STRUCTURE REPORTS

ISSN 1600-5368

Crystal structure of $\mathrm{K}\left[\mathrm{Hg}(\mathrm{SCN})_{3}\right]$ - a redetermination

Matthias Weil* and Thomas Häusler

Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria. *Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at

Received 3 June 2014; accepted 9 June 2014

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

The crystal structure of the room-temperature modification of $\mathrm{K}\left[\mathrm{Hg}(\mathrm{SCN})_{3}\right]$, potassium trithiocyanatomercurate(II), was redetermined based on modern CCD data. In comparison with the previous report [Zhdanov \& Sanadze (1952). Zh. Fiz. Khim. 26, 469-478], reliability factors, standard deviations of lattice parameters and atomic coordinates, as well as anisotropic displacement parameters, were revealed for all atoms. The higher precision and accuracy of the model is, for example, reflected by the $\mathrm{Hg}-\mathrm{S}$ bond lengths of 2.3954 (11), 2.4481 (8) and 2.7653 (6) \AA in comparison with values of 2.24 , 2.43 and $2.77 \AA$. All atoms in the crystal structure are located on mirror planes. The Hg^{2+} cation is surrounded by four S atoms in a seesaw shape $[\mathrm{S}-\mathrm{Hg}-\mathrm{S}$ angles range from 94.65 (2) to $\left.154.06(3)^{\circ}\right]$. The HgS_{4} polyhedra share a common S atom, building up chains extending parallel to [010]. All S atoms of the resulting $\infty^{1}\left[\mathrm{HgS}_{2 / 1} \mathrm{~S}_{2 / 2}\right]$ chains are also part of SCN^{-}anions that link these chains with the K^{+}cations into a three-dimensional network. The $\mathrm{K}-\mathrm{N}$ bond lengths of the distorted KN_{7} polyhedra lie between 2.926 (2) and 3.051 (3) A.

Keywords: crystal structure; redetermination; phase transition; mercury.

CCDC reference: 1006909

1. Related literature

$\mathrm{K}\left[\mathrm{Hg}(\mathrm{SCN})_{3}\right]$ has been determined originally in the space group $P 2_{1} / m$ with $Z=8$, based on room-temperature data (Zhdanov \& Sanadze, 1952). A subsequent redetermination revealed a doubled unit cell in $P 2_{1} / n, Z=4$, based on intensity data measured at 150 K (Bowmaker et al., 1998).

However, there is no report on an apparent phase transition of $\mathrm{K}\left[\mathrm{Hg}(\mathrm{SCN})_{3}\right]$ between these two temperatures. For symmetry relationships between crystal structures, see: Müller (2013).

2. Experimental

2.1. Crystal data

$\mathrm{K}\left[\mathrm{Hg}(\mathrm{NCS})_{3}\right]$
$V=457.44(8) \AA^{3}$
$M_{r}=413.93$
Monoclinic, $P 2_{1} / m$
$Z=2$
Mo $K \alpha$ radiation
$a=11.2727$ (11) A
$\mu=17.90 \mathrm{~mm}^{-1}$
$b=4.0775$ (4) A
$c=10.9764$ (10) \AA
$\beta=114.951$ (4) ${ }^{\circ}$
$0.30 \times 0.06 \times 0.04 \mathrm{~mm}$

2.2. Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2008)
$T_{\text {min }}=0.226, T_{\text {max }}=0.504$
11940 measured reflections
3765 independent reflections 2358 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.032$

2.3. Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.062$
$S=1.03$
3765 reflections

68 parameters
$\Delta \rho_{\text {max }}=1.27 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-1.33$ e \AA^{-3}

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS for Windows (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Acknowledgements

The X-ray centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal diffractometer.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB0013).

References

Bowmaker, G. A., Churakov, A. V., Harris, R. K., Howard, J. A. K. \& Apperley, D. C. (1998). Inorg. Chem. 37, 1734-1743.
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Dowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.
Müller, U. (2013). In Symmetry Relationships between Crystal Structures. Oxford University Press.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zhdanov, G. S. \& Sanadze, V. V. (1952). Zh. Fiz. Khim. 26, 469-478.

supporting information

Acta Cryst. (2014). E70, 146 [doi:10.1107/S1600536814013403]

Crystal structure of $\mathrm{K}\left[\mathrm{Hg}(\mathrm{SCN})_{3}\right]$ - a redetermination

Matthias Weil and Thomas Häusler

S1. Experimental

$\operatorname{Hg}(\mathrm{SCN})_{2}(0.5 \mathrm{~g})$ was dissolved under heating in a water-ethanol mixture $(1: 1 v / v)$ to which $\operatorname{KSCN}(0.1 \mathrm{~g})$ was added. After one week, colourless crystals with a lath-like form were obtained from the remaining solution.

S2. Refinement

For better comparison with the previous determination by Zhdanov \& Sanadze (1952), the original nonreduced cell setting as well as the atom labelling and the atomic coordinates were used as starting parameters for the refinement. Bowmaker et al. (1998) reported a doubled unit cell for $\mathrm{K}\left[\mathrm{Hg}(\mathrm{SCN})_{3}\right]$ with $a=11.9119$ (3), $b=4.0201$ (1), $c=$ 18.7095 (3) $\AA, \beta=91.852(1)^{\circ}, P 2_{1} / n, Z=4$. However, no superstructure reflections were found in the current redetermination at 293 K , while Bowmaker et al. (1998) used intensity data measured at 150 K . Therefore it appears likely that $\mathrm{K}\left[\operatorname{Hg}(\mathrm{SCN})_{3}\right]$ has a phase transition between these two temperatures. The two unit cells of the roomtemperature phase in $P 2_{1} / m$ and the low-temperature phase in $P 2_{1} / n$ are related by the matix $(101,010, \overline{1} 01)$, revealing a klassengleiche symmetry reduction of index 2 (Müller, 2013).
The highest and lowest electron densities are found 0.66 and $0.28 \AA$, respectively, from atom S3.

Figure 1
The crystal structure of $\mathrm{K}\left[\mathrm{Hg}(\mathrm{SCN})_{3}\right.$] in a projection along [010]. Displacement ellipsoids are drawn at the 90% probability level. Colour code: Hg green, S yellow, C blue, N magenta, K grey. The HgS_{4} polyhedron is shown in red.

Potassium [trithiocyanatomercurate(II)]

Crystal data

$\mathrm{K}\left[\mathrm{Hg}(\mathrm{NCS})_{3}\right]$
$M_{r}=413.93$
Monoclinic, $P 2_{1} / m$
Hall symbol: -P 2yb
$a=11.2727$ (11) \AA
$b=4.0775$ (4) \AA
$c=10.9764(10) \AA$
$\beta=114.951(4)^{\circ}$
$V=457.44$ (8) \AA^{3}
$Z=2$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\min }=0.226, T_{\text {max }}=0.504$
$F(000)=372$
$D_{\mathrm{x}}=3.005 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4570 reflections
$\theta=3.4-33.7^{\circ}$
$\mu=17.90 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Lath, colourless
$0.30 \times 0.06 \times 0.04 \mathrm{~mm}$

11940 measured reflections
3765 independent reflections
2358 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=44.4^{\circ}, \theta_{\text {min }}=3.4^{\circ}$
$h=-19 \rightarrow 22$
$k=-7 \rightarrow 7$
$l=-21 \rightarrow 18$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.062$
$S=1.03$
3765 reflections
68 parameters
0 restraints

> Primary atom site location: isomorphous \quad structure methods
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0218 P)^{2}+0.0583 P\right]$ \quad where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=1.27 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-1.33 \mathrm{e} \AA^{-3}$
> Extinction correction: $S H E L X L 97$ (Sheldrick, $\quad 2008), \mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
> Extinction coefficient: $0.0219(8)$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Hg1	$0.145383(12)$	0.2500	$0.725128(12)$	$0.03813(6)$
K1	$0.59433(8)$	0.7500	$0.71536(7)$	$0.03802(15)$
S1	$0.12455(7)$	0.2500	$0.49391(8)$	$0.03495(17)$
S2	$0.32808(7)$	0.7500	$0.80993(8)$	$0.03121(14)$
S3	$0.06157(10)$	0.2500	$0.89262(10)$	$0.0704(4)$
C1	$0.2848(3)$	0.2500	$0.5314(3)$	$0.0313(6)$
C2	$0.3579(3)$	0.7500	$0.9719(3)$	$0.0312(6)$
C3	$0.9019(4)$	0.2500	$0.7977(4)$	$0.0357(6)$
N1	$0.3940(3)$	0.2500	$0.5574(3)$	$0.0477(8)$
N2	$0.6210(4)$	0.2500	$0.9165(3)$	$0.0500(8)$
N3	$0.7909(4)$	0.2500	$0.7382(4)$	$0.0601(10)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg 1	$0.03374(7)$	$0.05407(10)$	$0.03323(8)$	0.000	$0.02060(5)$	0.000
K 1	$0.0377(3)$	$0.0421(4)$	$0.0364(3)$	0.000	$0.0177(3)$	0.000
S 1	$0.0247(3)$	$0.0544(5)$	$0.0247(3)$	0.000	$0.0094(3)$	0.000
S 2	$0.0292(3)$	$0.0372(4)$	$0.0296(3)$	0.000	$0.0147(3)$	0.000
S 3	$0.0341(4)$	$0.1516(14)$	$0.0307(4)$	0.000	$0.0188(4)$	0.000
C 1	$0.0334(14)$	$0.0392(16)$	$0.0243(12)$	0.000	$0.0150(11)$	0.000
C 2	$0.0268(12)$	$0.0344(15)$	$0.0309(14)$	0.000	$0.0107(11)$	0.000
C 3	$0.0376(15)$	$0.0406(17)$	$0.0398(16)$	0.000	$0.0269(13)$	0.000
N 1	$0.0329(14)$	$0.075(2)$	$0.0379(15)$	0.000	$0.0175(12)$	0.000
N 2	$0.0529(19)$	$0.064(2)$	$0.0292(14)$	0.000	$0.0134(13)$	0.000

N 3	$0.0394(17)$	$0.096(3)$	$0.050(2)$	0.000	$0.0248(15)$	0.000

Geometric parameters ($\AA,{ }^{\circ}$)

Hg1-S3	2.3954 (11)	$\mathrm{K} 1-\mathrm{K} 1^{\text {iii }}$	4.7485 (14)
Hg1-S1	2.4481 (8)	S1-C1	1.675 (3)
Hg1-S2	2.7653 (6)	S2-C2	1.664 (3)
$\mathrm{Hg} 1-\mathrm{S}^{2}{ }^{\text {i }}$	2.7653 (6)	$\mathrm{S} 2-\mathrm{Hg} 1^{\text {ii }}$	2.7653 (6)
$\mathrm{K} 1-\mathrm{N} 2^{\text {ii }}$	2.926 (2)	S3-C3 ${ }^{\text {iv }}$	1.657 (4)
$\mathrm{K} 1-\mathrm{N} 2$	2.926 (2)	C1-N1	1.140 (4)
$\mathrm{K} 1-\mathrm{N} 3{ }^{\text {ii }}$	2.943 (3)	$\mathrm{C} 1-\mathrm{K} 1^{\text {iii }}$	3.508 (3)
K1-N3	2.943 (3)	$\mathrm{C} 2-\mathrm{N} 2^{\text {v }}$	1.145 (5)
$\mathrm{K} 1-\mathrm{N} 1$	2.993 (2)	C3-N3	1.141 (6)
$\mathrm{K} 1-\mathrm{N} 1^{\text {ii }}$	2.993 (2)	C3-S3 ${ }^{\text {vi }}$	1.657 (4)
$\mathrm{K} 1-\mathrm{N} 1{ }^{\text {iii }}$	3.051 (3)	N1-K1 ${ }^{\text {i }}$	2.993 (2)
$\mathrm{K} 1-\mathrm{C} 1^{\text {iii }}$	3.508 (3)	N1-K1 ${ }^{\text {iii }}$	3.051 (3)
K1-S2	3.5657 (12)	N2-C2v	1.145 (5)
$\mathrm{K} 1-\mathrm{K} 1^{\mathrm{i}}$	4.0775 (4)	$\mathrm{N} 2-\mathrm{K} 1^{\text {i }}$	2.926 (2)
$\mathrm{K} 1-\mathrm{K} 1^{\mathrm{ii}}$	4.0775 (4)	N3-K1 ${ }^{\text {i }}$	2.943 (3)
$\mathrm{S} 3-\mathrm{Hg} 1-\mathrm{S} 1$	154.06 (3)	$\mathrm{C} 1{ }^{\text {iiii }}-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{i}}$	90.0
$\mathrm{S} 3-\mathrm{Hg} 1-\mathrm{S} 2$	102.74 (2)	S2-K1-K1 ${ }^{\text {i }}$	90.0
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 2$	94.65 (2)	$\mathrm{N} 2{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	45.83 (5)
$\mathrm{S} 3-\mathrm{Hg} 1-\mathrm{S} 2^{\text {i }}$	102.74 (2)	N2-K1-K1i	134.17 (5)
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 2^{\text {i }}$	94.65 (2)	$\mathrm{N} 3{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	46.15 (5)
$\mathrm{S} 2-\mathrm{Hg} 1-\mathrm{S} 2^{\text {i }}$	95.00 (2)	N3-K1-K1 ${ }^{\text {ii }}$	133.85 (5)
$\mathrm{N} 2 \mathrm{ii}-\mathrm{K} 1-\mathrm{N} 2$	88.34 (9)	$\mathrm{N} 1-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	132.94 (4)
$\mathrm{N} 2^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{N} 3{ }^{\text {ii }}$	67.60 (10)	$\mathrm{N} 1{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{K} 1^{1 i}$	47.06 (4)
$\mathrm{N} 2-\mathrm{K} 1-\mathrm{N} 3{ }^{\text {ii }}$	125.76 (10)	$\mathrm{N} 1^{\text {iiii- }}$ K1-K1 ${ }^{\text {ii }}$	90.0
N2 ${ }^{\text {iii }}$-K1-N3	125.76 (10)	$\mathrm{C} 1^{\text {iii }}-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	90.0
N2-K1-N3	67.60 (10)	$\mathrm{S} 2-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{ii}}$	90.0
N3iil ${ }^{\text {ii }} 1-\mathrm{N} 3$	87.70 (10)	$\mathrm{K} 1^{\mathrm{i}}-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	180.00 (5)
N2 ${ }^{\text {iii }}$-K1-N1	136.39 (10)	$\mathrm{N} \mathbf{2}^{\text {ii }}$-K1-K $1^{\text {iii }}$	155.60 (6)
N2-K1-N1	76.98 (8)	N2-K1-K1 ${ }^{\text {iii }}$	108.20 (5)
N3 ${ }^{\text {iii }}$-K1-N1	151.42 (11)	N3 ${ }^{\text {ii }}$-K1-K1 $1^{\text {iii }}$	112.78 (8)
N3-K1-N1	86.24 (8)	N3-K1-K1 $1^{\text {iii }}$	78.02 (8)
$\mathrm{N} 2{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{N} 1^{\text {ii }}$	76.98 (8)	N1-K1-K1 $1^{\text {iii }}$	38.66 (6)
$\mathrm{N} 2-\mathrm{K} 1-\mathrm{N} 1^{\text {ii }}$	136.39 (10)	$\mathrm{N} 1^{1 i}-\mathrm{K} 1-\mathrm{K} 1^{\text {iii }}$	78.70 (6)
$\mathrm{N} 3{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{N} 1^{\text {ii }}$	86.24 (7)	N1 ${ }^{\text {iii }}$-K1-K1 $1^{\text {iii }}$	37.79 (4)
N3-K1-N1 ${ }^{\text {ii }}$	151.42 (11)	C1 ${ }^{\text {iiii- }}$ K1-K1 $1^{\text {iii }}$	52.26 (4)
$\mathrm{N} 1-\mathrm{K} 1-\mathrm{N} 1{ }^{\text {ii }}$	85.87 (8)	S2-K1-K1 ${ }^{\text {iii }}$	102.20 (3)
$\mathrm{N} 2^{\text {iii }}$-K1-N1 $1^{\text {iii }}$	135.00 (5)	$\mathrm{K} 1-\mathrm{K} 1-\mathrm{K} 1^{\text {iii }}$	64.574 (8)
$\mathrm{N} 2-\mathrm{K} 1-\mathrm{N} 1{ }^{\text {iii }}$	135.00 (5)	$\mathrm{K} 1^{1 i}-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{iii}}$	115.426 (8)
N3ii-K1-N1 $1^{\text {iii }}$	75.01 (9)	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Hg} 1$	97.08 (11)
N3-K1-N1 ${ }^{\text {iii }}$	75.01 (9)	$\mathrm{C} 2-\mathrm{S} 2-\mathrm{Hg} 1$	98.38 (7)
$\mathrm{N} 1-\mathrm{K} 1-\mathrm{N} 1{ }^{\text {iii }}$	76.45 (8)	$\mathrm{C} 2-\mathrm{S} 2-\mathrm{Hg} 1^{\text {ii }}$	98.38 (7)
$\mathrm{N} 1{ }^{\text {iii }}$-K1-N1 $1^{\text {iii }}$	76.45 (8)	$\mathrm{Hg} 1-\mathrm{S} 2-\mathrm{Hg} 1^{\text {ii }}$	95.00 (2)
$\mathrm{N} 2{ }^{\text {iii }}$-K1-C1 ${ }^{\text {iii }}$	129.27 (7)	C2—S2-K1	119.70 (11)

N2-K1-C1 $1^{\text {iii }}$	129.27 (7)
N3ii-K1-C1 ${ }^{\text {iii }}$	62.76 (8)
N3-K1-C1 $1^{\text {iii }}$	62.76 (8)
N1-K1-C1 $1^{\text {iii }}$	89.79 (8)
$\mathrm{N} 1{ }^{\text {iii }}$-K1-C1 $1^{\text {iii }}$	89.79 (8)
$\mathrm{N} 1{ }^{\text {iiii }}$ - $\mathrm{K} 1-\mathrm{C} 1^{\text {iii }}$	18.38 (8)
N2 ${ }^{\text {ii- }}$-K1-S2	67.14 (8)
N2-K1-S2	67.14 (8)
N3 ${ }^{\text {ii- }}$ K1-S2	132.15 (6)
N3-K1-S2	132.15 (6)
N1—K1-S2	69.32 (6)
N1 $1^{\text {ii- }} \mathrm{K} 1-\mathrm{S} 2$	69.32 (6)
N1 ${ }^{\text {iiii- }}$ K1-S2	132.49 (6)
C1 ${ }^{\text {iiii-K }}$ - $1-\mathrm{S} 2$	150.86 (6)
N2ii-K1-K1 ${ }^{\text {i }}$	134.17 (5)
N2—K1-K1 ${ }^{\text {i }}$	45.83 (5)
N3 ${ }^{\text {iii }}$-K1-K1 ${ }^{\text {i }}$	133.85 (5)
N3-K1-K1 ${ }^{\text {i }}$	46.15 (5)
N1-K1-K1 ${ }^{\text {i }}$	47.06 (4)
N1 ${ }^{\text {iii }}$-K1-K1 ${ }^{\text {i }}$	132.94 (4)
$\mathrm{N} 1^{\text {iii }}-\mathrm{K} 1-\mathrm{K} 1^{\text {i }}$	90.0

Hg1-S2-K1	120.06 (2)
$\mathrm{Hg} 1{ }^{\text {ii}}-\mathrm{S} 2-\mathrm{K} 1$	120.06 (2)
C3 ${ }^{\text {iv }}-\mathrm{S} 3-\mathrm{Hg} 1$	101.12 (13)
N1-C1-S1	179.8 (3)
N1-C1-K1 ${ }^{\text {iii }}$	57.5 (2)
S1-C1-K1 ${ }^{\text {iii }}$	122.68 (14)
N2 ${ }^{\text {v- }}$ C2-S2	179.7 (3)
N3-C3-S3 ${ }^{\text {vi }}$	176.4 (4)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{K} 1$	128.00 (14)
C1-N1-K1 ${ }^{\text {i }}$	128.00 (14)
$\mathrm{K} 1-\mathrm{N} 1-\mathrm{K} 1^{\text {i }}$	85.87 (8)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{K} 1^{\text {iii }}$	104.1 (2)
$\mathrm{K} 1-\mathrm{N} 1-\mathrm{K} 1^{\text {iii }}$	103.55 (8)
$\mathrm{K} 1{ }^{\mathrm{i}}-\mathrm{N} 1-\mathrm{K} 1^{\text {iii }}$	103.55 (8)
$\mathrm{C} 2{ }^{\text {v }}-\mathrm{N} 2-\mathrm{K} 1^{\text {i }}$	135.73 (5)
$\mathrm{C} 2{ }^{\text {v }}$ - $\mathrm{N} 2-\mathrm{K} 1$	135.73 (5)
K1- ${ }^{\text {i }}$ 2-K1	88.34 (9)
$\mathrm{C} 3-\mathrm{N} 3-\mathrm{K} 1^{\text {i }}$	130.79 (15)
C3-N3-K1	130.79 (15)
K1- ${ }^{\text {i }}$ 3-K1	87.70 (10)

Symmetry codes: (i) $x, y-1, z$; (ii) $x, y+1, z$; (iii) $-x+1,-y+1,-z+1$; (iv) $x-1, y, z$; (v) $-x+1,-y+1,-z+2$; (vi) $x+1, y, z$.

