Structure Reports

Online

ISSN 1600-5368

$\mathrm{Li}_{2} \mathrm{PtF}_{6}$ revisited

Florian Kraus

AG Fluorchemie, Technische Universität München, Lichtenbergstrasse 4, 85747
Garching, Germany
Correspondence e-mail: florian.kraus@tum.de

Received 30 June 2014; accepted 3 July 2014
Edited by M. Weil, Vienna University of Technology, Austria

Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{Pt}-\mathrm{F})=0.004 \AA$; R factor $=0.019 ; w R$ factor $=0.052$; data-to-parameter ratio $=13.5$.

In comparison with previous stucture determinations of $\mathrm{Li}_{2} \mathrm{PtF}_{6}$, dilithium hexafluoridoplatinate(IV) [Graudejus et al. (2000). Inorg. Chem. 39, 2794-2800; Henkel \& Hoppe (1968). Z. Anorg. Allg. Chem. 359, 160-177], the current study revealed the Li atom to be refined with anisotropic displacement parameters, thus allowing for a higher overall precision of the model. $\mathrm{Li}_{2} \mathrm{PtF}_{6}$ adopts the trirutile structure type with site symmetries of $2 . m m, m . m m, . . m$ and $m .2 m$ for the Li, Pt and the two F sites. The $\mathrm{Pt}-\mathrm{F}$ distances in the slightly distorted PtF_{6} octahedron are essentially similar with 1.936 (4) and 1.942 (6) \AA, and the equatorial $\mathrm{F}-\mathrm{Pt}-\mathrm{F}$ angles range from 82.2 (2) to $97.8(2)^{\circ}$. The $\mathrm{Li}-\mathrm{F}$ distances in the somewhat more distorted LiF_{6} octahedron are 1.997 (15) and $2.062(15) \AA$, with equatorial $\mathrm{F}-\mathrm{Li}-\mathrm{F}$ angles ranging from 76.3 (7) to 99.71 (17) .

Related literature

Henkel \& Hoppe (1968) reported on the synthesis of $\mathrm{Li}_{2} \mathrm{PtF}_{6}$ by direct fluorination of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PtCl}_{6}$ and $\mathrm{Li}_{2} \mathrm{CO}_{3}$. The obtained yellow $\mathrm{Li}_{2} \mathrm{PtF}_{6}$ was characterized by powder X-ray diffraction and reported to crystallize in the monoclinic crystal system. Graudejus et al. (2000) obtained $\mathrm{Li}_{2} \mathrm{PtF}_{6}$ in the form of yellow and air-stable crystals from the reaction of LiF with Pt in anhydrous HF under UV-photolysis of F_{2}. The reported space group and unit cell parameters are in accordance with the current redetermination. However, a low precision of the $\mathrm{Pt}-\mathrm{F}$ bond lengths of only $\pm 0.01 \AA$ was obtained due to many unobserved reflections even at the 2σ level. For synthetic details for the preparation of PtF_{4}, see: Müller \& Serafin (1992).

Experimental

Crystal data
$\mathrm{Li}_{2} \mathrm{PtF}_{6}$
$M_{r}=322.97$
Tetragonal, $P 4_{2} / \mathrm{mnm}$
$a=4.6427$ (1) A
$c=9.1234(2) \AA$
$V=196.65(1) \AA^{3}$

Data collection

Oxford Diffraction Xcalibur3 diffractometer
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)
$T_{\text {min }}=0.148, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019 \quad 19$ parameters
$w R\left(F^{2}\right)=0.052$
$S=1.17$
257 reflections
$Z=2$
Mo $K \alpha$ radiation
$\mu=35.71 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
$0.05 \times 0.05 \times 0.04 \mathrm{~mm}$

5829 measured reflections 257 independent reflections 184 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.062$

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXL97.

The author would like to thank the Deutsche Forschungsgemeinschaft for his Heisenberg fellowship, Professors R. Hoppe and B. Müller (Giessen, Germany) for the generous donation of Pt tubes and Pt used in this work, and Solvay Fluor for the donation of F_{2}.

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5032).

References

Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany. Graudejus, O., Wilkinson, A. P., Chacón, L. C. \& Bartlett, N. (2000). Inorg. Chem. 39, 2794-2800.
Henkel, H. \& Hoppe, R. (1968). Z. Anorg. Allg. Chem. 359, 160-177.
Müller, B. G. \& Serafin, M. (1992). Eur. J. Solid State Inorg. Chem. 29, 625-633.
Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2014). E70, i43 [doi:10.1107/S1600536814015566]

$\mathrm{Li}_{2} \mathrm{PtF}_{6}$ revisited

Florian Kraus

S1. Experimental

Single-crystalline $\mathrm{Li}_{2} \mathrm{PtF}_{6}$ was obtained by the reaction of LiF and PtF_{4} in platinum tubes. LiF was purified and dried in a stream of F_{2} : Ar 1:1 at 573 K for 24 hours. PtF_{4} was synthesized according to literature procedures (Müller \& Serafin, 1992). A stoichiometric mixture of the compounds was heated in a sealed platinum ampoule (jacketed in an evacuated fused silica tube) to 973 K with a rate of $30 \mathrm{~K} / \mathrm{d}$. After three weeks the ampoule was slowly cooled to room temperature and opened in an argon filled glove box. Yellow crystals of $\mathrm{Li}_{2} \mathrm{PtF}_{6}$ were obtained.

S2. Refinement

The highest residual electron density is $0.85 \AA$ from atom Pt 1 . Structure data have also been deposited at the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany), with depository number CSD-414496.

Figure 1
View of the coordination polyhedra around Pt and Li. Displacement ellipsoids are shown at the 70% probability level.
[Symmetry codes: (iii) $-x,-y, z$; (viii) $x+1, y, z$; (ix) $-x+1,-y+1, z$; (xiv) $y, x,-z$; (xv) $-y,-x,-z$; (xvi) $-x, 1-y, z$; (xvii) x $+1 / 2,-y+1 / 2,-z+1 / 2$; (xviii) $-x+1 / 2, y+1 / 2,-z+1 / 2$.]

Figure 2
The unit cell of $\mathrm{Li}_{2} \mathrm{PtF}_{6}$ viewed along [100], with all atoms displayed as spheres with arbitrary radii.

Dilithium hexafluoridoplatinate(IV)

Crystal data

$\mathrm{Li}_{2} \mathrm{PtF}_{6}$
$M_{r}=322.97$
Tetragonal, $\mathrm{P4}_{2} / \mathrm{mnm}$
Hall symbol: -P 4n 2n
$a=4.6427$ (1) \AA
$c=9.1234(2) \AA$
$V=196.65$ (1) \AA^{3}
$Z=2$
$F(000)=276$

Data collection

Oxford Diffraction Xcalibur3
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 16.0238 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
$T_{\min }=0.148, T_{\text {max }}=1.000$
$D_{\mathrm{x}}=5.454 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3453 reflections
$\theta=4.4-34.6^{\circ}$
$\mu=35.71 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Cuboid, yellow
$0.05 \times 0.05 \times 0.04 \mathrm{~mm}$

5829 measured reflections
257 independent reflections
184 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.062$
$\theta_{\text {max }}=34.7^{\circ}, \theta_{\text {min }}=4.5^{\circ}$
$h=-7 \rightarrow 7$
$k=-7 \rightarrow 7$
$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.052$
$S=1.17$
257 reflections
19 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier
map
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0246 P)^{2}+2.1946 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=2.51 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.33$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.041 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
Pt1	0.0000	0.0000	0.0000	$0.0056(2)$
F1	$0.1939(6)$	$0.1939(6)$	$0.1599(4)$	$0.0149(7)$
F2	$-0.2958(10)$	$0.2958(10)$	0.0000	$0.0164(11)$
Li1	0.5000	0.5000	$0.162(2)$	$0.019(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	$0.0054(2)$	$0.0054(2)$	$0.0061(2)$	$0.00022(14)$	0.000	0.000
F1	$0.0170(11)$	$0.0170(11)$	$0.0105(13)$	$-0.0029(15)$	$-0.0009(10)$	$-0.0009(10)$
F2	$0.0165(18)$	$0.0165(18)$	$0.016(2)$	$0.004(2)$	0.000	0.000
Li1	$0.024(6)$	$0.024(6)$	$0.010(7)$	$-0.006(7)$	0.000	0.000

Geometric parameters $\left(\AA,{ }^{o}\right)$

Pt1-F1 ${ }^{\text {i }}$	1.936 (4)	F1-Li1 ${ }^{\text {iv }}$	2.062 (15)
$\mathrm{Pt} 1-\mathrm{F} 1^{\text {ii }}$	1.936 (4)	F2-Li1 ${ }^{\text {vi }}$	1.997 (15)
Pt1-F1 ${ }^{\text {iii }}$	1.936 (4)	F2-Li1 ${ }^{\text {vii }}$	1.997 (15)
$\mathrm{Pt} 1-\mathrm{F} 1$	1.936 (4)	Li1-F2 ${ }^{\text {vi }}$	1.997 (15)
$\mathrm{Pt} 1-\mathrm{F} 2{ }^{\text {i }}$	1.942 (6)	Li1—F2 ${ }^{\text {viii }}$	1.997 (15)
$\mathrm{Pt} 1-\mathrm{F} 2$	1.942 (6)	Li1-F1 ${ }^{\text {ix }}$	2.010 (4)
$\mathrm{Pt1}$ - $\mathrm{Li} 11^{\text {iv }}$	3.081 (19)	Li1-F1 ${ }^{\text {x }}$	2.062 (15)
Pt1-Li1 ${ }^{\text {v }}$	3.081 (19)	Li1-F1 ${ }^{\text {xi }}$	2.062 (15)
F1—Li1	2.010 (4)	Li1—Li1 ${ }^{\text {xii }}$	2.96 (4)

$\mathrm{F} 1^{\mathrm{i}}$-Pt1-F1 ${ }^{\text {ii }}$	82.2 (2)	F2 ${ }^{\text {vi }}$-Li1-F2 ${ }^{\text {viii }}$	84.3 (8)
F1-Pt1-F1 $1^{\text {iii }}$	97.8 (2)	F2 ${ }^{\text {vi }}$-Li1-F1 ${ }^{\text {ix }}$	89.5 (4)
$\mathrm{F} 1^{\mathrm{ii}}$ - $\mathrm{Pt} 1-\mathrm{F} 1^{\text {iii }}$	180.0 (3)	F2 ${ }^{\text {viii }}$ Li1- $\mathrm{F}^{\text {ix }}$	89.5 (4)
F1-Pt1-F1	180.0	F2 ${ }^{\text {vi }}$-Li1-F1	89.5 (4)
F1iinPt1-F1	97.8 (2)	F2 ${ }^{\text {viii- }}$ Li1-F1	89.5 (4)
F1ii--Pt1—F1	82.2 (2)	F1 ${ }^{\text {ix }}$-Li1-F1	178.8 (11)
F1 ${ }^{\text {i }}$ - $\mathrm{Pt} 1-\mathrm{F} 2^{\text {i }}$	90.0	F2 ${ }^{\text {vi }}$-Li1-F1 ${ }^{\text {x }}$	176.0 (7)
$\mathrm{F} 1^{\text {iii }}$ - $\mathrm{Pt} 1-\mathrm{F} 2^{\text {i }}$	90.0	F2 ${ }^{\text {viii }}$-Li1- F^{x}	99.71 (17)
F1iii-Pt1-F2 ${ }^{\text {i }}$	90.0	F1 ${ }^{\text {ix }}$-Li1-F1 ${ }^{\text {x }}$	90.5 (4)
F1-Pt1-F2 ${ }^{\text {i }}$	90.0	F1-Li1-F1 ${ }^{\text {x }}$	90.5 (4)
F1- ${ }^{\text {i }}$ Pt1-F2	90.0	F2 ${ }^{\text {vi }}$-Li1-F1 ${ }^{\text {xi }}$	99.71 (17)
F1ii-Pt1-F2	90.0	F2 ${ }^{\text {viii }}$ Li1-F1 $1^{\text {xi }}$	176.0 (7)
F1ii- ${ }^{\text {iii }}$ Pt1-F2	90.0	F1 ${ }^{\text {ix }}$-Li1-F1 ${ }^{\text {xi }}$	90.5 (4)
F1-Pt1-F2	90.0	F1-Li1-F1 ${ }^{\text {xi }}$	90.5 (4)
F 2 - $\mathrm{Pt} 1-\mathrm{F} 2$	180.00 (19)	F1 ${ }^{\text {x }}$ Li1-F1 ${ }^{\text {xi }}$	76.3 (7)

Symmetry codes: (i) $-x,-y,-z$; (ii) $x, y,-z$; (iii) $-x,-y, z$; (iv) $y-1 / 2,-x+1 / 2,-z+1 / 2$; (v) $-y+1 / 2, x-1 / 2, z-1 / 2$; (vi) $-x$, $-y+1,-z$; (vii) $x-1, y, z$; (viii) $x+1, y, z$; (ix) $-x+1,-y+1, z$; (x) $y+1 / 2,-x+1 / 2,-z+1 / 2$; (xi) $-y+1 / 2, x+1 / 2,-z+1 / 2$; (xii) $-x+1,-y+1,-z$.

