

ISSN 1600-5368

OPEN access

Crystal structure of 2,3,5,6-tetrakis-[(methylsulfanyl)methyl]pyrazine

Tokouré Assoumatine^a and Helen Stoeckli-Evans^{b*}

^aCanAm Bioresearch Inc., 9-1250 Waverley Street, Winnipeg, Manitoba, R3T 6C6, Canada, and ^bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland. *Correspondence e-mail: helen.stoeckli-evans@unine.ch

Received 22 April 2014; accepted 15 May 2014

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

The title compound, $C_{12}H_{20}N_2S_4$, synthesized by the reaction 2,3,5,6-tetrakis(bromomethyl)pyrazine with of sodium methanethiolate, crystallizes with a half -molecule in the asymmetric unit. The whole molecule is generated by inversion symmetry; the inversion centre being located in the centre of the pyrazine ring. The molecule has an S-shaped conformation with two (methylsulfanyl)methyl substituent arms directed above the plane of the pyrazine ring and two below. The $C(H_3)-S-C(H_2)-C(aromatic)$ torsion angles are 70.47 (18) and -67.65 (17)°, respectively. In the crystal, molecules are linked via weak C-H···S hydrogen bonds, forming chains along [001] and enclosing $R_2^2(12)$ ring motifs. The chains are linked by further weak $C-H\cdots S$ hydrogen bonds, forming sheets lying parallel to (101).

Keywords: crystal structure; tetrakis-substituted; pyrazine; sulfanyl-methyl derivative; inversion symmetry.

CCDC reference: 1004261

1. Related literature

For syntheses of the starting reagent, 2,3,5,6-tetrakis(bromomethyl)pyrazine, see: Ferigo et al. (1994); Assoumatine (1999); Assoumatine & Stoeckli-Evans (2014). For the crystal structures of similar sulfanylmethyl derivatives of pyrazine, such as two triclinic polymorphs of 2,3,5,6 tetrakis(naphthalen-2-ylsulfanylmethyl)pyrazine both possessing inversion symmetry, see: Pacifico & Stoeckli-Evans (2004), and for 2,3,5,6-tetrakis(phenylsulfanylmethyl)pyrazine, which also crystallizes in space group $P\overline{1}$ and possesses inversion symmetry, see: Assoumatine et al. (2007).

 $\gamma = 99.462 \ (9)^{\circ}$

Z = 1

V = 397.61 (5) Å³

Mo $K\alpha$ radiation

 $0.40 \times 0.40 \times 0.23 \text{ mm}$

1283 reflections with $I > 2\sigma(I)$

intensity decay: 1%

3 standard reflections every 60 min

 $\mu = 0.58 \text{ mm}^{-1}$ T = 293 K

 $R_{\rm int} = 0.018$

2. Experimental

2.1. Crystal data

C12H20N2S4 $M_r = 320.54$ Triclinic, $P\overline{1}$ a = 6.6773 (6) Å b = 6.9433 (4) Å c = 9.5135 (5) Å $\alpha = 102.635 \ (6)^{\circ}$ $\beta = 107.539(5)^{\circ}$

2.2. Data collection

Stoe AED2 four-circle
diffractometer
2960 measured reflections
1478 independent reflections

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ 85 parameters $wR(F^2) = 0.088$ H-atom parameters constrained S = 1.08 $\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$ 1478 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$C3-H3A\cdots S2^{i}$	0.97	2.89	3.589 (2)	130
$C5-H5B\cdots S1^{ii}$	0.97	2.95	3.7395 (19)	139
$C5-H5B\cdots S1^{i}$	0.97	2.93	3.614 (2)	128

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x, y, z + 1.

Data collection: STADI4 (Stoe & Cie, 1997); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013, PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Acknowledgements

This work was supported by the Swiss National Science Foundation and the University of Neuchâtel.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB0006).

References

Assoumatine, T. (1999). PhD thesis, University of Neuchâtel, Switzerland. Assoumatine, T., Gasser, G. & Stoeckli-Evans, H. (2007). Acta Cryst. C63,

o219-o222. Assoumatine, T. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 51-53.

- Ferigo, M., Bonhote, P., Marty, W. & Stoeckli-Evans, H. (1994). J. Chem. Soc. Dalton Trans. pp. 1549–1554.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Pacifico, J. & Stoeckli-Evans, H. (2004). Acta Cryst. C60, o152-o155.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, o887-o888 [doi:10.1107/S1600536814011246]

Crystal structure of 2,3,5,6-tetrakis[(methylsulfanyl)methyl]pyrazine

Tokouré Assoumatine and Helen Stoeckli-Evans

S1. Experimental

S1.1. Synthesis and crystallization

A mixture of sodium methanethiolate (0.94 g, 13 mmol, Fluka 95%) in ethanol (50 ml) was added slowly and drop wise with stirring to a refluxed solution of 2,3,5,6-tetrakis(bromomethyl)pyrazine [Assoumatine & Stoeckli-Evans, 2014], (1.5 g, 3.32 mmol) in ethanol (50 ml). Refluxing and stirring were continued for 4 h. The solvent was removed under reduced pressure and the resultant residue diluted with CH₂Cl₂ (200 ml). The organic layer was washed with water (3 × 30 ml) and saturated NaCl (30 ml), then dried over anhydrous MgSO₄ and evaporated to dryness after filtration. The brown residue obtained was washed with acetonitrile till this solvent became colourless, yielding the title compound which was further dried under vacuum [Yield 0.55 g (52%), M.p. 418-419 K]; Rf 0.48 (solvent : CH₂Cl₂, eluent : toluene/MeCO₂Et, 10/1 v/v). Diffusion of an equal volume of ethanol into a concentrated CHCl₃ (4 ml) solution of the title compound in a 16 mm diameter glass tube yielded suitable yellow plate-like crystals for X-ray diffraction analysis. Spectroscopic data: ¹H-NMR (CDCl₃, 400 MHz): δ = 3.97 (s, 8H, PZ—CH₂—S), 2.13 (s, 12H, S—CH₃) ppm. ¹³C-NMR (CDCl₃, 100 MHz): δ = 149.50, 35.89, 15.65 ppm. Anal. for Cl₂H₂₀N₂S₄ (Mr = 320.58 g/mol) Calc. (%): C 44.96; H 6.30; N 8.74; S 40.00. Found (%): C 44.65; H 6.24; N 8.76; S 40.03. MS (EI, 70 eV), m/z (%): 320 ([M⁺], 89.4), 274 (95.2), 257 (50.1), 227 (100), 210 (25.4), 194 (37.9), 181 (54.2), 164 (29.2), 135 (28.1), 97 (23.8). IR (KBr disc, cm⁻¹): 2967 w, 2915 w, 1425 ms, 1394 vs, 1311 w, 1248 w, 1218 s, 1120 ms, 988 ms, 903 w, 795 w, 754 w, 720 w, 679 w, 484 w.

S1.2. Refinement

The H atoms were included in calculated positions and treated as riding atoms: C-H = 0.96 - 0.97 Å with $U_{iso}(H) = 1.5U_{eq}(C)$ for other H atoms. No absorption correction was applied owing to the irregular shape of the crystal, and as there were no suitable reflections for psi scans.

Figure 1

A view of the molecular structure of the title molecule, with atom labelling (unlabelled atoms are generated by inversion symmetry with symmetry code: -x, -y+1, -z + 1). Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A partial view along the *a* axis of the crystal packing of the title compound, showing the formation of the C—H···S hydrogen-bonded chains along [001], enclosing $R^2_2(12)$ ring motifs (H atoms not involved in these hydrogen bonds have been omitted for clarity).

2,3,5,6-Tetrakis[(methylsulfanyl)methyl]pyrazine

Crystal data

 $C_{12}H_{20}N_{2}S_{4}$ $M_{r} = 320.54$ Triclinic, *P*1 Hall symbol: -P 1 a = 6.6773 (6) Å b = 6.9433 (4) Å c = 9.5135 (5) Å $a = 102.635 (6)^{\circ}$ $\beta = 107.539 (5)^{\circ}$ $\gamma = 99.462 (9)^{\circ}$ $V = 397.61 (5) \text{ Å}^{3}$

Data collection

Stoe AED2 four-circle diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $2\theta/\omega$ scans 2960 measured reflections 1478 independent reflections 1283 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.088$ S = 1.081478 reflections 85 parameters Z = 1 F(000) = 170 $D_x = 1.339$ Mg m⁻³ Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 33 reflections $\theta = 14.2-18.8^{\circ}$ $\mu = 0.58$ mm⁻¹ T = 293 K Plate, yellow $0.40 \times 0.40 \times 0.23$ mm

 $R_{int} = 0.018$ $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -8 \rightarrow 7$ $k = -8 \rightarrow 8$ $l = 0 \rightarrow 11$ 3 standard reflections every 60 min intensity decay: 1%

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0451P)^2 + 0.1143P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.24$ e Å⁻³
$$\begin{split} &\Delta \rho_{\min} = -0.20 \text{ e } \text{\AA}^{-3} \\ &\text{Extinction correction: } SHELXL2013 \text{ (Sheldrick,} \\ &2008\text{), } \text{Fc}^* = \text{kFc}[1 + 0.001 \text{xFc}^2 \lambda^3 / \sin(2\theta)]^{-1/4} \\ &\text{Extinction coefficient: } 0.064 \text{ (11)} \end{split}$$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.10172 (10)	0.33963 (9)	0.10899 (6)	0.0509 (2)
S2	0.37011 (9)	0.28482 (9)	0.80525 (6)	0.0515 (2)
N1	-0.0169 (2)	0.2930 (2)	0.44718 (16)	0.0326 (4)
C1	-0.0580 (3)	0.4056 (3)	0.34870 (19)	0.0311 (5)
C2	0.0402 (3)	0.3854 (3)	0.59786 (19)	0.0313 (5)
C3	-0.1194 (3)	0.2955 (3)	0.1806 (2)	0.0390 (6)
C4	0.2772 (5)	0.2016 (4)	0.2027 (3)	0.0684 (10)
C5	0.0843 (3)	0.2519 (3)	0.7029 (2)	0.0376 (6)
C6	0.4534 (4)	0.1829 (4)	0.6484 (3)	0.0665 (9)
H3A	-0.23980	0.33950	0.12120	0.0470*
H3B	-0.16800	0.15040	0.16540	0.0470*
H4A	0.33380	0.26610	0.31160	0.1030*
H4B	0.39480	0.20040	0.16450	0.1030*
H4C	0.19730	0.06420	0.18230	0.1030*
H5A	0.02160	0.11060	0.64270	0.0450*
H5B	0.01290	0.28160	0.77720	0.0450*
H6A	0.36700	0.04660	0.59450	0.1000*
H6B	0.60330	0.18130	0.68720	0.1000*
H6C	0.43450	0.26620	0.57940	0.1000*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0731 (4)	0.0608 (4)	0.0394 (3)	0.0318 (3)	0.0335 (3)	0.0242 (3)
S2	0.0568 (4)	0.0584 (4)	0.0352 (3)	0.0256 (3)	0.0050 (2)	0.0128 (2)
N1	0.0386 (8)	0.0332 (8)	0.0285 (7)	0.0114 (6)	0.0133 (6)	0.0097 (6)
C1	0.0355 (9)	0.0350 (9)	0.0252 (8)	0.0112 (7)	0.0123 (7)	0.0092 (7)
C2	0.0340 (9)	0.0371 (9)	0.0272 (8)	0.0112 (7)	0.0134 (7)	0.0123 (7)
C3	0.0492 (11)	0.0408 (10)	0.0265 (9)	0.0141 (8)	0.0124 (8)	0.0076 (8)
C4	0.0750 (17)	0.0855 (19)	0.0741 (17)	0.0467 (15)	0.0399 (14)	0.0415 (15)
C5	0.0493 (11)	0.0384 (10)	0.0307 (9)	0.0154 (8)	0.0164 (8)	0.0145 (8)
C6	0.0570 (15)	0.0784 (18)	0.0633 (16)	0.0307 (13)	0.0207 (12)	0.0090 (13)

Geometric parameters (Å, °)

S1—C3	1.813 (2)	С3—Н3В	0.9700
S1—C4	1.789 (3)	C4—H4A	0.9600
S2—C5	1.812 (2)	C4—H4B	0.9600
S2—C6	1.790 (3)	C4—H4C	0.9600
N1-C1	1.342 (2)	C5—H5A	0.9700
N1—C2	1.342 (2)	С5—Н5В	0.9700
C1—C3	1.509 (2)	C6—H6A	0.9600
$C1-C2^i$	1.401 (3)	C6—H6B	0.9600
C2—C5	1.504 (3)	С6—Н6С	0.9600
С3—НЗА	0.9700		
C3—S1—C4	101.45 (13)	S1—C4—H4B	109.00
C5—S2—C6	100.09 (11)	S1—C4—H4C	109.00
C1—N1—C2	118.31 (16)	H4A—C4—H4B	109.00
N1—C1—C3	116.40 (17)	H4A—C4—H4C	109.00
$N1-C1-C2^{i}$	120.78 (15)	H4B—C4—H4C	109.00
C2 ⁱ —C1—C3	122.82 (17)	S2—C5—H5A	109.00
N1—C2—C5	116.03 (17)	S2—C5—H5B	109.00
$N1-C2-C1^{i}$	120.91 (17)	C2—C5—H5A	109.00
$C1^{i}$ — $C2$ — $C5$	123.05 (15)	C2—C5—H5B	109.00
S1—C3—C1	113.18 (14)	H5A—C5—H5B	108.00
S2—C5—C2	113.56 (15)	S2—C6—H6A	109.00
S1—C3—H3A	109.00	S2—C6—H6B	109.00
S1—C3—H3B	109.00	S2—C6—H6C	109.00
С1—С3—НЗА	109.00	H6A—C6—H6B	110.00
С1—С3—Н3В	109.00	H6A—C6—H6C	109.00
НЗА—СЗ—НЗВ	108.00	H6B—C6—H6C	109.00
S1—C4—H4A	109.00		
C4—S1—C3—C1	70.47 (18)	C2 ⁱ —C1—C3—S1	77.1 (2)
C6—S2—C5—C2	-67.65 (17)	$N1$ — $C1$ — $C2^{i}$ — $N1^{i}$	-0.5 (3)
C2—N1—C1—C3	179.41 (18)	$N1-C1-C2^{i}-C5^{i}$	-180.00 (19)
$C2-N1-C1-C2^{i}$	0.4 (3)	$C3-C1-C2^{i}-N1^{i}$	-179.35 (18)
C1—N1—C2—C5	179.98 (18)	$C3-C1-C2^{i}-C5^{i}$	1.1 (3)
$C1$ — $N1$ — $C2$ — $C1^i$	-0.4 (3)	N1-C2-C5-S2	103.98 (18)
N1—C1—C3—S1	-101.84 (19)	$C1^{i}$ — $C2$ — $C5$ — $S2$	-75.6 (2)

Symmetry code: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	<i>D</i> —H··· <i>A</i>
C3—H3A····S2 ⁱ	0.97	2.89	3.589 (2)	130
C5—H5 <i>B</i> ···S1 ⁱⁱ	0.97	2.95	3.7395 (19)	139
$C5$ — $H5B$ ···· $S1^{i}$	0.97	2.93	3.614 (2)	128

Symmetry codes: (i) –*x*, –*y*+1, –*z*+1; (ii) *x*, *y*, *z*+1.