STRUCTURE
OPEN \rightleftharpoons ACCESS

ISSN 1600-5368

Crystal structure of $\mathrm{Hg}_{2} \mathrm{SO}_{4}$ - a redetermination

Matthias Weil
Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria. *Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at

Received 14 April 2014; accepted 14 April 2014

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

The crystal structure of mercury(I) sulfate (or mercurous sulfate), $\mathrm{Hg}_{2} \mathrm{SO}_{4}$, was re-determined based on modern CCD data. In comparison with the previous determination from Weissenberg film data [Dorm (1969). Acta Chem. Scand. 23, 1607-1615], all atoms were refined with anisotropic displacement parameters, leading to higher precision in terms of bond lengths and angles $[e . g . \mathrm{Hg}-\mathrm{Hg}=2.5031$ (7) compared to $2.500(3) \AA$ A. The structure consists of alternating rows along [001] of $\mathrm{Hg}_{2}{ }^{2+}$ dumbbells (generated by inversion symmetry) and $\mathrm{SO}_{4}{ }^{2-}$ tetrahedra (symmetry 2). The dumbbells are linked via short $\mathrm{O}-\mathrm{Hg}-\mathrm{Hg}-\mathrm{O}$ bonds to the sulfate tetrahedra into chains extending parallel to [201]. More remote $\mathrm{O}-\mathrm{Hg}-$ $\mathrm{Hg}-\mathrm{O}$ bonds connect these chains into a three-dimensional framework.

Keywords: crystal structure; redetermination; mercurous; $\mathrm{Hg} / \mathrm{S} / \mathrm{O}$ system.

CCDC reference: 1004277

1. Related literature

Structural data of the previous refinement of $\mathrm{Hg}_{2} \mathrm{SO}_{4}$ (Dorm, 1969) were deposited with the ICSD (2014), but contain an error in the z coordinate of the sulfur atom. Other phases in the system $\mathrm{Hg} / \mathrm{S} / \mathrm{O}$ were structurally characterized by Aurivillius \& Stålhandske (1980) $\left[\mathrm{HgSO}_{4}\right]$, Weil (2001) $\left[\mathrm{Hg}_{3}\left(\mathrm{SO}_{4}\right) \mathrm{O}_{2}\right]$ and Logemann \& Wickleder (2013) $\left[\mathrm{Hg}\left(\mathrm{S}_{2} \mathrm{O}_{7}\right)\right]$. For a review on $\mathrm{Hg}-\mathrm{Hg}$ bond lengths in mercurous compounds, see: Weil et al. (2005).

2. Experimental

2.1. Crystal data

$\mathrm{Hg}_{2} \mathrm{O}_{4} \mathrm{~S}$	$a=6.2771(8) \AA$
$M_{r}=497.24$	$b=4.4290(6) \AA$
Monoclinic, $P 2 / c$	$c=8.3596(10) \AA$

$\beta=91.695(4)^{\circ}$
$V=232.31(5) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=66.35 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
$0.18 \times 0.08 \times 0.04 \mathrm{~mm}$

2.2. Data collection

Bruker SMART CCD
diffractometer
Absorption correction: numerical
(HABITUS; Herrendorf, 1997)
$T_{\text {min }}=0.012, T_{\text {max }}=0.119$
1737 measured reflections
701 independent reflections 629 reflections with $I>2 \sigma(I)^{\prime}$ $R_{\text {int }}=0.060$

2.3. Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.087$
$S=1.06$
701 reflections

34 parameters
$\Delta \rho_{\text {max }}=3.57 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-3.18 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Hg}-\mathrm{O}^{2}{ }^{\text {i }}$	2.193 (6)	$\mathrm{Hg}-\mathrm{Hg}^{\text {v }}$	2.5031 (7)
$\mathrm{Hg}-\mathrm{O}^{\text {ii }}$	2.518 (6)	$\mathrm{S}-\mathrm{O} 1$	1.450 (7)
$\mathrm{Hg}-\mathrm{O} 1^{\text {iii }}$	2.725 (6)	$\mathrm{S}-\mathrm{O} 2$	1.509 (6)
$\mathrm{Hg}-\mathrm{Ol}^{\text {iv }}$	2.898 (7)		
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Hg}-\mathrm{Hg}^{\text {v }}$	164.47 (14)		

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS for Windows (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Acknowledgements

The author thanks Berthold Stöger who assisted in the preparative work. The X-ray centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal diffractometer.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB0012).

References

Aurivillius, K. \& Stålhandske, C. (1980). Z. Kristallogr. 153, 121-129.
Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Dorm, E. (1969). Acta Chem. Scand. 23, 1607-1615.
Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.
Herrendorf (1997). HABITUS. University of Giessen, Germany.
ICSD (2014). Inorganic Crystal Structure Database, FIZ-Karlsruhe, Germany. http://www.fiz-karlsruhe.de/icsd_home.html
Logemann, C. \& Wickleder, M. S. (2013). Z. Kristallogr. New Cryst. Struct. 228, 161-162.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Weil, M. (2001). Acta Cryst. E57, i98-i100.
Weil, M., Tillmanns, E. \& Pushcharovsky, D. Yu. (2005). Inorg. Chem. 44, 1443-1451.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, i44 [doi:10.1107/S1600536814011155]

Crystal structure of $\mathrm{Hg}_{2} \mathrm{SO}_{4}$ - a redetermination

Matthias Weil

S1. Experimental

1 g HgO was suspended in 20 ml water. 4 ml sulfuric acid $\left(96 \%{ }_{\mathrm{wt}}\right)$ and 2 drops CS_{2} were added to the mixture, transferred into a 50 ml polypropylene beaker that was sealed and heated for 12 h at 393 K . Besides a polycrystalline dirty-white solid with an unknown diffraction pattern, few colourless and transparent single crystals of the title compound were present in the reaction mixture.

S2. Refinement

The coordinates of the previous refinement (Dorm, 1969) were used as starting parameters. The highest and lowest remaining electron density is $0.84 \AA$ and $1.25 \AA$, respectively, from the Hg atom. It should be noted that in the current version ($01 / 2014$) of the Inorganic Structure Data Base (ICSD, 2014), the deposited structure data of the previous refinement by Dorm (1969) contain an error: The z parameter of the sulfur atom must be $1 / 4$, not $3 / 4$.

Figure 1

The crystal structure of $\mathrm{Hg}_{2} \mathrm{SO}_{4}$ in a projection along [010]. Displacement ellipsoids are drawn at the 74% probability level; short $\mathrm{Hg}-\mathrm{O}$ bonds are displayed with closed black lines, longer $\mathrm{Hg}-\mathrm{O}$ bonds with open lines.

Mercury(I) sulfate

Crystal data

$\mathrm{Hg}_{2} \mathrm{O}_{4} \mathrm{~S}$
$M_{r}=497.24$
Monoclinic, $P 2 / c$
Hall symbol: -P 2 yc
$a=6.2771$ (8) \AA
$b=4.4290$ (6) \AA
$c=8.3596(10) \AA$
$\beta=91.695$ (4) ${ }^{\circ}$
$V=232.31(5) \AA^{3}$
$Z=2$

Data collection

Bruker SMART CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω-scans
$F(000)=416$
$D_{\mathrm{x}}=7.109 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1233 reflections
$\theta=3.3-30.4^{\circ}$
$\mu=66.35 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Fragment, colourless
$0.18 \times 0.08 \times 0.04 \mathrm{~mm}$

Absorption correction: numerical

> (HABITUS; Herrendorf, 1997)
$T_{\text {min }}=0.012, T_{\text {max }}=0.119$
1737 measured reflections
701 independent reflections

629 reflections with $I>2 \sigma(I)^{\prime}$	$h=-8 \rightarrow 8$
$R_{\text {int }}=0.060$	$k=-6 \rightarrow 6$
$\theta_{\max }=30.4^{\circ}, \theta_{\text {min }}=4.6^{\circ}$	$l=-11 \rightarrow 8$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.087$
$S=1.06$
701 reflections
34 parameters
0 restraints

$$
\begin{aligned}
& \text { Primary atom site location: isomorphous } \\
& \quad \text { structure methods } \\
& w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.052 P)^{2}+1.7115 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=3.57 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-3.18 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } S H E L X L \\
& \quad \mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4} \\
& \text { Extinction coefficient: } 0.0118(12)
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Hg	$0.19318(5)$	$0.05289(9)$	$-0.02034(4)$	$0.0275(2)$
S	0.5000	$0.5674(5)$	0.2500	$0.0134(5)$
O 1	$0.6943(11)$	$0.3901(16)$	$0.2586(8)$	$0.0224(12)$
O 2	$0.5038(9)$	$0.7720(13)$	$0.1058(6)$	$0.0172(10)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg	$0.0119(2)$	$0.0392(3)$	$0.0315(3)$	$-0.00369(11)$	$0.00211(13)$	$0.00072(13)$
S	$0.0125(12)$	$0.0141(11)$	$0.0136(11)$	0.000	$0.0000(8)$	0.000
O 1	$0.018(3)$	$0.027(3)$	$0.022(3)$	$0.009(2)$	$-0.001(2)$	$0.004(2)$
O 2	$0.015(2)$	$0.020(2)$	$0.016(2)$	$0.001(2)$	$0.0010(18)$	$0.004(2)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Hg}-\mathrm{O} 2^{\text {i }}$	2.193 (6)	$\mathrm{S}-\mathrm{Hg}^{\text {iii }}$	3.7082 (15)
$\mathrm{Hg}-\mathrm{O} 2^{\text {ii }}$	2.518 (6)	$\mathrm{S}-\mathrm{Hg}^{\text {ix }}$	3.8936 (17)
$\mathrm{Hg}-\mathrm{O} 1^{\text {iii }}$	2.725 (6)	$\mathrm{S}-\mathrm{Hg}^{\text {iv }}$	3.8936 (17)
$\mathrm{Hg}-\mathrm{O} 1^{\text {iv }}$	2.898 (7)	$\mathrm{O} 1-\mathrm{Hg}^{\text {iii }}$	2.725 (6)
$\mathrm{Hg}-\mathrm{Hg}^{\text {v }}$	2.5031 (7)	$\mathrm{O} 1-\mathrm{Hg}^{\text {iv }}$	2.898 (7)
$\mathrm{S}-\mathrm{O} 1^{\text {iii }}$	1.450 (7)	$\mathrm{O} 1-\mathrm{Hg}^{\text {i }}$	3.261 (7)
$\mathrm{S}-\mathrm{O} 1$	1.450 (7)	$\mathrm{O} 1-\mathrm{Hg}^{\text {vii }}$	3.716 (7)

$\mathrm{S}-\mathrm{O} 2^{\text {iii }}$	1.509 (6)	$\mathrm{O} 1-\mathrm{Hg}^{\mathrm{x}}$	4.090 (6)
$\mathrm{S}-\mathrm{O} 2$	1.509 (6)	$\mathrm{O} 2-\mathrm{Hg}^{\text {i }}$	2.193 (6)
$\mathrm{S}-\mathrm{Hg}^{\text {vi }}$	3.2315 (13)	$\mathrm{O} 2-\mathrm{Hg}^{\text {viii }}$	2.518 (6)
$\mathrm{S}-\mathrm{Hg}^{\mathrm{i}}$	3.2315 (13)	$\mathrm{O} 2-\mathrm{Hg}^{\text {vi }}$	3.812 (5)
$\mathrm{S}-\mathrm{Hg}^{\text {vii }}$	3.6309 (15)	$\mathrm{O} 2-\mathrm{Hg}^{\text {vii }}$	4.097 (6)
$\mathrm{S}-\mathrm{Hg}^{\text {viii }}$	3.6309 (15)		
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Hg}-\mathrm{Hg}^{\text {v }}$	164.47 (14)	$\mathrm{S}-\mathrm{O} 1-\mathrm{Hg}^{\mathrm{x}}$	156.0 (3)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Hg}-\mathrm{O} 2^{\text {ii }}$	69.1 (2)	$\mathrm{Hg}^{\text {iii }}-\mathrm{O} 1-\mathrm{Hg}^{\mathrm{x}}$	36.63 (8)
$\mathrm{Hg}^{\mathrm{v}}-\mathrm{Hg}-\mathrm{O}^{2 i}$	126.30 (13)	$\mathrm{Hg}^{\text {iv }}-\mathrm{O} 1-\mathrm{Hg}^{\mathrm{x}}$	77.69 (14)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Hg}-\mathrm{O} 1^{\text {iii }}$	82.0 (2)	$\mathrm{Hg}^{\mathrm{i}}-\mathrm{O} 1-\mathrm{Hg}^{\text {x }}$	117.52 (19)
$\mathrm{Hg}^{\mathrm{v}}-\mathrm{Hg}-\mathrm{O} 1^{\text {iii }}$	102.86 (14)	$\mathrm{Hg}^{\text {viii }}$ - $\mathrm{O} 1-\mathrm{Hg}^{\mathrm{x}}$	89.04 (14)
$\mathrm{O} 2{ }^{\text {ii- }}-\mathrm{Hg}-\mathrm{O} 1^{\text {iii }}$	75.8 (2)	$\mathrm{S}-\mathrm{O} 1-\mathrm{Hg}$	62.8 (3)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Hg}-\mathrm{O} 1^{\text {iv }}$	77.5 (2)	$\mathrm{Hg}^{\text {iii }}-\mathrm{O} 1-\mathrm{Hg}$	115.4 (2)
$\mathrm{Hg}^{\text {v }}-\mathrm{Hg}-\mathrm{Ol}^{\text {iv }}$	102.91 (14)	$\mathrm{Hg}^{\text {iv }}-\mathrm{O} 1-\mathrm{Hg}$	64.22 (13)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Hg}-\mathrm{O} 1^{\text {iv }}$	75.64 (18)	$\mathrm{Hg}^{\mathbf{i}}-\mathrm{O} 1-\mathrm{Hg}$	95.95 (15)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Hg}-\mathrm{Ol}^{\text {iv }}$	149.3 (3)	$\mathrm{Hg}^{\text {vii }}-\mathrm{O} 1-\mathrm{Hg}$	138.14 (18)
O1iii-S-O1	114.5 (6)	$\mathrm{Hg}^{\mathrm{x}}-\mathrm{O} 1-\mathrm{Hg}$	129.82 (18)
$\mathrm{O} 1^{\text {iii- }}$ - $\mathrm{S}-\mathrm{O} 2^{\text {iii }}$	109.4 (3)	$\mathrm{S}-\mathrm{O} 2-\mathrm{Hg}^{\mathrm{i}}$	120.5 (3)
$\mathrm{O} 1-\mathrm{S}-\mathrm{O} 2{ }^{\text {iii }}$	108.6 (4)	$\mathrm{S}-\mathrm{O} 2-\mathrm{Hg}^{\text {viii }}$	126.9 (3)
$\mathrm{O} 1{ }^{\text {iii- }}$-S-O2	108.6 (4)	$\mathrm{Hg}^{\text {i }}-\mathrm{O} 2-\mathrm{Hg}^{\text {viii }}$	110.9 (2)
$\mathrm{O} 1-\mathrm{S}-\mathrm{O} 2$	109.4 (3)	$\mathrm{S}-\mathrm{O} 2-\mathrm{Hg}^{\text {vi }}$	56.41 (19)
$\mathrm{O} 2{ }^{\text {iiii- }} \mathrm{S}-\mathrm{O} 2$	106.2 (5)	$\mathrm{Hg}-\mathrm{O} 2-\mathrm{Hg}^{\text {vi }}$	131.7 (2)
$\mathrm{S}-\mathrm{O} 1-\mathrm{Hg}^{\text {iii }}$	122.3 (4)	$\mathrm{Hg}^{\text {viii }}-\mathrm{O} 2-\mathrm{Hg}^{\text {vi }}$	80.47 (14)
$\mathrm{S}-\mathrm{O} 1-\mathrm{Hg}^{\text {iv }}$	123.6 (4)	$\mathrm{S}-\mathrm{O} 2-\mathrm{Hg}$	72.7 (2)
$\mathrm{Hg}{ }^{\text {iii }}-\mathrm{O} 1-\mathrm{Hg}^{\text {iv }}$	96.8 (2)	$\mathrm{Hg}-\mathrm{O} 2-\mathrm{Hg}$	129.6 (2)
$\mathrm{S}-\mathrm{O} 1-\mathrm{Hg}^{\mathrm{i}}$	76.0 (3)	$\mathrm{Hg}^{\text {viii- }}$ - $\mathrm{O} 2-\mathrm{Hg}$	85.11 (15)
$\mathrm{Hg}^{\text {iii }}-\mathrm{O} 1-\mathrm{Hg}^{\text {i }}$	148.1 (3)	$\mathrm{Hg}^{\text {vi}}-\mathrm{O} 2-\mathrm{Hg}$	97.20 (13)
$\mathrm{Hg}^{\mathrm{iv}}-\mathrm{O} 1-\mathrm{Hg}^{\text {i }}$	91.77 (18)	$\mathrm{S}-\mathrm{O} 2-\mathrm{Hg}^{\text {vii }}$	61.6 (2)
$\mathrm{S}-\mathrm{O} 1-\mathrm{Hg}^{\text {vii }}$	75.3 (3)	$\mathrm{Hg}^{\mathrm{i}}-\mathrm{O} 2-\mathrm{Hg}^{\text {vii }}$	77.46 (15)
$\mathrm{Hg}^{\text {iii }}-\mathrm{O} 1-\mathrm{Hg}^{\text {vii }}$	85.41 (17)	$\mathrm{Hg}^{\text {viii }}-\mathrm{O} 2-\mathrm{Hg}^{\text {vii }}$	122.59 (19)
$\mathrm{Hg}^{\text {iv }}-\mathrm{O} 1-\mathrm{Hg}^{\text {vii }}$	153.3 (2)	$\mathrm{Hg}^{\text {vi }}-\mathrm{O} 2-\mathrm{Hg}^{\text {vii }}$	58.72 (8)
$\mathrm{Hg}^{\text {i }}-\mathrm{O} 1-\mathrm{Hg}^{\text {vii }}$	73.82 (14)	$\mathrm{Hg}-\mathrm{O} 2-\mathrm{Hg}^{\text {vii }}$	134.35 (14)

[^0]
[^0]: Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $x, y-1, z$; (iii) $-x+1, y,-z+1 / 2$; (iv) $-x+1,-y,-z$; (v) $-x,-y,-z$; (vi) $x,-y+1, z+1 / 2$; (vii) $-x+1, y+1,-z+1 / 2$; (viii) $x, y+1, z$; (ix) $x,-y, z+1 / 2$; (x) $x+1,-y, z+1 / 2$.

