

OPEN d ACCESS

NH⁺ OOC COOH

 $\gamma = 82.843 (3)^{\circ}$ V = 865.55 (5) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.15~\text{mm}$

3013 independent reflections

2373 reflections with $I > 2\sigma I$)

 $\mu = 0.11 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.014$

Z = 4

2. Experimental

2.1. Crystal dataIMC3H8N⁺·C4H3O4⁻

 $M_r = 175.19$ Triclinic, *P*1 *a* = 8.5649 (3) Å *b* = 9.4364 (3) Å *c* = 10.8051 (4) Å *α* = 88.838 (3)° *β* = 87.482 (3)°

2.2. Data collection

Oxford Diffraction Xcalibur diffractometer 5454 measured reflections

2.3. Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.036 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.093 & \text{independent and constrained} \\ S &= 1.10 & \text{refinement} \\ 3013 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.57 \text{ e } \text{\AA}^{-3} \\ 249 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.50 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N11-H11A···O48	0.94 (2)	1.89 (2)	2.8275 (19)	174.4 (17)
$N11 - H11B \cdot \cdot \cdot O32^{i}$	0.95 (2)	1.88 (2)	2.8107 (19)	166.9 (18)
$N11 - H11C \cdot \cdot \cdot O41^{ii}$	0.90(2)	1.95 (2)	2.844 (2)	172 (2)
N21-H21A···O32	0.95 (3)	2.28 (3)	2.972 (2)	128.5 (19)
$N21 - H21A \cdots O47$	0.95 (3)	2.21 (3)	2.994 (2)	138.7 (19)
$N21 - H21B \cdots O42^{iii}$	0.93 (2)	1.86 (2)	2.786 (2)	169.2 (17)
$N21 - H21C \cdot \cdot \cdot O38^{iv}$	0.92 (2)	1.86 (2)	2.7809 (19)	177 (2)
$O37-H37\cdots O41^{v}$	1.18 (3)	1.28 (3)	2.4510 (15)	180 (3)
O47-H47···O31	1.08 (3)	1.39 (3)	2.4707 (15)	176 (3)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 2; (iii) -x + 1, -y + 2, -z + 2; (iv) x, y + 1, z; (v) x, y - 1, z - 1.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2008); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2008); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

Supporting information for this paper is available from the IUCr electronic archives (Reference: BG2532).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Barnes, J. C. & Weakley, T. J. R. (2000). Acta Cryst. C56, e346-e347.
- Bhardwaj, R. M., Johnston, B. F., Oswald, I. D. H. & Florence, A. J. (2013). *Acta Cryst.* C69, 1273–1278.
- Bruni, G., Maietta, M., Scotti, F., Maggi, L., Bini, M., Ferrari, S., Capsoni, D., Boiocchi, M., Berbenni, V., Milanese, C., Girella, A. & Marini, A. (2013). *Acta Cryst.* B69, 362–370.

Crystal structure of allylammonium hydrogen succinate at 100 K

Błażej Dziuk, Bartosz Zarychta and Krzysztof Ejsmont*

Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland. *Correspondence e-mail: eismont@uni.opole.pl

Received 24 June 2014; accepted 4 July 2014

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina

The asymmetric unit of the title compound, $C_2H_8N^+$. C₄H₅O₄⁻, consists of two allylammonium cations and two hydrogen succinate anions (Z' = 2). One of the cations has a near-perfect syn-periplanar (cis) conformation with an N-C-C-C torsion angle of $0.4 (3)^{\circ}$, while the other is characterized by a gauche conformation and a torsion angle of 102.5 (3)°. Regarding the anions, three out of four carboxilic groups are twisted with respect to the central C- CH_2 - CH_2 -C group [dihedral angles = 24.4 (2), 31.2 (2) and $40.4 (2)^{\circ}$], the remaining one being instead almost coplanar, with a dihedral angle of 4.0 (2) $^{\circ}$. In the crystal, there are two very short, near linear O-H···O hydrogen bonds between anions, with the H atoms shifted notably from the donor O towards the O···O midpoint. These O-H···O hydrogen bonds form helical chains along the [011] which are further linked to each other through N-H···O hydrogen bonds (involving all the available NH groups), forming layers lying parallel to (100).

Keywords: crystal structure; allylammonium; succinate; hydrogen bonds.

CCDC reference: 1012134

1. Related literature

For other crystal structures of succinate salts with amines, see: Bhardwaj *et al.* (2013); Bruni *et al.* (2013); Khorasani & Fernandes (2012). For the characteristic structural motifs in ammonium dicarboxylate salts, see: Kashino *et al.* (1998); Barnes & Weakley (2000); MacDonald *et al.* (2001); Vaidhyanathan *et al.* (2001, 2002); Saraswathi & Vijayan (2002); Ejsmont (2007). Salts of succinic acid and amines have strong $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds and are thus used as building blocks for the construction of supramolecular structures, see: Khorasani *et al.* (2012); Lemmerer (2011). For hydrogen bonding, see: Steiner (2002). For a description of the Cambridge Structural Database, see: Allen (2002). Ejsmont, K. (2007). Acta Cryst. E63, o107-o109.

- Kashino, S., Taka, J., Yoshida, T., Kubozono, Y., Ishida, H. & Maeda, H. (1998). Acta Cryst. B**54**, 889–894.
- Khorasani, S. & Fernandes, M. A. (2012). Acta Cryst. E68, o1204.
- Lemmerer, A. (2011). Cryst. Growth Des. 11, 583-593.
- MacDonald, J. C., Doeewstein, C. P. & Pilley, M. M. (2001). Cryst. Growth Des. 1, 29–38.
- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Saraswathi, N. T. & Vijayan, M. (2002). Acta Cryst. B58, 734-739.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.
- Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2001). J. Chem. Soc. Dalton Trans. pp. 699–706.
- Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). J. Mol. Struct. 608, 123–133.

supporting information

Acta Cryst. (2014). E70, o917-o918 [doi:10.1107/S1600536814015633]

Crystal structure of allylammonium hydrogen succinate at 100 K

Błażej Dziuk, Bartosz Zarychta and Krzysztof Ejsmont

S1. Comment

Crystal engineering is extremely fast growing area of experimental chemistry leading to new materials with controlled and understood nature. Hydrogen bonding plays an important role in organizing molecules, assembling them to create supramolecules and controlling their dimensions in one-, two- or three-dimensions (Khorasani *et al.*, 2012). The adducts of succinic acid and amines have strong N—H…O and O—H…O hydrogen bonds, thus they can be used to align molecules in chosen directions, as building blocks for the construction of supramolecular structures. (Khorasani *et al.*, 2012; Lemmerer, 2011).

There are three characteristic structural motifs in ammonium dicarboxylate salts: (i) linear chains of dicarboxylic acids formed by strong hydrogen bonds; (ii) dimers of dicarboxylic acid molecules; (iii) isolated oxalate monoanions or dianion units (for example: Kashino *et al.*, 1998; Barnes & Weakley 2000; MacDonald *et al.*, 2001; Vaidhyanathan *et al.*, 2001, 2002; Saraswathi & Vijayan 2002; and Ejsmont, 2007).

The independent part of the unit cell of the title salt, (I), consists with two allyloammonium cations and two hydrogen succinate anions (Fig. 1). A geometry of amonium cations is normal (CSD; CONQUEST Version 1.16; Allen, 2002) and comparable with those found in other crystal structures which include this cation (Allen, 2002). The N11 cation has perfect *syn*-periplanar (*cis*) conformation with N11–C12–C13–C14 torsion angle of 0.4 (3)°, while N21 cataion is characterized by *gauche* conformation (the torsion angle N21–C22–C23–C24 amounts 102.5 (3)°). Three out of four carboxalic groups are twisted with respect to the central C–CH₂–CH₂–C group; the remaining one being rather co-planar.

In the crystal structure of (I), there are two linear or nearly linear O–H···O hydrogen bonds between the hydrogen succinate, which can be identified as a very strong interactions (Steiner, 2002). The O···O distances in these interactions are close to that observed for O–H···O hydrogen bonds formed between the monoanionic oxalate units in the structures of diethylammonium hydrogen oxalate (Ejsmont, 2007). These O–H···O hydrogen bonds forming helical chains along <011> direction. The allylammonium cations are linked to polianionic chains through the N–H···O hydrogen bonds (Table 2, Fig. 2).

S2. Experimental

Crystals of (I) were grown at room temperature by slow evaporation of an aqueous solution containing allylamine and succinatic acid in a 1:1 stoichiometric ratio.

S3. Refinement

The H atoms attached to atoms O and N were located in difference electron density maps and were freely refined with isotropic displacement factors [O-H = 1.08 (3) - 1.18 (3) and N-H = 0.90 (2) - 0.95 (2) Å]. The remaining H atoms were positioned geometrically and treated as riding on their parent C atoms, with C–H distances of 0.95 for idealized secondary CH₂, 0.95 for CH and 0.99 Å for idealized terminal *X*=CH₂ and with $U_{iso}(H) = 1.2U_{eq}(C)$. Probably due to

libration, the ending C23=C24 bond appears significantly shorter that its corresponding C13=C14 one.

Figure 1

The molecular structure of (I), showing 50% displacement ellipsoids. Hydrogen bonds are shown as dotted lines.

Figure 2

Packing diagram of (I) viewed along the b axis, showing (sideways) the (100) 2D structure defined by the hydrogenbonding network (dotted lines).

(I)

Crystal data	
$C_{3}H_{8}N^{+}\cdot C_{4}H_{5}O_{4}^{-}$	c = 10.8051 (4) Å
$M_r = 175.19$	$\alpha = 88.838 \ (3)^{\circ}$
Triclinic, P1	$\beta = 87.482 \ (3)^{\circ}$
Hall symbol: -P 1	$\gamma = 82.843 (3)^{\circ}$
a = 8.5649 (3) Å	V = 865.55 (5) Å ³
b = 9.4364 (3) Å	Z = 4

F(000) = 376 $D_x = 1.344 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5943 reflections $\theta = 2.9-26.0^{\circ}$

Data collection

Duiu conection	
Oxford Diffraction Xcalibur	2373 reflections with $I > 2\sigma I$)
diffractometer	$R_{\rm int} = 0.014$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 25.0^\circ, \theta_{\rm min} = 2.9^\circ$
Graphite monochromator	$h = -10 \rightarrow 10$
ω–scan	$k = -11 \rightarrow 11$
5454 measured reflections	$l = -8 \rightarrow 12$
3013 independent reflections	
Refinement	
-	

 $\mu = 0.11 \text{ mm}^{-1}$ T = 100 K

Prism, colourless

 $0.30 \times 0.20 \times 0.15 \text{ mm}$

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.093$	neighbouring sites
S = 1.10	H atoms treated by a mixture of independent
3013 reflections	and constrained refinement
249 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0483P)^2 + 0.1223P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.57 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates	and isotropic or	equivalent isotropic	displacement	parameters	$(Å^2)$
				P	(/

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N11	0.22162 (17)	0.36564 (17)	0.68154 (14)	0.0143 (3)	
H11A	0.240 (2)	0.444 (2)	0.7297 (18)	0.022 (5)*	
H11B	0.263 (2)	0.387 (2)	0.601 (2)	0.026 (5)*	
H11C	0.275 (3)	0.284 (2)	0.711 (2)	0.035 (6)*	
C12	0.0522 (2)	0.34987 (19)	0.67065 (15)	0.0171 (4)	
H12A	0.0440	0.2616	0.6284	0.021*	
H12B	0.0041	0.4279	0.6199	0.021*	
C13	-0.0375 (2)	0.34861 (19)	0.79193 (16)	0.0195 (4)	
H13	-0.1441	0.3396	0.7890	0.023*	
C14	0.0178 (2)	0.35885 (19)	0.90250 (16)	0.0213 (4)	
H14A	0.1236	0.3681	0.9107	0.026*	
H14B	-0.0491	0.3569	0.9726	0.026*	

N21	0.72616 (18)	0.81019 (17)	0.70187 (15)	0.0163 (3)
H21A	0.670 (3)	0.729 (3)	0.699 (2)	0.053 (7)*
H21B	0.675 (2)	0.880 (2)	0.7549 (18)	0.023 (5)*
H21C	0.734 (3)	0.847 (2)	0.623 (2)	0.037 (6)*
C22	0.8872 (2)	0.7596 (2)	0.74249 (19)	0.0266 (5)
H22A	0.9356	0.6839	0.6888	0.032*
H22B	0.8813	0.7213	0.8263	0.032*
C23	0.9854 (3)	0.8799 (3)	0.7381 (3)	0.0480 (7)
H23	1.0230	0.9037	0.6593	0.058*
C24	1.0244 (3)	0.9520 (3)	0.8213 (3)	0.0649 (9)
H24A	0.9915	0.9347	0.9028	0.078*
H24B	1.0869	1.0241	0.8033	0.078*
O31	0.56273 (14)	0.40484 (12)	0.67627 (10)	0.0164 (3)
O32	0.70239 (14)	0.54666 (12)	0.56148 (10)	0.0167 (3)
C33	0.64907 (19)	0.43020 (17)	0.58151 (15)	0.0129 (4)
C34	0.6844 (2)	0.31171 (17)	0.48796 (15)	0.0156 (4)
H34A	0.6139	0.3315	0.4202	0.019*
H34B	0.7911	0.3127	0.4543	0.019*
C35	0.6679 (2)	0.16362 (18)	0.53950 (16)	0.0195 (4)
H35A	0.7512	0.1369	0.5966	0.023*
H35B	0.5683	0.1670	0.5864	0.023*
C36	0.6745 (2)	0.04877 (18)	0.44309 (15)	0.0142 (4)
O37	0.60445 (14)	0.08573 (12)	0.34227 (10)	0.0178 (3)
H37	0.614 (3)	-0.012 (3)	0.275 (2)	0.060 (7)*
O38	0.73921 (15)	-0.07378 (12)	0.46355 (11)	0.0199 (3)
O41	0.62286 (14)	0.88262 (12)	1.20228 (10)	0.0168 (3)
O42	0.39008 (14)	0.97603 (12)	1.13231 (10)	0.0177 (3)
C43	0.5051 (2)	0.88300 (18)	1.13021 (14)	0.0135 (4)
C44	0.5199 (2)	0.76104 (17)	1.04077 (15)	0.0153 (4)
H44A	0.5367	0.6717	1.0871	0.018*
H44B	0.6118	0.7668	0.9860	0.018*
C45	0.3767 (2)	0.75980 (18)	0.96308 (15)	0.0159 (4)
H45A	0.2854	0.7521	1.0181	0.019*
H45B	0.3586	0.8503	0.9186	0.019*
C46	0.3904 (2)	0.64079 (18)	0.87107 (15)	0.0145 (4)
O47	0.53341 (14)	0.60086 (13)	0.82691 (11)	0.0182 (3)
H47	0.543 (3)	0.518 (3)	0.758 (3)	0.084 (10)*
O48	0.27396 (14)	0.58861 (13)	0.83964 (11)	0.0193 (3)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N11	0.0163 (8)	0.0133 (8)	0.0138 (8)	-0.0028 (6)	-0.0011 (6)	-0.0018 (6)
C12	0.0158 (9)	0.0179 (9)	0.0181 (9)	-0.0025 (7)	-0.0045 (7)	-0.0022 (7)
C13	0.0149 (9)	0.0204 (10)	0.0235 (10)	-0.0042 (7)	0.0008 (8)	-0.0010 (8)
C14	0.0201 (10)	0.0238 (10)	0.0211 (10)	-0.0081 (8)	0.0034 (8)	0.0000 (8)
N21	0.0194 (8)	0.0115 (8)	0.0177 (8)	-0.0008(7)	-0.0016 (7)	-0.0008(7)
C22	0.0207 (10)	0.0257 (11)	0.0321 (11)	0.0027 (8)	-0.0028 (8)	0.0018 (9)

Acta Cryst. (2014). E70, o917–o918

C23	0.0229 (12)	0.0636 (17)	0.0608 (16)	-0.0184 (12)	0.0116 (11)	-0.0269 (14)	
C24	0.0543 (18)	0.0384 (16)	0.104 (2)	-0.0198 (13)	0.0227 (17)	-0.0188 (16)	
O31	0.0208 (7)	0.0143 (6)	0.0147 (6)	-0.0052 (5)	0.0034 (5)	-0.0038 (5)	
O32	0.0240 (7)	0.0115 (6)	0.0155 (6)	-0.0061 (5)	-0.0002 (5)	-0.0009 (5)	
C33	0.0129 (8)	0.0136 (9)	0.0125 (8)	-0.0008(7)	-0.0043 (7)	-0.0006 (7)	
C34	0.0190 (9)	0.0133 (9)	0.0146 (9)	-0.0026 (7)	0.0022 (7)	-0.0022 (7)	
C35	0.0311 (11)	0.0140 (9)	0.0136 (9)	-0.0027 (8)	-0.0036 (8)	-0.0015 (7)	
C36	0.0150 (9)	0.0144 (9)	0.0137 (9)	-0.0042 (7)	0.0015 (7)	-0.0004 (7)	
O37	0.0251 (7)	0.0123 (6)	0.0161 (6)	0.0000 (5)	-0.0060 (5)	-0.0037 (5)	
O38	0.0294 (7)	0.0124 (6)	0.0169 (6)	0.0024 (5)	-0.0022 (5)	-0.0007 (5)	
O41	0.0213 (7)	0.0137 (6)	0.0158 (6)	-0.0016 (5)	-0.0057 (5)	-0.0031 (5)	
O42	0.0197 (7)	0.0157 (6)	0.0174 (6)	0.0010 (5)	-0.0019 (5)	-0.0045 (5)	
C43	0.0186 (9)	0.0118 (8)	0.0109 (8)	-0.0061 (7)	0.0017 (7)	0.0009 (7)	
C44	0.0215 (9)	0.0108 (8)	0.0136 (8)	-0.0021 (7)	-0.0013 (7)	-0.0007 (7)	
C45	0.0177 (9)	0.0162 (9)	0.0147 (9)	-0.0053 (7)	0.0015 (7)	-0.0037 (7)	
C46	0.0199 (9)	0.0123 (9)	0.0118 (8)	-0.0041 (7)	-0.0002 (7)	0.0020 (7)	
O47	0.0195 (7)	0.0168 (7)	0.0188 (6)	-0.0047 (5)	0.0026 (5)	-0.0060 (5)	
O48	0.0207 (7)	0.0194 (7)	0.0196 (6)	-0.0087 (5)	-0.0007 (5)	-0.0051 (5)	

Geometric parameters (Å, °)

N11—C12	1.487 (2)	O32—C33	1.253 (2)
N11—H11A	0.94 (2)	C33—C34	1.516 (2)
N11—H11B	0.95 (2)	C34—C35	1.515 (2)
N11—H11C	0.90(2)	C34—H34A	0.9700
C12—C13	1.490 (2)	C34—H34B	0.9700
C12—H12A	0.9700	C35—C36	1.513 (2)
C12—H12B	0.9700	С35—Н35А	0.9700
C13—C14	1.314 (2)	C35—H35B	0.9700
С13—Н13	0.9300	C36—O38	1.239 (2)
C14—H14A	0.9300	C36—O37	1.288 (2)
C14—H14B	0.9300	O37—H37	1.18 (3)
N21—C22	1.484 (2)	O41—C43	1.301 (2)
N21—H21A	0.95 (3)	O42—C43	1.235 (2)
N21—H21B	0.93 (2)	C43—C44	1.508 (2)
N21—H21C	0.92 (2)	C44—C45	1.518 (2)
C22—C23	1.494 (3)	C44—H44A	0.9700
C22—H22A	0.9700	C44—H44B	0.9700
C22—H22B	0.9700	C45—C46	1.505 (2)
C23—C24	1.220 (4)	C45—H45A	0.9700
С23—Н23	0.9300	C45—H45B	0.9700
C24—H24A	0.9300	C46—O48	1.230 (2)
C24—H24B	0.9300	C46—O47	1.308 (2)
O31—C33	1.273 (2)	O47—H47	1.08 (3)
O31—H47	1.39 (3)		
C12—N11—H11A	113.9 (12)	O32—C33—C34	119.48 (14)
C12—N11—H11B	107.5 (12)	O31—C33—C34	116.77 (14)

C35—C34—H34A C33—C34—H34A	108.6 108.6
C33—C34—H34A	108.6
	100.0
C35—C34—H34B	108.6
C33—C34—H34B	108.6
H34A—C34—H34B	107.6
C36—C35—C34	114.80 (14)
C36—C35—H35A	108.6
С34—С35—Н35А	108.6
C36—C35—H35B	108.6
C34—C35—H35B	108.6
H35A—C35—H35B	107.5
O38—C36—O37	123.12 (15)
O38—C36—C35	121.04 (15)
O37—C36—C35	115.80 (15)
С36—О37—Н37	110.1 (12)
O42—C43—O41	123.53 (15)
O42—C43—C44	121.67 (15)
O41—C43—C44	114.79 (14)
C43—C44—C45	113.51 (14)
C43—C44—H44A	108.9
C45—C44—H44A	108.9
C43—C44—H44B	108.9
C45—C44—H44B	108.9
H44A—C44—H44B	107.7
C46—C45—C44	114.39 (14)
C46—C45—H45A	108.7
C44—C45—H45A	108.7
C46—C45—H45B	108.7
C44—C45—H45B	108.7
H45A—C45—H45B	107.6
O48—C46—O47	123.71 (15)
O48—C46—C45	121.43 (15)
O47—C46—C45	114.85 (15)
C46—O47—H47	115.2 (16)
	C35—C34—H34B C33—C34—H34B H34A—C34—H34B C36—C35—C34 C36—C35—H35A C34—C35—H35A C36—C35—H35B C34—C35—H35B H35A—C35—H35B O38—C36—O37 O38—C36—C35 O37—C36—C35 C36—O37—H37 O42—C43—O41 O42—C43—C44 O41—C43—C44 O41—C43—C44 O41—C43—C44 O41—C43—C44 AC45—C44—H44A C45—C44—H44B C45—C44—H44B H44A—C44—H44B H44A—C44—H44B H44A—C44—H44B C46—C45—C44 C46—C45—H45A C46—C45—H45A C46—C45—H45B H45A—C45—H45B H45A—C45—H45B H45A—C45—H45B H45A—C45—H45B O48—C46—O47 O48—C46—O47 O48—C46—C45 O47—C46—C45 O47—C46—C45

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N11—H11A····O48	0.94 (2)	1.89 (2)	2.8275 (19)	174.4 (17)
N11—H11 <i>B</i> ···O32 ⁱ	0.95 (2)	1.88 (2)	2.8107 (19)	166.9 (18)
N11—H11C····O41 ⁱⁱ	0.90 (2)	1.95 (2)	2.844 (2)	172 (2)
N21—H21A···O32	0.95 (3)	2.28 (3)	2.972 (2)	128.5 (19)
N21—H21A····O47	0.95 (3)	2.21 (3)	2.994 (2)	138.7 (19)
N21—H21 <i>B</i> ···O42 ⁱⁱⁱ	0.93 (2)	1.86 (2)	2.786 (2)	169.2 (17)
N21—H21 <i>C</i> ···O38 ^{iv}	0.92 (2)	1.86 (2)	2.7809 (19)	177 (2)

supporting information

O37—H37…O41 ^v	1.18 (3)	1.28 (3)	2.4510 (15)	180 (3)
O47—H47…O31	1.08 (3)	1.39 (3)	2.4707 (15)	176 (3)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+2; (iii) -*x*+1, -*y*+2, -*z*+2; (iv) *x*, *y*+1, *z*; (v) *x*, *y*-1, *z*-1.