(3)$	$0.009(3)$	$0.009(3)$
C 5	$0.038(3)$	$0.072(5)$	$0.055(4)$	$0.002(3)$	$0.009(3)$	$0.010(4)$
C 6	$0.046(3)$	$0.055(4)$	$0.047(4)$	$0.003(3)$	$0.018(3)$	$0.006(3)$
C 7	$0.051(3)$	$0.045(4)$	$0.045(4)$	$0.006(3)$	$0.020(3)$	$0.006(3)$
C 8	$0.076(4)$	$0.050(4)$	$0.046(4)$	$-0.023(3)$	$0.015(3)$	$-0.018(3)$
C9	$0.068(4)$	$0.042(4)$	$0.064(4)$	$-0.018(3)$	$0.020(3)$	$-0.021(3)$
C10	$0.075(4)$	$0.043(4)$	$0.061(4)$	$-0.008(3)$	$0.018(3)$	$-0.001(3)$
C11	$0.035(3)$	$0.058(5)$	$0.089(5)$	$-0.006(3)$	$-0.001(3)$	$0.000(4)$
C12	$0.062(4)$	$0.048(4)$	$0.069(5)$	$0.026(3)$	$0.029(3)$	$0.003(3)$

Geometric parameters $\left(\hat{A},{ }^{\circ}\right)$

$\mathrm{Hg}-\mathrm{N} 1$	$2.355(4)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.398(8)$
$\mathrm{Hg}-\mathrm{Cl} 1$	$2.3875(14)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9500
$\mathrm{Hg}-\mathrm{N} 2$	$2.411(4)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9500
$\mathrm{Hg}-\mathrm{Cl} 2$	$2.4397(13)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9900
$\mathrm{~N} 1-\mathrm{C} 8$	$1.472(6)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9900
$\mathrm{~N} 1-\mathrm{C} 7$	$1.491(7)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.503(9)$
$\mathrm{N} 1-\mathrm{C} 12$	$1.497(6)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9900
$\mathrm{~N} 2-\mathrm{C} 10$	$1.460(7)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9900
$\mathrm{~N} 2-\mathrm{C} 9$	$1.465(8)$	$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	0.9900
$\mathrm{~N} 2-\mathrm{C} 11$	$1.489(7)$	$\mathrm{C} 9 — \mathrm{H} 9 \mathrm{~B}$	0.9900
$\mathrm{C} 1-\mathrm{C} 2$	$1.375(7)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.9800
$\mathrm{C} 1-\mathrm{C} 6$	$1.386(7)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	0.9800
$\mathrm{C} 1-\mathrm{C} 7$	$1.491(8)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	0.9800
$\mathrm{C} 2-\mathrm{C} 3$	$1.379(8)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9800
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9500	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	0.9800
$\mathrm{C} 3-\mathrm{C} 4$	$1.380(8)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	0.9800
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9500	$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	0.9800
$\mathrm{C} 4-\mathrm{C} 5$	$1.364(8)$	$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	0.9800

$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9500
$\mathrm{N} 1-\mathrm{Hg}-\mathrm{Cl} 1$	129.73 (12)
$\mathrm{N} 1-\mathrm{Hg}-\mathrm{N} 2$	78.51 (16)
$\mathrm{Cl} 1-\mathrm{Hg}-\mathrm{N} 2$	108.04 (12)
$\mathrm{N} 1-\mathrm{Hg}-\mathrm{Cl} 2$	103.21 (11)
$\mathrm{Cl} 1-\mathrm{Hg}-\mathrm{Cl} 2$	121.01 (5)
$\mathrm{N} 2-\mathrm{Hg}-\mathrm{Cl} 2$	106.03 (11)
C8-N1-C7	109.8 (4)
C8-N1-C12	111.0 (5)
C7-N1-C12	109.0 (4)
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{Hg}$	104.3 (3)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{Hg}$	115.1 (3)
$\mathrm{C} 12-\mathrm{N} 1-\mathrm{Hg}$	107.6 (3)
C10-N2-C9	110.1 (5)
C10-N2-C11	110.1 (5)
C9-N2-C11	111.5 (5)
C10-N2-Hg	111.5 (3)
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{Hg}$	104.4 (3)
C11-N2-Hg	109.1 (3)
C2- $\mathrm{C} 1-\mathrm{C} 6$	118.7 (5)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	119.9 (5)
C6-C1-C7	121.3 (5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	121.5 (5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.2
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.2
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	119.5 (6)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.2
C5-C4-C3	119.9 (6)
C5-C4-H4A	120.0
C3-C4-H4A	120.0
C4-C5-C6	120.5 (6)
C4-C5-H5A	119.7
C6-C5-H5A	119.7
C1-C6-C5	119.8 (6)
C1-C6-H6A	120.1
C5-C6-H6A	120.1
$\mathrm{Cl1}-\mathrm{Hg}-\mathrm{N} 1-\mathrm{C} 8$	89.5 (4)
$\mathrm{N} 2-\mathrm{Hg}-\mathrm{N} 1-\mathrm{C} 8$	-14.5 (4)
$\mathrm{Cl} 2-\mathrm{Hg}-\mathrm{N} 1-\mathrm{C} 8$	-118.5 (3)
$\mathrm{Cl1}-\mathrm{Hg}-\mathrm{N} 1-\mathrm{C} 7$	-30.9 (4)
$\mathrm{N} 2-\mathrm{Hg}-\mathrm{N} 1-\mathrm{C} 7$	-134.9 (4)
$\mathrm{Cl} 2-\mathrm{Hg}-\mathrm{N} 1-\mathrm{C} 7$	121.2 (3)
$\mathrm{Cl} 1-\mathrm{Hg}-\mathrm{N} 1-\mathrm{C} 12$	-152.6 (3)
$\mathrm{N} 2-\mathrm{Hg}-\mathrm{N} 1-\mathrm{C} 12$	103.4 (4)
$\mathrm{Cl} 2-\mathrm{Hg}-\mathrm{N} 1-\mathrm{C} 12$	-0.6 (4)

C12-H12C	0.9800
C1-C7-N1	113.9 (5)
C1-C7-H7A	108.8
N1-C7-H7A	108.8
C1-C7-H7B	108.8
N1-C7-H7B	108.8
H7A-C7-H7B	107.7
N1-C8-C9	114.7 (5)
N1-C8-H8A	108.6
C9-C8-H8A	108.6
N1-C8-H8B	108.6
C9-C8-H8B	108.6
H8A-C8-H8B	107.6
N2-C9-C8	112.6 (5)
N2-C9-H9A	109.1
C8-C9-H9A	109.1
N2-C9-H9B	109.1
C8-C9-H9B	109.1
H9A-C9-H9B	107.8
N2-C10-H10A	109.5
N2-C10-H10B	109.5
H10A-C10-H10B	109.5
N2-C10-H10C	109.5
H10A-C10-H10C	109.5
H10B-C10-H10C	109.5
N2-C11-H11A	109.5
N2-C11-H11B	109.5
H11A-C11-H11B	109.5
N2-C11-H11C	109.5
H11A-C11-H11C	109.5
H11B-C11-H11C	109.5
N1-C12-H12A	109.5
N1-C12-H12B	109.5
H12A-C12-H12B	109.5
N1-C12-H12C	109.5
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
$\mathrm{H} 12 \mathrm{~B}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
C7- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-179.3 (5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-1.2 (9)
C2-C3-C4-C5	0.0 (9)
C3-C4-C5-C6	0.7 (9)
C2- $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	-0.9 (8)
C7- $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	-179.9 (5)
C4-C5-C6-C1	-0.3 (9)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	85.1 (6)
C6- $\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	-95.8 (6)

$\mathrm{N} 1-\mathrm{Hg}-\mathrm{N} 2-\mathrm{C} 10$	$-132.3(4)$	$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1$	$-168.4(5)$
$\mathrm{C} 11-\mathrm{Hg}-\mathrm{N} 2-\mathrm{C} 10$	$99.4(4)$	$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1$	$69.8(6)$
$\mathrm{C} 2-\mathrm{Hg}-\mathrm{N} 2-\mathrm{C} 10$	$-31.7(4)$	$\mathrm{Hg}-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1$	$-51.1(5)$
$\mathrm{N} 1-\mathrm{Hg}-\mathrm{N} 2-\mathrm{C} 9$	$-13.4(4)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$166.8(5)$
$\mathrm{Cl} 1-\mathrm{Hg}-\mathrm{N} 2-\mathrm{C} 9$	$-141.7(3)$	$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$-72.6(7)$
$\mathrm{Cl} 2-\mathrm{Hg}-\mathrm{N} 2-\mathrm{C} 9$	$87.2(4)$	$\mathrm{Hg}-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$43.0(6)$
$\mathrm{N} 1-\mathrm{Hg}-\mathrm{N} 2-\mathrm{C} 11$	$105.9(4)$	$\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 8$	$160.3(5)$
$\mathrm{C} 11-\mathrm{Hg}-\mathrm{N} 2-\mathrm{C} 11$	$-22.4(4)$	$\mathrm{C} 11-\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 8$	$-77.1(6)$
$\mathrm{C} 12-\mathrm{Hg}-\mathrm{N} 2-\mathrm{C} 11$	$-153.5(4)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 9$	$40.5(6)$
$\mathrm{C} 6-\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3$		$-61.6(7)$	

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7 — \mathrm{H} 7 A \cdots \mathrm{Cl} 2^{\mathrm{i}}$	0.99	2.78	$3.748(6)$	165

Symmetry code: (i) $x+1 / 2,-y+1 / 2, z+1 / 2$.

