

OPEN d ACCESS

Crystal structure of poly[{µ-N,N'-bis-[(pyridin-4-yl)methyl]oxalamide}-µoxalato-cobalt(II)]

Hengye Zou and Yanjuan Qi*

Department of Chemistry, Changchun Normal University, Changchun 130032, People's Republic of China. *Correspondence e-mail: qiyjchem@163.com

Received 26 June 2014; accepted 3 July 2014

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

In the polymeric title compound, $[Co(C_2O_4)(C_{14}H_{14}N_4O_2)]_n$, the Co^{II} atom is six-coordinated by two N atoms from symmetry-related bis[(pyridin-4-yl)methyl]oxalamide (BPMO) ligands and four O atoms from two centrosymmetric oxalate anions in a distorted octahedral coordination geometry. The Co^{II} atoms are linked by the oxalate anions into a chain running parallel to [100]. The chains are linked by the BPMO ligands into a three-dimensional architecture. In addition, N-H···O hydrogen bonds stabilize the crystal packing.

Keywords: crystal structure; metal-organic framework; cobalt(II); oxalate anion; hydrogen bonds.

CCDC reference: 1012047

1. Related literature

For information on compounds with metal-organic framework structures, see: Kitagawa *et al.* (2004); Ma *et al.* (2009); Li *et al.* (2005); Wang *et al.* (2007). For related Co^{II} complexes, see: Ma *et al.* (2005).

2. Experimental

2.1. Crystal data $[Co(C_2O_4)(C_{14}H_{14}N_4O_2)]$ *M_r* = 417.24 Monoclinic, *P*2₁/*c a* = 8.4143 (12) Å *b* = 24.421 (4) Å *c* = 9.2884 (14) Å *β* = 113.322 (2)°

2.2. Data collection

```
Bruker SMART APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{\rm min} = 0.740, T_{\rm max} = 0.785
```

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.149$ S = 0.984254 reflections $V = 1752.7 \text{ (4) } \text{\AA}^{3}$ Z = 4 Mo K\alpha radiation \mu = 1.02 mm⁻¹ T = 293 K 0.43 \times 0.25 \times 0.25 mm

11121 measured reflections 4254 independent reflections 2027 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.085$

244 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.49\ e\ \text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.39\ e\ \text{\AA}^{-3} \end{split}$$

data reports

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N3-H3\cdots O6^i$	0.86	2.14	2.863 (5)	142
Symmetry code: (i)	$r - v \perp \frac{1}{2} \neq \frac{1}{2}$			

Symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXTL* and *publCIF* (Westrip, 2010).

Acknowledgements

We thank the Science Foundation of Jilin Province (No. 20140101121JC).

Supporting information for this paper is available from the IUCr electronic archives (Reference: BT6986).

References

- Bruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334– 2375.
- Li, F. F., Ma, J. F., Song, S. Y., Yang, J., Liu, Y. Y. & Su, Z. M. (2005). Inorg. Chem. 44, 9374–9383.
- Ma, L. F., Wang, Y. Y., Liu, J. Q., Yang, G. P., Du, M. & Wang, L. Y. (2009). *Eur. J. Inorg. Chem.* pp. 147–254.

Ma, J. F., Yang, J., Li, S. L. & Song, S. Y. (2005). Cryst. Growth Des. 5, 807–812. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor,

- R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, G.-H., Li, Z.-G., Xu, J.-W. & Hu, N.-H. (2007). Acta Cryst. E63, m289– m291.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, m307-m308 [doi:10.1107/S1600536814015608]

Crystal structure of poly[$\{\mu$ -*N*,*N'*-bis[(pyridin-4-yl)methyl]oxalamide}- μ -oxalato-cobalt(II)]

Hengye Zou and Yanjuan Qi

S1. Comment

Design of effective ligands and the proper choice of metal centers are the keys to design and construct novel metalorganic frameworks (Kitagawa *et al.*, 2004; Ma *et al.*, 2009). These complexes can be specially designed by the careful selection of metal cations with preferred coordination geometries, the nature of the anions, the structure of the connecting ligands, and the reaction conditions (Li *et al.*, 2005; Wang *et al.*, 2007). We selected oxalic acid as an organic carboxylate anion and *N*,*N*'-Bis-pyridin-4-ylmethyl-oxalamide (BPMO) as a N-donor neutral ligand, generating a coordination compound, $[Co(C_2O_4)(BPMO)]_n$, which is reported here.

In the asymmetric unit of the title compound, $[Co(C_2O_4)(BPMO)]_n$, the central Co^{II} is six-coordinated by two nitrogen atoms from different BPMO ligands and four oxygen atoms from two oxalate anions in a distorted octahedral coordination geometry. The Co—N and Co—O distances are comparable to those found in other crystallographically characterized Co^{II} complexes (Ma *et al.*, 2005). The Co^{II} atoms are linked by the oxalate anions to give a one-dimensional chain. The chains are linked by BPMO ligands and extend the chains into a three-dimensional supramolecular architecture. Moreover, the hydrogen bonds between the N-donor neutral ligand and oxalate, are crucial for stabilizing the three-dimensional framework.

S2. Experimental

The synthesis was performed under hydrothermal conditions. A mixture of $Co(CH_3COO)_2 \cdot 4(H_2O), (0.2 \text{ mmol}, 0.05 \text{ g}),$ *N,N'*-Bis-pyridin-4-ylmethyl-oxalamide (0.2 mmol, 0.054 g), sodium oxalate (0.2 mmol,0.026 g) and H₂O(15 ml) in a 25 ml stainless steel reactor with a Teflon liner was heated from 293 to 443 K in 2 h and a constant temperature was maintained at 443 K for 72 h, after which the mixture was cooled to 298 K. Pink crystals of (I) were recovered from the reaction.

S3. Refinement

All H atoms on C and N atoms atoms were poisitioned geometrically and refined as riding atoms with $U_{iso}(H) = 1.2$ $U_{eq}(C, N)$.

Figure 1

A view of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level. (i) - x + 1, -y, - z + 1; (ii) - x, -y, - z + 1; (iii) x, -y + 1/2, z + 1/2; (iv) x + 1, -y + 1/2, z - 1/2.

Figure 2

View of the three-dimensional structure of (I).

Poly[$\{\mu$ -N,N'-bis[(pyridin-4-yl)methyl]oxalamide}- μ -oxalato-cobalt(II)]

Crystal data	
$[Co(C_2O_4)(C_{14}H_{14}N_4O_2)]$	Hall symbol: -P 2ybc
$M_r = 417.24$	<i>a</i> = 8.4143 (12) Å
Monoclinic, $P2_1/c$	<i>b</i> = 24.421 (4) Å

Cell parameters from 4380 reflections

 $\theta = 1.7 - 22.8^{\circ}$ $\mu = 1.02 \text{ mm}^{-1}$

T = 293 K

Block, pink

 $0.43 \times 0.25 \times 0.25$ mm

c = 9.2884 (14) Å $\beta = 113.322 (2)^{\circ}$ $V = 1752.7 (4) \text{ Å}^3$ Z = 4 F(000) = 852 $D_x = 1.581 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$

Data collection

Bruker SMART APEXII CCD	11121 measured reflections
diffractometer	4254 independent reflections
Radiation source: fine-focus sealed tube	2027 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.085$
bhi and ω scans	$\theta_{\rm max} = 28.4^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 10$
(SADABS; Sheldrick, 1996)	$k = -32 \rightarrow 32$
$T_{\min} = 0.740, \ T_{\max} = 0.785$	$l = -12 \rightarrow 10$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.065$	Hydrogen site location: inferred from
$wR(F^2) = 0.149$	neighbouring sites
<i>S</i> = 0.98	H-atom parameters constrained
4254 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0591P)^2]$
244 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.49 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.5475 (6)	0.02677 (18)	0.5426 (6)	0.0391 (12)	
C2	-0.0727 (6)	0.00051 (18)	0.4182 (6)	0.0373 (11)	
C3	0.0325 (7)	0.0938 (2)	0.0435 (7)	0.0588 (15)	
H3A	-0.0628	0.0983	0.0692	0.071*	
C4	0.0141 (7)	0.1061 (2)	-0.1055 (7)	0.0644 (16)	
H4	-0.0906	0.1187	-0.1797	0.077*	
C5	0.1578 (7)	0.0990 (2)	-0.1424 (6)	0.0553 (15)	
Н5	0.1507	0.1079	-0.2422	0.066*	
C6	0.3094 (6)	0.07904 (17)	-0.0329 (6)	0.0358 (11)	
C7	0.3141 (6)	0.06856 (18)	0.1129 (6)	0.0413 (12)	

H7	0.4172	0.0555	0.1884	0.050*
C8	0.4646 (6)	0.06836 (16)	-0.0724 (6)	0.0398 (12)
H8A	0.5578	0.0537	0.0195	0.048*
H8B	0.4343	0.0409	-0.1543	0.048*
С9	0.5876 (6)	0.15839 (19)	-0.0278 (6)	0.0372 (11)
C10	0.6436 (5)	0.20856 (18)	-0.0958 (6)	0.0353 (11)
C11	0.7359 (6)	0.30333 (18)	-0.0376 (6)	0.0411 (12)
H11A	0.7224	0.3306	0.0328	0.049*
H11B	0.6576	0.3130	-0.1432	0.049*
C12	0.9189 (6)	0.30606 (19)	-0.0279 (5)	0.0396 (12)
C13	1.0379 (7)	0.2660 (2)	0.0275 (7)	0.0700 (18)
H13	1.0094	0.2334	0.0632	0.084*
C14	1.2033 (7)	0.2734 (2)	0.0312 (8)	0.083 (2)
H14	1.2859	0.2458	0.0666	0.100*
C15	1.2411 (7)	0.3229 (2)	-0.0193 (7)	0.0631 (16)
H15	1.3517	0.3281	-0.0165	0.076*
C16	0.9683 (6)	0.35427 (19)	-0.0767 (6)	0.0431 (12)
H16	0.8861	0.3819	-0.1153	0.052*
N1	0.1806 (5)	0.07571 (16)	0.1551 (5)	0.0455 (11)
N2	0.5257 (5)	0.11716 (15)	-0.1243 (4)	0.0403 (10)
H2	0.5213	0.1190	-0.2183	0.048*
N3	0.6855 (4)	0.25082 (15)	0.0010 (4)	0.0423 (10)
Н3	0.6826	0.2467	0.0918	0.051*
N4	1.1276 (5)	0.36374 (16)	-0.0717 (5)	0.0439 (10)
01	-0.0491 (4)	0.02611 (12)	0.3106 (4)	0.0434 (8)
O2	-0.2077 (4)	-0.02540 (13)	0.4033 (4)	0.0503 (9)
O3	0.4618 (4)	0.07115 (12)	0.5055 (4)	0.0446 (9)
O4	0.6991 (4)	0.02217 (12)	0.6401 (4)	0.0494 (9)
O5	0.5999 (5)	0.15868 (13)	0.1070 (4)	0.0612 (11)
O6	0.6455 (4)	0.20801 (12)	-0.2267 (4)	0.0464 (8)
Co1	0.20072 (8)	0.05586 (2)	0.38091 (8)	0.0405 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.035 (3)	0.043 (3)	0.049 (3)	0.003 (2)	0.026 (3)	-0.001 (2)
C2	0.034 (3)	0.033 (2)	0.051 (3)	0.002 (2)	0.023 (2)	-0.008(2)
C3	0.050 (4)	0.067 (4)	0.068 (4)	0.013 (3)	0.034 (3)	0.009 (3)
C4	0.043 (4)	0.087 (4)	0.053 (4)	0.018 (3)	0.009 (3)	0.015 (3)
C5	0.063 (4)	0.061 (4)	0.044 (4)	0.003 (3)	0.023 (3)	0.001 (3)
C6	0.037 (3)	0.026 (2)	0.043 (3)	-0.004(2)	0.015 (3)	-0.005 (2)
C7	0.034 (3)	0.044 (3)	0.046 (3)	0.006 (2)	0.016 (2)	0.004 (3)
C8	0.053 (3)	0.027 (2)	0.048 (3)	-0.004 (2)	0.029 (3)	-0.001 (2)
C9	0.035 (3)	0.041 (3)	0.037 (3)	-0.010 (2)	0.016 (2)	-0.002 (2)
C10	0.034 (3)	0.039 (3)	0.038 (3)	-0.010 (2)	0.019 (2)	-0.001 (2)
C11	0.048 (3)	0.040 (3)	0.044 (3)	-0.010 (2)	0.027 (3)	0.001 (2)
C12	0.043 (3)	0.042 (3)	0.034 (3)	-0.013 (2)	0.016 (2)	-0.001 (2)
C13	0.052 (4)	0.045 (3)	0.109 (6)	-0.009 (3)	0.028 (4)	0.015 (3)

C14	0.050 (4)	0.046 (4)	0.142 (7)	0.003 (3)	0.026 (4)	0.016 (4)
C15	0.045 (3)	0.048 (3)	0.104 (5)	-0.003 (3)	0.036 (3)	-0.003 (3)
C16	0.039 (3)	0.045 (3)	0.052 (3)	-0.006(2)	0.024 (3)	0.001 (3)
N1	0.041 (3)	0.047 (2)	0.054 (3)	0.0103 (19)	0.024 (2)	0.009(2)
N2	0.052 (3)	0.041 (2)	0.035 (2)	-0.0080 (19)	0.026 (2)	-0.0039 (19)
N3	0.052 (3)	0.045 (2)	0.038 (3)	-0.0204 (19)	0.026 (2)	-0.005(2)
N4	0.039 (2)	0.042 (2)	0.058 (3)	-0.0088 (19)	0.027 (2)	-0.005(2)
O1	0.040 (2)	0.044 (2)	0.048 (2)	0.0012 (15)	0.0202 (17)	0.0061 (17)
O2	0.042 (2)	0.057 (2)	0.055 (2)	-0.0090 (17)	0.0222 (18)	-0.0050 (18)
O3	0.0356 (19)	0.0339 (18)	0.070 (3)	0.0063 (14)	0.0269 (18)	0.0041 (16)
O4	0.037 (2)	0.041 (2)	0.065 (3)	0.0040 (16)	0.0145 (19)	-0.0052 (17)
O5	0.098 (3)	0.050(2)	0.044 (2)	-0.036 (2)	0.037 (2)	-0.0086 (18)
O6	0.064 (2)	0.044 (2)	0.041 (2)	-0.0107 (16)	0.0318 (19)	-0.0026 (16)
Co1	0.0349 (4)	0.0385 (4)	0.0551 (5)	0.0057 (3)	0.0253 (3)	0.0030 (3)

Geometric parameters (Å, °)

C1—04	1.243 (5)	C11—N3	1.440 (5)	
C1—O3	1.271 (5)	C11—C12	1.508 (6)	
C1-C1 ⁱ	1.573 (9)	C11—H11A	0.9700	
C2—O2	1.259 (5)	C11—H11B	0.9700	
C201	1.260 (5)	C12—C13	1.348 (6)	
C2—C2 ⁱⁱ	1.527 (9)	C12—C16	1.383 (6)	
C3—N1	1.342 (6)	C13—C14	1.390 (7)	
C3—C4	1.363 (7)	C13—H13	0.9300	
С3—НЗА	0.9300	C14—C15	1.380 (7)	
C4—C5	1.392 (7)	C14—H14	0.9300	
C4—H4	0.9300	C15—N4	1.332 (6)	
С5—С6	1.369 (6)	C15—H15	0.9300	
С5—Н5	0.9300	C16—N4	1.343 (5)	
C6—C7	1.364 (6)	C16—H16	0.9300	
C6—C8	1.512 (6)	N1—Co1	2.093 (4)	
C7—N1	1.339 (5)	N2—H2	0.8600	
С7—Н7	0.9300	N3—H3	0.8600	
C8—N2	1.454 (5)	N4—Co1 ⁱⁱⁱ	2.155 (4)	
C8—H8A	0.9700	O1—Co1	2.070 (3)	
C8—H8B	0.9700	O2—Co1 ⁱⁱ	2.117 (3)	
C9—O5	1.215 (5)	O3—Co1	2.072 (3)	
C9—N2	1.311 (5)	O4—Co1 ⁱ	2.124 (3)	
C9—C10	1.535 (6)	Co1—O2 ⁱⁱ	2.117 (3)	
C10—O6	1.222 (5)	Co1—O4 ⁱ	2.124 (3)	
C10—N3	1.322 (5)	Co1—N4 ^{iv}	2.155 (4)	
O4—C1—O3	125.7 (4)	C12—C13—H13	120.0	
04—C1—C1 ⁱ	117.5 (5)	C14—C13—H13	120.0	
O3—C1—C1 ⁱ	116.8 (6)	C15—C14—C13	117.9 (5)	
O2—C2—O1	125.5 (4)	C15—C14—H14	121.0	
O2—C2—C2 ⁱⁱ	115.7 (6)	C13—C14—H14	121.0	

01 02 02	110.0 (5)	N4 C15 C14	100 5 (5)
01-02-02	118.8 (5)	N4	123.5 (5)
N1—C3—C4	123.7 (5)	N4—C15—H15	118.2
N1—C3—H3A	118.2	C14—C15—H15	118.2
С4—С3—Н3А	118.2	N4	124.1 (4)
C3—C4—C5	117.5 (5)	N4	117.9
C3—C4—H4	121.2	C12—C16—H16	117.9
C5—C4—H4	121.2	C7—N1—C3	116.5 (5)
C6—C5—C4	120.4 (5)	C7—N1—Co1	121.2 (3)
С6—С5—Н5	119.8	C3—N1—Co1	122.2(3)
C4—C5—H5	119.8	C9 - N2 - C8	122.2(3) 120.0(4)
C7 $C6$ $C5$	117.0 117.2(4)	$C_0 N_2 H_2$	120.0
C7 C6 C8	117.2(4)	$C_{2} = 112$	120.0
$C = C = C \delta$	121.4(4)	$C_0 - N_2 - H_2$	120.0
C_{3}	121.5 (4)	C10 N2 H2	123.5 (4)
NI-C/-C6	124.7 (5)	C10—N3—H3	118.3
N1—C7—H7	117.7	C11—N3—H3	118.3
С6—С7—Н7	117.7	C15—N4—C16	116.4 (4)
N2—C8—C6	113.1 (3)	C15—N4—Co1 ⁱⁱⁱ	122.3 (3)
N2—C8—H8A	109.0	C16—N4—Co1 ⁱⁱⁱ	120.8 (3)
С6—С8—Н8А	109.0	C2—O1—Co1	112.5 (3)
N2—C8—H8B	109.0	C2—O2—Co1 ⁱⁱ	112.7 (3)
С6—С8—Н8В	109.0	C1—O3—Co1	111.1 (3)
H8A—C8—H8B	107.8	C1-O4-Co1 ⁱ	110.2 (3)
O5—C9—N2	123.9 (4)	O1—Co1—O3	163.58 (13)
O5—C9—C10	120.3 (4)	01—Co1—N1	95.51 (15)
N2-C9-C10	115.8 (4)	O3-Co1-N1	99.50 (14)
06-C10-N3	125 5 (4)	$01 - C_0 - 02^{ii}$	79 59 (13)
06-C10-C9	121.8 (4)	$03-C_{0}1-02^{ii}$	84 77 (12)
$N_{2} = C_{10} = C_{2}$	121.0(4)	$N_1 = C_{01} = O_2^{ii}$	172 22 (14)
$N_{2} = C_{10} = C_{9}$	112.7(4)	N1 = C01 = 02	1/2.33(14)
	114.8 (4)	$01 - 01 - 04^{1}$	92.08 (12)
N3—CII—HIIA	108.6	03-01-04	80.86 (12)
CI2—CII—HIIA	108.6	NI-CoI-O4	89.62 (14)
N3—C11—H11B	108.6	$O2^n$ —Co1—O4 ⁿ	84.76 (13)
C12—C11—H11B	108.6	O1—Co1—N4 ^{IV}	92.74 (13)
H11A—C11—H11B	107.6	O3—Co1—N4 ^{iv}	92.70 (13)
C13—C12—C16	117.9 (4)	N1—Co1—N4 ^{iv}	94.43 (15)
C13—C12—C11	125.3 (4)	O2 ⁱⁱ —Co1—N4 ^{iv}	91.71 (14)
C16—C12—C11	116.8 (4)	$O4^{i}$ —Co1—N 4^{iv}	172.90 (15)
C12-C13-C14	120.0 (5)		
	/->		
N1—C3—C4—C5	0.2 (9)	C14—C15—N4—Co1 ^m	171.3 (5)
C3—C4—C5—C6	1.7 (8)	C12—C16—N4—C15	1.5 (8)
C4—C5—C6—C7	-2.3 (7)	C12—C16—N4—Co1 ⁱⁱⁱ	-171.1 (4)
C4—C5—C6—C8	177.0 (5)	O2-C2-O1-Co1	-173.9 (3)
C5-C6-C7-N1	1.0 (7)	C2 ⁱⁱ —C2—O1—Co1	5.5 (6)
C8—C6—C7—N1	-178.3 (4)	O1—C2—O2—Co1 ⁱⁱ	-174.5 (3)
C7—C6—C8—N2	-121.0 (5)	C2 ⁱⁱ —C2—O2—Co1 ⁱⁱ	6.2 (6)
C5C6C8N2	59.8 (6)	O4—C1—O3—Co1	-166.2 (4)
O5—C9—C10—O6	174.2 (4)	C1 ⁱ —C1—O3—Co1	13.8 (6)
	× /		~ /

N2-C9-C10-O6	-6.6 (6)	O3-C1-O4-Co1 ⁱ	-166.7 (4)
O5-C9-C10-N3	-6.6 (6)	C1 ⁱ —C1—O4—Co1 ⁱ	13.4 (6)
N2-C9-C10-N3	172.6 (4)	C2-O1-Co1-O3	11.5 (6)
N3-C11-C12-C13	-6.9 (7)	C2-O1-Co1-N1	167.5 (3)
N3-C11-C12-C16	174.7 (4)	C2-O1-Co1-O2 ⁱⁱ	-6.5 (3)
C16—C12—C13—C14	-1.3 (9)	C2-O1-Co1-O4 ⁱ	77.7 (3)
C11—C12—C13—C14	-179.7 (5)	C2-O1-Co1-N4 ^{iv}	-97.7 (3)
C12—C13—C14—C15	1.6 (10)	C1-O3-Co1-O1	51.8 (6)
C13—C14—C15—N4	-0.3 (10)	C1—O3—Co1—N1	-104.0 (3)
C13—C12—C16—N4	-0.3 (8)	C1—O3—Co1—O2 ⁱⁱ	69.6 (3)
C11-C12-C16-N4	178.2 (4)	C1-O3-Co1-O4 ⁱ	-15.9 (3)
C6—C7—N1—C3	0.9 (7)	C1—O3—Co1—N4 ^{iv}	161.1 (3)
C6C7N1Co1	178.1 (3)	C7—N1—Co1—O1	-142.6 (3)
C4—C3—N1—C7	-1.5 (8)	C3—N1—Co1—O1	34.4 (4)
C4—C3—N1—Co1	-178.7 (4)	C7—N1—Co1—O3	30.7 (4)
O5—C9—N2—C8	0.8 (7)	C3—N1—Co1—O3	-152.3 (4)
C10—C9—N2—C8	-178.3 (4)	C7—N1—Co1—O2 ⁱⁱ	-92.7 (11)
C6—C8—N2—C9	64.2 (6)	C3—N1—Co1—O2 ⁱⁱ	84.3 (11)
O6—C10—N3—C11	1.6 (7)	C7—N1—Co1—O4 ⁱ	-50.0 (4)
C9—C10—N3—C11	-177.5 (4)	C3—N1—Co1—O4 ⁱ	127.0 (4)
C12-C11-N3-C10	-77.4 (6)	C7—N1—Co1—N4 ^{iv}	124.2 (4)
C14—C15—N4—C16	-1.2 (9)	C3—N1—Co1—N4 ^{iv}	-58.8 (4)

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y, -z+1; (iii) x+1, -y+1/2, z-1/2; (iv) x-1, -y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N3—H3…O6 ^v	0.86	2.14	2.863 (5)	142

Symmetry code: (v) x, -y+1/2, z+1/2.