

OPEN d ACCESS

Crystal structure of bis(propane-1,3-diammonium) hexafluoridoaluminate fluoride trihydrate

I. Abdi,^a K. A. Al-Sadhan^b and A. Ben Ali^a*

^aUniversité de Carthage, Faculté des Sciences de Bizerte, UR11ES30, 7021 Jarzouna, Tunisia, and ^bDepartment of Chemistry, Girls College of Science, University of Dammam, PO Box 838, Dammam 31113, Saudi Arabia. *Correspondence e-mail: amor.benali@fsb.rnu.tn

Received 13 June 2014; accepted 19 August 2014

Edited by A. M. Chippindale, University of Reading, England

The title compound, $(C_3H_{10}N_2)_2[AlF_6]F\cdot 3H_2O$, was obtained using the solvothermal method with aluminium hydroxide, HF and propane-1,3-diamine as precursors in ethanol as solvent. The structure consists of isolated $[AlF_6]^{3-}$ octahedra, diprotonated propane-1,3-diamine cations $[(H_2dap)^{2+}]$, free fluoride ions and water molecules of solvation. The Al-F bond lengths in the octahedral $[AlF_6]^{3-}$ anions range from 1.7690 (19) to 1.8130 (19) Å, with an average value of 1.794 Å. Each $[AlF_6]^{3-}$ anion is surrounded by three water molecules and by six diprotonated amine cations. The 'free' fluoride ion is hydrogen bonded to four H atoms belonging to four dications and has a distorted tetrahedral geometry. The three water molecules are connected by hydrogen bonds, forming trimers that connect the AlF_6 octahedra and dications into a three-dimensional framework.

Keywords: crystal structure; hexafluoridoaluminate; hybrid aluminates; hydrogen bonding.

CCDC reference: 1012356

1. Related literature

For general background to hybrid aluminates, their syntheses and applications, see: Ben Ali *et al.* (2007, 2009); Lhoste *et al.* (2009); Adil *et al.* (2010); Martineau *et al.* (2012); Cadiau *et al.* (2013). For a review of hydrogen-bonding interactions, see: Steiner (1998).

2. Experimental

2.1. Crystal data

$(C_3H_{10}N_2)_2[AlF_6]F\cdot 3H_2O$
$M_r = 366.31$
Triclinic, P1
a = 9.825 (2) Å
b = 9.974 (3) Å
c = 10.697 (2) Å
$\alpha = 70.01 \ (2)^{\circ}$
$\beta = 67.89 \ (2)^{\circ}$

2.2. Data collection

Siemens AED2 diffractometer Absorption correction: gaussian (SADABS; Sheldrick, 1996)

 $T_{\min} = 0.968, T_{\max} = 0.985$ 3411 measured reflections

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.183$ S = 1.053411 reflections 215 parameters H atoms treated by a mixture of independent and constrained refinement $0.62 \text{ s}^{\frac{3}{2}-3}$

$\begin{array}{l} \Delta \rho_{\rm max} = 0.62 ~{\rm e}~{\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.54 ~{\rm e}~{\rm \AA}^{-3} \end{array}$

 $\gamma = 59.77 \ (1)^{\circ}$

Z = 2

T = 298 K

V = 823.8 (3) Å³

Mo $K\alpha$ radiation $\mu = 0.21 \text{ mm}^{-1}$

 $0.61 \times 0.13 \times 0.08 \text{ mm}$

3411 independent reflections

intensity decay: 4%

3046 reflections with $I > 2\sigma(I)$

3 standard reflections every 120 min

Table 1

Hydrogen-bond geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
0.89	1.81	2.696 (3)	171
0.89	1.79	2.663 (3)	166
0.89	2.08	2.826 (3)	141
0.89	2.09	2.796 (3)	136
0.89	2.08	2.657 (3)	122
0.89	2.11	2.804 (3)	134
0.89	2.04	2.724 (3)	132
0.89	1.79	2.677 (3)	176
0.89	2.00	2.792 (3)	148
0.89	1.89	2.753 (4)	162
0.89	1.90	2.757 (3)	161
0.89	1.92	2.776 (4)	162
0.89	1.84	2.724 (3)	169
0.92	1.85	2.743 (3)	161
0.95	1.85	2.789 (5)	173
0.74	2.27 (5)	2.943 (3)	152 (5)
0.82(7)	1.98	2.785 (5)	170
0.82 (4)	1.79 (4)	2.612 (4)	176
0.81 (7)	1.99 (7)	2.783 (4)	167
	D-H 0.89 0.82 (7) 0.82 (4) 0.81 (7) 0.81 (7) 0.82 (4) 0.81 (7) 0.81 (7) 0.82 (7) 0.81 (7) 0.82 (7) 0.82 (7) 0.81 (7) 0.82 (7) 0.82 (7) 0.81 (7) 0.82 (7) 0.81 (7) 0.82 (7) 0.81 (7) 0.82 (7) 0.81 ($\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) x, y, z + 1; (ii) -x + 2, -y, -z + 1; (iii) -x + 1, -y, -z + 1; (iv) x - 1, y + 1, z + 1; (v) -x + 1, -y, -z + 2; (vi) x, y + 1, z; (vii) -x + 1, -y + 1, -z + 1; (viii) -x + 2, -y, -z.

Data collection: *STADI4* (Stoe, 1998); cell refinement: *STADI4*; data reduction: *X-RED* (Stoe, 1998); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) and *WinGX* (Farrugia, 2012); molecular graphics: *DIAMOND* (Brandenburg, 2001) and *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004).

Acknowledgements

The authors are indebted to Dr V. Maisonneuve (University of Le Mans) for the data collection.

Supporting information for this paper is available from the IUCr electronic archives (Reference: CQ2011).

References

- Adil, K., Maisonneuve, V., Leblanc, M. & Lightfoot, P. (2010). *Dalton Trans.* **39**, 5983–5993.
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.

- Ben Ali, A., Dang, M. T., Grenèche, J.-M., Hémon-Ribaud, A., Leblanc, M. & Maisonneuve, V. (2007). J. Solid State Chem. 180, 1911–1917.
- Ben Ali, A., Grenèche, J.-M., Leblanc, M. & Maisonneuve, V. (2009). Solid State Sci. 11, 1631–1638.
- Brandenburg, K. (2001). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Cadiau, A., Auguste, S., Taulelle, F., Martinau, C. & Adil, K. (2013). *CrystEngComm*, **15**, 3430–3435.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Lhoste, J., Gervier, R., Maisonneuve, V., Leblanc, M. & Adil, K. (2009). *Solid State Sci.* **11**, 1582–1586.
- Martineau, C., Cadiau, A. & Adil, K. (2012). Dalton Trans. 41, 6232-6241.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steiner, T. (1998). Acta Cryst. B54, 456-463.
- Stoe (1998). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.

supporting information

Acta Cryst. (2014). E70, m335-m336 [doi:10.1107/S1600536814018844]

Crystal structure of bis(propane-1,3-diammonium) hexafluoridoaluminate fluoride trihydrate

I. Abdi, K. A. Al-Sadhan and A. Ben Ali

S1. Comment

Hybrid solids, containing both organic and inorganic entities, have diverse crystal structures which can influence their physicochemical properties. In type I solid hybrids, interactions between organic and inorganic networks are generally weak (*e.g.* hydrogen bonds or van der Waals' interactions), whilst in type II hybrids, covalent bonds are generally established between the metal of the inorganic moiety and the organic moiety. Type II hybrid materials usually exhibit better thermal stability than those of type I. Many chemical systems have been explored by conventional hydrosolvothermal synthesis or microwave heating. This work deals with a new aluminium fluoride salt of hybrid type I prepared under solvothermal conditions. Its structure contains isolated AlF₆ distorted octahedra hydrogen bonded to propane-1,3-diamine dications and water molecules, together with fluoride ions which are also hydrogen bonded to the organic dications (Figures 2-4).

S2. Experimental

The title compound was prepared from a starting mixture of $Al(OH)_3$ (0.75 g) in 40% HF (0.8 ml) and ethanol (5 ml). 1,3diaminopropane (1 ml) was added and mild hydrothermal conditions (463 K) were applied in a Teflon lined autoclave (25 mL). The resulting product was washed with ethanol and dried in air giving colorless single crystals of the title compound.

S3. Refinement

All non-hydrogen atoms were refined with anisotropic displacement parameters. The H atoms of the water molecules were located using difference Fourier methods and their positional and isotropic displacement parameters refined. The H atoms of the organic dications were included in the refinement at calculated positions and refined with a common isotropic thermal parameter.

Figure 1

View of the structure of (I) along the [010] axis.

Figure 2

The environment of the AlF₆ octahedron.

Figure 3

The environment of the isolated fluoride anion.

Figure 4

The environment of water molecules

Bis(propane-1,3-diammonium) hexafluoridoaluminate fluoride trihydrate

Crystal data

 $(C_{3}H_{10}N_{2})_{2}[AlF_{6}]F\cdot 3H_{2}O$ $M_r = 366.31$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 9.825 (2) Å b = 9.974(3) Å c = 10.697 (2) Å $\alpha = 70.01 \ (2)^{\circ}$ $\beta = 67.89 \ (2)^{\circ}$ $\gamma = 59.77 (1)^{\circ}$ V = 823.8 (3) Å³

Data collection

Siemens AED2 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $2\theta/\omega$ scan Absorption correction: gaussian (SADABS: Sheldrick, 1996) $T_{\rm min} = 0.968, \ T_{\rm max} = 0.985$ 3411 measured reflections

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.059$ Hydrogen site location: inferred from $wR(F^2) = 0.183$ neighbouring sites S = 1.053411 reflections and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.1177P)^2 + 0.6344P]$ 215 parameters where $P = (F_o^2 + 2F_c^2)/3'$ 0 restraints Primary atom site location: structure-invariant $(\Delta/\sigma)_{\rm max} = 0.009$ direct methods $\Delta \rho_{\rm max} = 0.62 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.54 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equ	uivalent isotropic displacement parameters (A	Å ²)
--	---	------------------

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Al1	0.83033 (8)	-0.20234 (8)	0.29308 (6)	0.0238 (2)
F1	1.0025 (2)	-0.3849 (2)	0.2527 (3)	0.0678 (6)

Z = 2F(000) = 388 $D_{\rm x} = 1.477 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 32 reflections $\theta = 5.0 - 20.0^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 298 KPlatelet, colorless $0.61 \times 0.13 \times 0.08$ mm

3411 independent reflections 3046 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.000$ $\theta_{\rm max} = 27.6^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$ $h = -11 \rightarrow 12$ $k = -11 \rightarrow 12$ $l = 0 \rightarrow 13$ 3 standard reflections every 120 min intensity decay: 4%

H atoms treated by a mixture of independent

F2	0.9474 (2)	-0.1577 (3)	0.35631 (17)	0.0496 (5)
F3	0.9030 (2)	-0.1056 (3)	0.12502 (16)	0.0518 (5)
F4	0.7092 (2)	-0.2378 (3)	0.2304 (2)	0.0575 (5)
F5	0.6596 (2)	-0.0158 (2)	0.3295 (2)	0.0546 (5)
F6	0.7625 (3)	-0.2962 (3)	0.4612 (2)	0.0747 (8)
F7	0.80224 (19)	-0.13548 (18)	0.76019 (15)	0.0357 (4)
N1	0.86118 (18)	0.02879 (18)	0.8720 (2)	0.0295 (4)
H1A	0.8503	-0.0243	0.8272	0.054 (2)*
H1B	0.8678	-0.0258	0.9567	0.054 (2)*
H1C	0.9513	0.0429	0.8278	0.054 (2)*
N2	0.26017 (18)	0.32258 (18)	0.9923 (2)	0.0333 (4)
H2A	0.2747	0.2379	0.9690	0.054 (2)*
H2B	0.1927	0.4094	0.9480	0.054 (2)*
H2C	0.2178	0.3171	1.0825	0.054 (2)*
N3	0.6255 (3)	0.0499 (3)	0.5761 (2)	0.0348 (5)
H3A	0.6799	-0.0092	0.6407	0.054 (2)*
H3B	0.6738	0.0038	0.5032	0.054 (2)*
H3C	0.5238	0.0599	0.6089	0.054 (2)*
N4	0.9607 (3)	0.3445 (2)	0.4048 (2)	0.0326 (5)
H4A	0.9932	0.3030	0.4823	0.054 (2)*
H4B	0.9584	0.4403	0.3719	0.054 (2)*
H4C	1.0296	0.2828	0.3433	0.054 (2)*
C1	0.7954 (3)	0.3567 (3)	0.4329 (3)	0.0355 (5)
H1D	0.7567	0.4093	0.3501	0.054 (2)*
H1E	0.7214	0.4199	0.5031	0.054 (2)*
C2	0.7184 (3)	0.1845 (3)	0.8795 (3)	0.0308 (5)
H2D	0.7159	0.2468	0.7874	0.054 (2)*
H2E	0.7284	0.2406	0.9314	0.054 (2)*
C3	0.6240 (3)	0.2082 (3)	0.5355 (3)	0.0334 (5)
H3D	0.5688	0.2597	0.6144	0.054 (2)*
H3E	0.5646	0.2727	0.4652	0.054 (2)*
C4	0.5606 (3)	0.1665 (3)	0.9473 (3)	0.0312 (5)
H4D	0.5485	0.1128	0.8945	0.054 (2)*
H4E	0.5628	0.1034	1.0391	0.054 (2)*
C5	0.7966 (3)	0.1947 (3)	0.4807 (3)	0.0312 (5)
H5D	0.8544	0.1343	0.5524	0.054 (2)*
H5E	0.8535	0.1387	0.4046	0.054 (2)*
C6	0.4188 (3)	0.3281 (3)	0.9548 (3)	0.0351 (5)
H6D	0.4199	0.3720	1.0223	0.054 (2)*
H6E	0.4313	0.3976	0.8663	0.054 (2)*
OW1	0.6507 (3)	0.2741 (3)	0.1872 (3)	0.0543 (6)
H11	0.658 (7)	0.173 (3)	0.216 (5)	0.096 (17)*
H12	0.536 (3)	0.334 (6)	0.214 (6)	0.12 (2)*
OW2	1.0850 (3)	-0.3475 (3)	-0.0480 (3)	0.0480 (5)
OW3	0.6830 (3)	0.5567 (4)	0.7114 (3)	0.0670 (8)
H21	1.053 (6)	-0.325 (5)	0.020 (5)	0.063 (14)*
H22	1.160 (6)	-0.322 (6)	-0.080 (5)	0.073 (14)*
H31	0.712 (5)	0.602 (5)	0.633 (4)	0.052 (10)*

					supporting	g information
H32	0.767 (7)	0.50	07 (6)	0.735 (6)	0.090 (17)	*
Atomic d	displacement parar	neters $(Å^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Al1	0.0238 (3)	0.0282 (4)	0.0245 (3)	-0.0153 (3)	-0.0087 (2)	-0.0013 (2)
F1	0.0399 (10)	0.0365 (9)	0.1124 (18)	-0.0088(8)	-0.0130 (11)	-0.0167 (10)
F2	0.0553 (10)	0.0851 (13)	0.0371 (8)	-0.0519 (10)	-0.0159 (7)	-0.0044 (8)
F3	0.0537 (10)	0.0853 (14)	0.0284 (8)	-0.0501 (10)	-0.0160 (7)	0.0141 (8)
F4	0.0516 (11)	0.0991 (16)	0.0566 (11)	-0.0513 (11)	-0.0063 (8)	-0.0322 (10)
F5	0.0335 (9)	0.0417 (9)	0.0857 (14)	-0.0117 (7)	-0.0063 (9)	-0.0258 (9)
F6	0.0929 (17)	0.117 (2)	0.0379 (9)	-0.0847 (17)	-0.0185 (10)	0.0246 (11)
F7	0.0399 (8)	0.0398 (8)	0.0357 (8)	-0.0209 (7)	-0.0141 (6)	-0.0054 (6)
N1	0.0270 (9)	0.0363 (10)	0.0326 (10)	-0.0193 (8)	-0.0110 (8)	-0.0020 (8)
N2	0.0315 (10)	0.0368 (11)	0.0344 (10)	-0.0175 (9)	-0.0079 (8)	-0.0058 (8)
N3	0.0325 (10)	0.0493 (12)	0.0352 (10)	-0.0257 (10)	-0.0110 (8)	-0.0065 (9)
N4	0.0341 (11)	0.0329 (10)	0.0366 (10)	-0.0194 (9)	-0.0113 (8)	-0.0027 (8)
C1	0.0297 (11)	0.0318 (12)	0.0465 (14)	-0.0128 (10)	-0.0151 (10)	-0.0035 (10)
C2	0.0329 (12)	0.0322 (12)	0.0343 (11)	-0.0206 (10)	-0.0095 (9)	-0.0027 (9)
C3	0.0271 (11)	0.0391 (13)	0.0379 (12)	-0.0158 (10)	-0.0099 (9)	-0.0071 (10)
C4	0.0307 (11)	0.0317 (11)	0.0367 (12)	-0.0184 (10)	-0.0101 (9)	-0.0031 (9)
C5	0.0249 (10)	0.0349 (12)	0.0374 (12)	-0.0144 (9)	-0.0082 (9)	-0.0082 (9)
C6	0.0303 (12)	0.0337 (12)	0.0475 (14)	-0.0162 (10)	-0.0118 (10)	-0.0086 (10)
OW1	0.0534 (13)	0.0473 (12)	0.0579 (13)	-0.0279 (11)	-0.0084 (11)	-0.0017 (10)
OW2	0.0400 (11)	0.0468 (12)	0.0585 (14)	-0.0144 (10)	-0.0093 (10)	-0.0217 (10)
OW3	0.0425 (13)	0.0716 (17)	0.0512 (14)	-0.0207 (12)	-0.0061 (11)	0.0162 (12)

Geometric parameters (Å, °)

Al1—F6	1.7690 (19)	N3—H3B	0.8900
Al1—F4	1.7832 (17)	N3—H3C	0.8900
Al1—F3	1.7929 (16)	N4—C1	1.483 (3)
Al1—F1	1.803 (2)	N4—H4A	0.8900
Al1—F2	1.8126 (16)	N4—H4B	0.8900
Al1—F5	1.8130 (19)	N4—H4C	0.8900
F1—F3	2.499 (3)	C1—C5	1.514 (3)
F1—F4	2.556 (3)	C1—H1D	0.9700
F1—F6	2.570 (4)	C1—H1E	0.9700
F1—F2	2.586 (3)	C2—C4	1.518 (3)
F2—F3	2.507 (2)	C2—H2D	0.9700
F2—F5	2.527 (3)	C2—H2E	0.9700
F2—F6	2.529 (3)	C3—C5	1.521 (3)
F3—F4	2.556 (2)	C3—H3D	0.9700
F3—F5	2.559 (3)	С3—Н3Е	0.9700
F4—F5	2.529 (3)	C4—C6	1.513 (3)
F4—F6	2.529 (3)	C4—H4D	0.9700
F5—F6	2.522 (3)	C4—H4E	0.9700
F5—H11	1.85 (3)	C5—H5D	0.9700

Acta Cryst. (2014). E70, m335-m336

supporting information

N1—C2	1.481 (3)	С5—Н5Е	0.9700
N1—H1A	0.8900	С6—Н6D	0.9700
N1—H1B	0.8900	С6—Н6Е	0.9700
N1—H1C	0.8900	OW1—H11	0.925 (19)
N2—C6	1.481 (3)	OW1—H12	0.95 (2)
N2—H2A	0.8900	OW2—H21	0.74 (5)
N2—H2B	0.8900	OW2—H22	0.82 (5)
N2—H2C	0.8900	OW3—H31	0.83 (4)
N3—C3	1.482 (3)	OW3—H32	0.81 (6)
N3—H3A	0.8900	0	0.01 (0)
F6—Al1—F4	90.79 (10)	H1A—N1—H1C	109.5
F6—Al1—F3	177.96 (9)	H1B—N1—H1C	109.5
F4—A11—F3	91.25 (9)	C6—N2—H2A	109.5
F6—Al1—F1	92.04 (13)	C6—N2—H2B	109.5
F4—Al1—F1	90.93 (11)	H2A—N2—H2B	109.5
F3—A11—F1	88.04 (11)	C6—N2—H2C	109.5
F6—A11—F2	89.84 (9)	H2A—N2—H2C	109.5
F4—A11—F2	177.63 (11)	H2B—N2—H2C	109.5
F3—A11—F2	88.11 (8)	C3—N3—H3A	109.5
F1—A11—F2	91.33 (11)	C3—N3—H3B	109.5
F6—A11—F5	89.49 (12)	H3A—N3—H3B	109.5
F4—A11—F5	89.36 (10)	C3—N3—H3C	109.5
F3—A11—F5	90.41 (11)	H3A—N3—H3C	109.5
F1—A11—F5	178.44 (10)	H3B—N3—H3C	109.5
F2—A11—F5	88.36 (10)	C1—N4—H4A	109.5
F3_F1_F4	60 73 (8)	C1—N4—H4B	109.5
F3—F1—F6	89 25 (9)	H4A—N4—H4B	109.5
F4—F1—F6	59 11 (8)	C1—N4—H4C	109.5
F3F1F2	59.05 (7)	H4A - N4 - H4C	109.5
F4—F1—F2	88 70 (8)	H4B—N4—H4C	109.5
F6—F1—F2	58 74 (8)	N4-C1-C5	109.0 111.0(2)
F3_F2_F5	61 11 (8)	N4—C1—H1D	109.4
F3_F2_F6	90.00 (8)	C_{5} $-C_{1}$ $-H_{1}D$	109.1
F5—F2—F6	59.83 (8)	N4—C1—H1F	109.1
F_{3} F_{2} F_{1}	58 74 (8)	C5-C1-H1E	109.4
F5_F2_F1	90.00 (8)	HID—C1—HIF	108.0
F6—F2—F1	60 32 (9)	N1-C2-C4	111 36 (18)
F1_F3_F2	62 21 (9)	N1 - C2 - H2D	109.4
F1_F3_F4	60 74 (8)	C4-C2-H2D	109.4
F_{2} F_{3} F_{4}	90.47 (7)	N1_C2_H2E	109.4
F1_F3_F5	91 25 (8)	C4 - C2 - H2E	109.4
F2_F3_F5	59.82 (8)	H^2D C^2 H^2F	102.4
F4_F3_F5	59.02 (0)	N3_C3_C5	110.7(2)
$F_{4} = F_{5} = F_{5}$	59.25 (7)	N3 = C3 = H3D	100.7 (2)
$F_{5} = F_{4} = F_{5}$	60 / 3 (8)	$C_5 C_3 H_{3}D$	109.5
$F_{5} = F_{4} = F_{5}$	88 90 (7)	N3_C3_H3F	109.5
$F_{4} = F_{4}$	00.50(7)	C5 C2 H2E	109.5
Γυ-Γ4-ΓΙ	90.04 (8)	UJ-UJ-IIJE	109.3

F6—F4—F1	60.72 (10)	H3D—C3—H3E	108.1
F3—F4—F1	58.52 (7)	C6—C4—C2	109.45 (19)
F6—F5—F4	60.10 (9)	C6—C4—H4D	109.8
F6—F5—F2	60.13 (8)	C2—C4—H4D	109.8
F4—F5—F2	90.65 (8)	C6—C4—H4E	109.8
F6—F5—F3	89.00 (9)	C2—C4—H4E	109.8
F4—F5—F3	60.32 (7)	H4D—C4—H4E	108.2
F2—F5—F3	59.07 (7)	C1—C5—C3	110.8 (2)
Al1—F5—H11	120.3 (17)	C1—C5—H5D	109.5
F6—F5—H11	160.8 (17)	C3—C5—H5D	109.5
F4—F5—H11	120.6 (16)	С1—С5—Н5Е	109.5
F2—F5—H11	101.0 (17)	С3—С5—Н5Е	109.5
F3—F5—H11	76.8 (17)	H5D—C5—H5E	108.1
F5—F6—F2	60.03 (8)	N2-C6-C4	112.33 (19)
F5—F6—F4	60.09 (9)	N2—C6—H6D	109.1
F2—F6—F4	90.59 (8)	C4—C6—H6D	109.1
F5—F6—F1	90.47 (8)	N2—C6—H6E	109.1
F2—F6—F1	60.94 (8)	С4—С6—Н6Е	109.1
F4—F6—F1	60.16 (9)	H6D—C6—H6E	107.9
C2—N1—H1A	109.5	H11—OW1—H12	100 (5)
C2—N1—H1B	109.5	H21—OW2—H22	100 (5)
H1A—N1—H1B	109.5	H31—OW3—H32	102 (5)
C2—N1—H1C	109.5		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1 <i>A</i> …F7	0.89	1.81	2.696 (3)	171
N1—H1 <i>B</i> ···F3 ⁱ	0.89	1.79	2.663 (3)	166
N1—H1C···F2 ⁱⁱ	0.89	2.08	2.826 (3)	141
N1—H1C···F3 ⁱⁱ	0.89	2.09	2.796 (3)	136
N2—H2A···F4 ⁱⁱⁱ	0.89	2.08	2.657 (3)	122
N2—H2 B ···O $W2^{iv}$	0.89	2.11	2.804 (3)	134
N2—H2 C ···F7 ^v	0.89	2.04	2.724 (3)	132
N3—H3 <i>A</i> …F7	0.89	1.79	2.677 (3)	176
N3—H3 <i>B</i> …F5	0.89	2.00	2.792 (3)	148
N3—H3 <i>C</i> …F5 ⁱⁱⁱ	0.89	1.89	2.753 (4)	162
N4—H4A····F2 ⁱⁱ	0.89	1.90	2.757 (3)	161
N4—H4 <i>B</i> ···F1 ^{vi}	0.89	1.92	2.776 (4)	162
N4—H4 <i>C</i> ···F7 ⁱⁱ	0.89	1.84	2.724 (3)	169
OW1—H11…F5	0.92	1.85	2.743 (3)	161
OW1—H12···OW3 ^{vii}	0.95	1.85	2.789 (5)	173
OW2—H21…F1	0.74	2.27 (5)	2.943 (3)	152 (5)
OW2—H22···OW1 ^{viii}	0.82 (7)	1.98	2.785 (5)	170
OW3—H31····F6 ^{vi}	0.82 (4)	1.79 (4)	2.612 (4)	176
O <i>W</i> 3—H32…F1 ⁱⁱ	0.81 (7)	1.99 (7)	2.783 (4)	167

Symmetry codes: (i) *x*, *y*, *z*+1; (ii) -*x*+2, -*y*, -*z*+1; (iii) -*x*+1, -*y*, -*z*+1; (iv) *x*-1, *y*+1, *z*+1; (v) -*x*+1, -*y*, -*z*+2; (vi) *x*, *y*+1, *z*; (vii) -*x*+1, -*y*+1, -*z*+1; (viii) -*x*+2, -*y*, -*z*.