

Received 16 April 2014 Accepted 29 April 2014

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; boron; Lewis acid; layered structure

CCDC references: 1004280; 1004281

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

CrossMark

William T. A. Harrison^a* and James L. Wardell^{a,b}

^aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and ^bFioCruz-Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos-Far-Manguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil. *Correspondence e-mail: w.harrison@abdn.ac.uk

The title compounds, $K^+ \cdot C_7 H_7 BF_3 O^-$, (I), and $K^+ \cdot C_6 H_4 BF_4^-$, (II), are molecular salts containing *para*-substituted phenyltrifluoridoborate anions. In each compound, the B atom adopts a distorted tetrahedral BCF₃ geometry. Despite their different compositions and space groups, the irregular KF₈ coordination polyhedra of the potassium cations in the structures are almost identical. These polyhedra share faces and edges, generating infinite (010) layers in (I) and infinite (001) layers in (II). In (I), adjacent layers are stacked in an *AAA*... fashion, whereas in (II), they are stacked in an *ABAB*... sequence.

1. Chemical context

The phenyltrifluoridoborate anion is an interesting intermediate species between the well-known tetrafluoridoborate (BF_4^-) and tetraphenylborate $[B(C_6H_5)_4^-]$ ions (Conole *et al.*, 1995) and may serve as a bulky charge-balancing anion (Quach *et al.*, 2001; Fei *et al.*, 2010). As part of our studies in this area, we now describe the syntheses and structures of the *para*-substituted phenyltrifluoridoborate salts K⁺C₇H₇BF₃O⁻ (I) and K⁺C₆H₄BF₄⁻ (II).

2. Structural commentary

Compound (I) comprises one cation and one anion in the asymmetric unit (Fig. 1). In the anion, the C7 atom of the methoxy group is close to coplanar with the benzene ring [displacement = 0.048 (2) Å]. The B atom adopts its expected tetrahedral BF₃C geometry (Conole *et al.*, 1995) and the C1-B1 bond length of 1.5987 (18) Å is consistent with previous data (Quach *et al.*, 2001). One of the B-F bonds (to F1) in (I) is notably longer than the other two, which might reflect the different modes of coordination of the fluorine atoms to the potassium ions. The F-B-F bond angles (mean = 105.7°) are

→K1

Figure 1

The asymmetric unit of (I) showing 50% displacement ellipsoids.

significantly smaller than the C–B–F angles (mean = 113.0°). F1 is displaced by -1.427 (2) Å from the plane of the benzene ring and F2 and F3 are displaced in the opposite sense, by 0.715 (2) and 0.252 (2) Å, respectively.

The potassium ion in (I) is coordinated by eight fluorine atoms, with one of the K-F bonds substantially longer than the others (Table 1): the next-nearest F atom is over 4 Å distant. The coordination geometry of the K⁺ ion, which arises from one tridentate, one bidentate and three monodentate BF_3^{-} groups, is irregular and highly asymmetric (Fig. 2), with five of the F atoms forming an approximate plane and the other three (arising from one BF₃ group) lying to one side. The metal ion is displaced by 1.00 Å from the geometric centroid of the eight F atoms. In terms of the F atoms in (I), F1 bonds to three different metal ions (mean K-F = 2.734 Å), generating a distorted FBK₃ tetrahedron, whereas F2 bonds to two K⁺ ions (mean K-F = 2.755 Å) in an FBK₂ distorted T-shape. If the geometry around F3 is not merely deemed to be irregular, it could be described as an FBK₃ trigonal-based pyramid, with the long K-F bond (Table 1) as the apex (mean K-F =

Figure 2 The coordination of the potassium ion in (I). See Table 1 for symmetry codes.

 Table 1

 Selected bond lengths (Å) for (I).

K1-F3 ⁱ	2.6156 (10)	K1-F2 ^{iv}	2.8885 (8)
K1-F2 ⁱⁱ	2.6211 (7)	$K1-F3^{iv}$	3.4886 (9)
K1-F1 ⁱⁱⁱ	2.6550 (10)	B1-F3	1.4162 (19)
K1-F1 ^{iv}	2.7568 (10)	B1-F2	1.4196 (14)
K1-F3	2.7836 (8)	B1-F1	1.4403 (17)
K1-F1	2.7887 (8)		

Symmetry codes: (i) $-x + \frac{3}{2}$, y, $z - \frac{1}{2}$; (ii) x + 1, y, z; (iii) $-x + \frac{3}{2}$, y, $z + \frac{1}{2}$; (iv) $x + \frac{1}{2}$, -y + 1, z.

Table 2					
Selected	bond	lengths	(Å)) for	(II)

K1-F3 ⁱ	2.6116 (10)	$K1-F2^{iv}$	2.8853 (10)
$K1-F2^{ii}$	2.6159 (9)	$K1-F3^{iv}$	3.3927 (10)
K1-F1 ⁱⁱⁱ	2.6527 (9)	B1-F2	1.4166 (17)
K1-F1 ^{iv}	2.7612 (10)	B1-F3	1.4182 (19)
K1-F3	2.7732 (9)	B1-F1	1.4393 (18)
K1-F1	2.8050 (9)		

Symmetry codes: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, z$; (ii) x - 1, y, z; (iii) $-x + \frac{1}{2}, y - \frac{1}{2}, z$; (iv) $x - \frac{1}{2}, y, -z + \frac{1}{2}$

2.963 Å). The extended structure in (I) consists of (010) sheets in which the KF_8 polyhedra share faces in the [100] direction and edges in [001]: the shortest $K \cdots K$ separation is 4.4523 (4) Å.

The asymmetric unit of compound (II) also consists of an ion-pair (Fig. 3). The geometry of the anion in (II) is very similar to that of the equivalent species in (I): the C1–B1 bond length is 1.590 (2) Å and the mean F-B-F and C-B-F bond angles are 105.5 and 113.2°, respectively. The displacements of F1, F2 and F3 from the benzene-ring plane are -1.386 (2), 0.813 (3) and 0.131 (3) Å, respectively. As seen for (I), the B1–F1 bond in (II) is noticeably longer than the B1–F2 and B1–F3 bonds.

It is notable that the K^+ ion in (II) adopts a very similar coordination geometry (Table 2) to the equivalent species in (I), despite the different space groups. Again, a very asymmetric KF₈ coordination polyhedron (Fig. 4) arises from one tridentate, one bidentate and three monodentate anions; one K-F bond is much longer than the others and the potassium

Figure 3 The asymmetric unit of (II) showing 50% displacement ellipsoids.

research communications

Table 3

Hydrogen-bond	geometry	(Å,	$^{\circ}$) for (I).	
)	8	(,) (-).	

Cg1 is the centroid of the C1-C6 benzene ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C2-H2\cdots F2^{v}$ $C7-H72\cdots O1^{vi}$	0.95	2.50	3.3359 (17) 3.496 (1)	147 137
$C3-H3\cdots Cg1^{v}$	0.98	2.85	3.7171 (15)	152

Symmetry codes: (v) $-x + \frac{1}{2}$, $y, z - \frac{1}{2}$; (vi) -x + 1, -y + 2, $z - \frac{1}{2}$.

Table 4				
Hydrogen-bond geometry	(Å,	°)	for	(II).

5 6	0			
$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C6-H6\cdots F2^{v}$	0.95	2.53	3.4099 (19)	154

Symmetry code: (v) $-x + \frac{3}{2}, y + \frac{1}{2}, z$.

ion is displaced by 0.98 Å from the geometric centroid of the fluorine atoms.

The extended structure of (II) consists of (001) sheets [rather than (010) sheets, as seen in (I)] of face- and edge-sharing KF₈ groups with the same topology as in (I): the shortest K···K separation is 4.4255 (5) Å.

3. Supramolecular features

In (I) the methoxyphenyl groups lie roughly normal to (010). When the packing is viewed along [101] (Fig. 5), it may be seen that adjacent benzene ring planes are rotated by 90°, which facilitates the formation of a weak edge-to-face intra-sheet $C-H\cdots\pi$ interaction (Table 3). An intra-sheet $C2-H2\cdotsF2$ hydrogen bond also occurs. The only possible inter-sheet interaction in (I) is an extremely weak $C-H\cdots O$ hydrogen bond with an $H\cdots O$ separation essentially the same as the van der Waals separation of these species. The layer-stacking sequence for (I) is $AAA \ldots$.

Figure 4 The coordination of the

The coordination of the potassium ion in (II). See Table 2 for symmetry codes.

When the crystal structure of (II) is viewed down [110] (Fig. 6), adjacent aromatic rings show the same 90° rotation as they do in (I), but the only directional interaction identified is an intralayer weak $C-H\cdots F$ hydrogen bond (Table 4) and there are no $C-H\cdots \pi$ interactions. There are no identified inter-layer interactions and the stacking sequence is $ABAB\ldots$

Figure 6 The unit-cell packing in (II) viewed approximately down [110].

Table 5Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$K^+ \cdot C_7 H_7 B F_3 O^-$	$K^+ \cdot C_6 H_4 B F_4^-$
M_r	214.04	202.00
Crystal system, space group	Orthorhombic, $Pca2_1$	Orthorhombic, Pbca
Temperature (K)	120	100
a, b, c (Å)	7.1347 (2), 17.2819 (7), 7.3289 (3)	7.1317 (5), 7.3757 (5), 29.129 (2)
$V(Å^3)$	903.66 (6)	1532.22 (18)
Z	4	8
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})^{-1}$	0.59	0.70
Crystal size (mm)	$0.52 \times 0.15 \times 0.15$	$0.07\times0.05\times0.01$
Data collection		
Diffractometer	Rigaku CCD	Rigaku CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2012)	Multi-scan (SADABS; Bruker, 2012)
T_{\min}, T_{\max}	0.750, 0.917	0.953, 0.993
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	5789, 1833, 1822	9537, 1726, 1435
R _{int}	0.026	0.037
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.649	0.649
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.021, 0.059, 1.10	0.027, 0.065, 1.06
No. of reflections	1833	1726
No. of parameters	120	109
No. of restraints	1	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.24, -0.20	0.27, -0.23
Absolute structure	Flack (1983), 712 Friedel pairs	-
Absolute structure parameter	0.02 (3)	-

Computer programs: CrystalClear (Rigaku, 2010), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and publCIF (Westrip, 2010).

4. Database survey

Compound (I) is closely related to $K^+C_6H_5BF_3^-$ (Conole *et al.*, 1995), (III). Compounds (I) and (III) have the same space group and a similar unit cell, extended in the *b*-axis direction for (I) to accommodate the methoxy group. The potassium ion in (III) has almost the same KF₈ coordination geometry as the equivalent species in (I) and (II) described above. In (III), weak edge-to-face $C-H\cdots\pi$ interactions occur between approximately perpendicular aromatic rings, as they do in (I). As already noted, the $C_6H_5BF_3^-$ anion has found use as a bulky charge-balancing species (Quach *et al.*, 2001; Fei *et al.*, 2010).

5. Synthesis and crystallization

(I) and (II) were received as commercial samples from Aldrich and recrystallized from ethanol solution, yielding colourless blocks.

6. Refinement

The H atoms were placed in idealized positions (C-H = 0.95–0.98 Å) and refined as riding atoms with $U_{iso}(H) = 1.2U_{eq}(C)$

or $1.5U_{eq}$ (methyl C). The methyl group in (I) was allowed to rotate, but not to tip, to best fit the electron density. Experimental details are given in Table 5.

Acknowledgements

We thank the National Crystallography Service (University of Southampton) for the data collections.

References

- Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Conole, G., Clough, A. & Whiting, A. (1995). Acta Cryst. C51, 1056– 1059.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Fei, Z., Zhu, D.-R., Yang, X., Meng, L., Lu, Q., Ang, W. H., Scopelliti, R., Hartinger, C. G. & Dyson, P. J. (2010). *Chem. Eur. J.* 16, 6473– 6481.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Quach, T. D., Batey, R. A. & Lough, A. J. (2001). Acta Cryst. E57, 0688–0689.
- Rigaku (2010). CrystalClear. Rigaku Inc., Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, 68-71 [doi:10.1107/S1600536814009684]

Crystal structures of potassium trifluorido(4-methoxyphenyl)borate and potassium trifluorido(4-fluorophenyl)borate

William T. A. Harrison and James L. Wardell

Computing details

For both compounds, data collection: *CrystalClear* (Rigaku, 2010); cell refinement: *CrystalClear* (Rigaku, 2010); data reduction: *CrystalClear* (Rigaku, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *publCIF* (Westrip, 2010).

(I) Potassium trifluorido(4-methoxyphenyl)borate

Crystal data	
$K^+ \cdot C_7 H_7 BF_3 O^-$ $M_r = 214.04$ Orthorhombic, $Pca2_1$ a = 7.1347 (2) Å b = 17.2819 (7) Å c = 7.3289 (3) Å V = 903.66 (6) Å ³ Z = 4 F(000) = 432	$D_x = 1.573 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 4830 reflections $\theta = 1.2-27.5^{\circ}$ $\mu = 0.59 \text{ mm}^{-1}$ T = 120 K Block, colourless $0.52 \times 0.15 \times 0.15 \text{ mm}$
Data collection	
Rigaku CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2012) $T_{min} = 0.750, T_{max} = 0.917$	5789 measured reflections 1833 independent reflections 1822 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 1.2^{\circ}$ $h = -9 \rightarrow 9$ $k = -22 \rightarrow 20$ $l = -8 \rightarrow 9$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.059$ S = 1.10 1833 reflections 120 parameters 1 restraint Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.035P)^2 + 0.1245P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.24$ e Å ⁻³ $\Delta\rho_{min} = -0.20$ e Å ⁻³

Extinction correction: *SHELXL97* (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0115 (14) Absolute structure: Flack (1983), 712 Friedel pairs Absolute structure parameter: 0.02 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
K1	0.93636(3)	0.577078 (16)	0.49116 (4)	0.01659 (9)
C1	0.48663 (17)	0.69908 (7)	0.3989 (2)	0.0159 (3)
C2	0.36313 (18)	0.72309 (8)	0.2628 (2)	0.0195 (3)
H2	0.2718	0.6875	0.2199	0.023*
C3	0.36757 (18)	0.79722 (8)	0.1867 (2)	0.0223 (3)
Н3	0.2813	0.8114	0.0938	0.027*
C4	0.5004 (2)	0.84983 (8)	0.2493 (2)	0.0208 (3)
C5	0.62439 (19)	0.82828 (8)	0.3880 (2)	0.0233 (3)
Н5	0.7139	0.8643	0.4324	0.028*
C6	0.61673 (19)	0.75407 (8)	0.4608 (2)	0.0206 (3)
H6	0.7018	0.7402	0.5549	0.025*
C7	0.3970 (3)	0.94712 (11)	0.0422 (3)	0.0393 (5)
H7A	0.4278	1.0000	0.0044	0.059*
H7B	0.2674	0.9454	0.0865	0.059*
H7C	0.4105	0.9121	-0.0622	0.059*
B1	0.48502 (18)	0.61227 (8)	0.4743 (2)	0.0153 (3)
F1	0.57562 (10)	0.55930 (5)	0.35081 (13)	0.01754 (18)
F2	0.30347 (10)	0.58074 (4)	0.50165 (17)	0.02096 (19)
F3	0.58402 (11)	0.60460 (5)	0.64078 (13)	0.02023 (19)
01	0.52053 (18)	0.92364 (6)	0.1842 (2)	0.0297 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
K1	0.01225 (13)	0.02391 (15)	0.01361 (16)	0.00081 (8)	0.00031 (12)	0.00042 (12)
C1	0.0132 (5)	0.0193 (6)	0.0152 (6)	0.0009 (5)	0.0007 (5)	-0.0009 (5)
C2	0.0199 (6)	0.0204 (6)	0.0183 (7)	-0.0015 (5)	-0.0044 (5)	-0.0014 (6)
C3	0.0233 (6)	0.0229 (6)	0.0206 (7)	0.0011 (5)	-0.0043 (5)	0.0017 (6)
C4	0.0234 (6)	0.0167 (6)	0.0222 (7)	0.0007 (5)	0.0007 (6)	0.0011 (6)
C5	0.0223 (6)	0.0200 (6)	0.0277 (8)	-0.0036 (5)	-0.0054 (5)	-0.0028 (6)
C6	0.0181 (5)	0.0211 (6)	0.0226 (8)	0.0002 (5)	-0.0046 (5)	-0.0010 (6)
C7	0.0421 (9)	0.0273 (7)	0.0484 (13)	0.0011 (7)	-0.0085 (8)	0.0167 (9)

supporting information

B1	0.0121 (5)	0.0185 (6)	0.0153 (7)	0.0000 (4)	0.0002 (6)	0.0008 (6)	
F1	0.0182 (4)	0.0196 (4)	0.0148 (5)	0.0031 (3)	0.0025 (3)	-0.0007 (4)	
F2	0.0129 (3)	0.0209 (3)	0.0291 (5)	-0.0015 (2)	0.0028 (4)	-0.0004(3)	
F3	0.0204 (3)	0.0271 (4)	0.0132 (5)	-0.0004 (3)	-0.0022 (3)	0.0025 (4)	
01	0.0352 (5)	0.0176 (5)	0.0362 (8)	-0.0009(4)	-0.0037 (6)	0.0052 (5)	

Geometric parameters (Å, °)

K1—F3 ⁱ	2.6156 (10)	C4—C5	1.398 (2)	
K1—F2 ⁱⁱ	2.6211 (7)	C5—C6	1.390 (2)	
K1—F1 ⁱⁱⁱ	2.6550 (10)	С5—Н5	0.9500	
K1—F1 ^{iv}	2.7568 (10)	С6—Н6	0.9500	
K1—F3	2.7836 (8)	C7—O1	1.423 (2)	
K1—F1	2.7887 (8)	C7—H7A	0.9800	
K1—F2 ^{iv}	2.8885 (8)	C7—H7B	0.9800	
K1—F3 ^{iv}	3.4886 (9)	С7—Н7С	0.9800	
C1—C2	1.3940 (19)	B1—F3	1.4162 (19)	
C1—C6	1.4036 (18)	B1—F2	1.4196 (14)	
C1—B1	1.5987 (18)	B1—F1	1.4403 (17)	
С2—С3	1.398 (2)	B1—K1 ^v	3.2930 (14)	
C2—K1 ⁱ	3.5183 (15)	F1—K1 ⁱ	2.6550 (10)	
С2—Н2	0.9500	F1—K1 ^v	2.7568 (10)	
C3—C4	1.3910 (19)	F2—K1 ^{vi}	2.6211 (7)	
С3—Н3	0.9500	F2—K1 ^v	2.8885 (8)	
C4—O1	1.3696 (17)	F3—K1 ⁱⁱⁱ	2.6157 (10)	
$F3^{i}$ — $K1$ — $F2^{ii}$	94.59 (3)	O1—C4—C5	115.78 (13)	
$F3^{i}$ — $K1$ — $F1^{iii}$	173.67 (3)	C3—C4—C5	119.79 (13)	
F2 ⁱⁱ —K1—F1 ⁱⁱⁱ	90.34 (3)	C6—C5—C4	119.99 (13)	
$F3^{i}$ — $K1$ — $F1^{iv}$	79.00 (3)	С6—С5—Н5	120.0	
$F2^{ii}$ — $K1$ — $F1^{iv}$	70.82 (2)	C4—C5—H5	120.0	
$F1^{iii}$ — $K1$ — $F1^{iv}$	106.45 (2)	C5—C6—C1	121.78 (14)	
F3 ⁱ —K1—F3	107.78 (2)	С5—С6—Н6	119.1	
F2 ⁱⁱ —K1—F3	152.47 (3)	C1—C6—H6	119.1	
F1 ⁱⁱⁱ —K1—F3	66.40 (3)	O1—C7—H7A	109.5	
$F1^{iv}$ — $K1$ — $F3$	128.21 (2)	O1—C7—H7B	109.5	
$F3^{i}$ — $K1$ — $F1$	66.83 (3)	H7A—C7—H7B	109.5	
F2 ⁱⁱ —K1—F1	159.35 (3)	O1—C7—H7C	109.5	
F1 ⁱⁱⁱ —K1—F1	108.89 (2)	H7A—C7—H7C	109.5	
$F1^{iv}$ — $K1$ — $F1$	95.79 (2)	H7B—C7—H7C	109.5	
F3—K1—F1	47.98 (3)	F3—B1—F2	107.30 (13)	
$F3^{i}$ — $K1$ — $F2^{iv}$	100.35 (3)	F3—B1—F1	104.95 (10)	
$F2^{ii}$ — $K1$ — $F2^{iv}$	110.489 (19)	F2—B1—F1	104.73 (10)	
$F1^{iii}$ — $K1$ — $F2^{iv}$	81.59 (3)	F3—B1—C1	112.45 (11)	
$F1^{iv}$ — $K1$ — $F2^{iv}$	47.24 (3)	F2—B1—C1	114.56 (11)	
$F3-K1-F2^{iv}$	81.63 (2)	F1—B1—C1	112.10 (12)	
$F1$ — $K1$ — $F2^{iv}$	66.60 (3)	$B1 - F1 - K1^i$	122.39 (8)	
C2—C1—C6	116.59 (12)	B1—F1—K1 ^v	98.47 (7)	

C2—C1—B1	121.46 (12)	$K1^{i}$ — $F1$ — $K1^{v}$	117.24 (3)
C6—C1—B1	121.90 (12)	B1—F1—K1	96.46 (7)
C1—C2—C3	122.95 (12)	$K1^{i}$ — $F1$ — $K1$	112.53 (3)
C1-C2-K1 ⁱ	86.24 (8)	K1 ^v —F1—K1	106.81 (3)
C3—C2—K1 ⁱ	114.99 (10)	$B1 - F2 - K1^{vi}$	156.48 (8)
С1—С2—Н2	118.5	B1—F2—K1 ^v	93.39 (6)
С3—С2—Н2	118.5	$K1^{vi}$ — $F2$ — $K1^{v}$	107.73 (2)
K1 ⁱ —C2—H2	68.1	B1—F3—K1 ⁱⁱⁱ	146.64 (8)
C4—C3—C2	118.88 (13)	B1—F3—K1	97.29 (7)
С4—С3—Н3	120.6	K1 ⁱⁱⁱ —F3—K1	113.95 (3)
С2—С3—Н3	120.6	C4—O1—C7	117.09 (13)
O1—C4—C3	124.43 (14)		
C6—C1—C2—C3	1.2 (2)	C2-C1-C6-C5	-1.1 (2)
B1—C1—C2—C3	-176.35 (14)	B1—C1—C6—C5	176.46 (14)
C6-C1-C2-K1 ⁱ	118.72 (12)	C2-C1-B1-F3	-164.66 (12)
B1-C1-C2-K1 ⁱ	-58.84 (12)	C6-C1-B1-F3	17.90 (18)
C1—C2—C3—C4	-0.2 (2)	C2-C1-B1-F2	-41.81 (19)
K1 ⁱ —C2—C3—C4	-102.69 (14)	C6-C1-B1-F2	140.76 (15)
C2-C3-C4-O1	179.10 (14)	C2-C1-B1-F1	77.36 (16)
C2—C3—C4—C5	-0.9 (2)	C6-C1-B1-F1	-100.07 (15)
O1—C4—C5—C6	-178.99 (14)	C3—C4—O1—C7	-0.4 (2)
C3—C4—C5—C6	1.0 (2)	C5—C4—O1—C7	179.62 (15)
C4—C5—C6—C1	0.0 (2)		

Symmetry codes: (i) -x+3/2, y, z-1/2; (ii) x+1, y, z; (iii) -x+3/2, y, z+1/2; (iv) x+1/2, -y+1, z; (v) x-1/2, -y+1, z; (vi) x-1, y, z.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

<i>D</i> —H··· <i>A</i>	D—H	H···A	D··· A	<i>D</i> —H··· <i>A</i>
C2—H2…F2 ^{vii}	0.95	2.50	3.3359 (17)	147
C7—H7a···O1 ^{viii}	0.98	2.72	3.496 (1)	137
C3—H3···· <i>Cg</i> 1 ^{vii}	0.95	2.85	3.7171 (15)	152

Symmetry codes: (vii) -*x*+1/2, *y*, *z*-1/2; (viii) -*x*+1, -*y*+2, *z*-1/2.

(II) Potassium trifluorido(4-fluorophenyl)borate

Crystal data	
$K^+ \cdot C_6 H_4 B F_4^-$	F(000) = 800
$M_r = 202.00$	$D_{\rm x} = 1.751 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pbca	Mo $K\alpha$ radiation, $\lambda = 0.71075$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 8210 reflections
a = 7.1317 (5) Å	$\theta = 3.2 - 27.5^{\circ}$
b = 7.3757 (5) Å	$\mu=0.70~\mathrm{mm^{-1}}$
c = 29.129 (2) Å	T = 100 K
$V = 1532.22 (18) Å^3$	Block, colourless
Z = 8	$0.07 \times 0.05 \times 0.01 \text{ mm}$

Data collection

Rigaku CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2012) $T_{min} = 0.953, T_{max} = 0.993$	9537 measured reflections 1726 independent reflections 1435 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.2^{\circ}$ $h = -9 \rightarrow 8$ $k = -9 \rightarrow 7$ $l = -32 \rightarrow 37$
Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.065$ S = 1.06 1726 reflections 109 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: unference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0274P)^2 + 0.6658P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.27$ e Å ⁻³ $\Delta\rho_{min} = -0.23$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R* factors *R* are based on *F* with *F* act to good for estimating *F*.

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
K1	0.06924 (4)	0.02356 (5)	0.205013 (12)	0.01668 (10)	
C1	0.5118 (2)	0.1023 (2)	0.13156 (5)	0.0161 (3)	
C2	0.3892 (2)	0.0245 (2)	0.09978 (6)	0.0213 (3)	
H2	0.3130	-0.0745	0.1091	0.026*	
C3	0.3750 (2)	0.0869 (2)	0.05506 (6)	0.0245 (4)	
H3	0.2905	0.0324	0.0339	0.029*	
C4	0.4867 (2)	0.2301 (2)	0.04213 (5)	0.0236 (4)	
C5	0.6112 (2)	0.3121 (2)	0.07145 (6)	0.0250 (4)	
Н5	0.6871	0.4105	0.0616	0.030*	
C6	0.6226 (2)	0.2463 (2)	0.11604 (6)	0.0207 (3)	
H6	0.7085	0.3011	0.1367	0.025*	
B1	0.5200(2)	0.0373 (2)	0.18355 (6)	0.0147 (3)	
F1	0.43225 (11)	0.16564 (12)	0.21396 (3)	0.0178 (2)	
F2	0.70288 (11)	0.01321 (13)	0.20154 (3)	0.0210 (2)	
F3	0.42107 (11)	-0.12680 (12)	0.19106 (3)	0.0193 (2)	
F4	0.47218 (15)	0.29343 (14)	-0.00157 (3)	0.0327 (3)	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
K1	0.01228 (15)	0.01386 (17)	0.02390 (18)	0.00022 (12)	0.00079 (12)	0.00020 (13)
C1	0.0143 (6)	0.0139 (7)	0.0200 (8)	0.0019 (6)	0.0007 (6)	-0.0006 (6)
C2	0.0214 (7)	0.0201 (8)	0.0225 (8)	-0.0029 (7)	-0.0016 (6)	0.0002 (7)
C3	0.0268 (8)	0.0256 (9)	0.0211 (9)	-0.0019 (7)	-0.0056 (7)	-0.0016 (7)
C4	0.0306 (9)	0.0243 (9)	0.0160 (8)	0.0046 (7)	0.0013 (6)	0.0020 (7)
C5	0.0296 (9)	0.0221 (9)	0.0234 (9)	-0.0056 (7)	0.0052 (6)	0.0014 (7)
C6	0.0222 (7)	0.0189 (8)	0.0211 (8)	-0.0050 (7)	0.0007 (6)	-0.0014 (7)
B1	0.0116 (7)	0.0130 (8)	0.0194 (8)	0.0014 (6)	0.0006 (6)	-0.0008 (6)
F1	0.0184 (4)	0.0152 (5)	0.0198 (5)	0.0027 (4)	0.0027 (3)	-0.0012 (4)
F2	0.0125 (4)	0.0295 (5)	0.0209 (5)	0.0032 (4)	-0.0024 (3)	-0.0012 (4)
F3	0.0205 (4)	0.0125 (5)	0.0247 (5)	-0.0017 (4)	0.0003 (4)	0.0026 (4)
F4	0.0474 (6)	0.0332 (6)	0.0174 (5)	-0.0013(5)	-0.0007(5)	0.0061 (4)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

$K1 - F3^{i}$	2.6116 (10)	C4—F4	1.3597 (18)
K1—F2 ⁱⁱ	2.6159 (9)	C4—C5	1.373 (2)
K1—F1 ⁱⁱⁱ	2.6527 (9)	C5—C6	1.389 (2)
K1—F1 ^{iv}	2.7612 (10)	С5—Н5	0.9500
K1—F3	2.7732 (9)	С6—Н6	0.9500
K1—F1	2.8050 (9)	B1—F2	1.4166 (17)
$K1$ — $F2^{iv}$	2.8853 (10)	B1—F3	1.4182 (19)
K1—F3 ^{iv}	3.3927 (10)	B1—F1	1.4393 (18)
C1—C2	1.397 (2)	B1—K1 ^v	3.2665 (18)
C1—C6	1.399 (2)	F1—K1 ⁱ	2.6527 (9)
C1—B1	1.590 (2)	F1—K1 ^v	2.7612 (9)
C2—C3	1.385 (2)	F2—K1 ^{vi}	2.6159 (9)
С2—Н2	0.9500	F2—K1 ^v	2.8852 (10)
C3—C4	1.375 (2)	F3—K1 ⁱⁱⁱ	2.6116 (10)
С3—Н3	0.9500	F3—K1 ^v	3.3928 (10)
F3 ⁱ —K1—F2 ⁱⁱ	92.82 (3)	F4—C4—C3	118.44 (15)
$F3^{i}$ — $K1$ — $F1^{iii}$	176.44 (3)	C5—C4—C3	122.87 (16)
F2 ⁱⁱ —K1—F1 ⁱⁱⁱ	88.32 (3)	C4—C5—C6	117.74 (16)
$F3^{i}$ — $K1$ — $F1^{iv}$	76.56 (3)	C4—C5—H5	121.1
$F2^{ii}$ — $K1$ — $F1^{iv}$	71.99 (3)	С6—С5—Н5	121.1
$F1^{iii}$ — $K1$ — $F1^{iv}$	107.00 (2)	C5—C6—C1	122.34 (15)
F3 ⁱ —K1—F3	110.37 (2)	С5—С6—Н6	118.8
F2 ⁱⁱ —K1—F3	152.42 (3)	C1—C6—H6	118.8
F1 ⁱⁱⁱ —K1—F3	67.67 (3)	F2—B1—F3	107.08 (12)
F1 ^{iv} —K1—F3	126.67 (3)	F2—B1—F1	104.80 (12)
F3 ⁱ —K1—F1	67.74 (3)	F3—B1—F1	104.48 (11)
F2 ⁱⁱ —K1—F1	159.45 (3)	F2—B1—C1	115.08 (12)
F1 ⁱⁱⁱ —K1—F1	111.49 (2)	F3—B1—C1	112.70 (13)
F1 ^{iv} —K1—F1	96.05 (2)	F1—B1—C1	111.86 (12)

F3—K1—F1	47.78 (3)	$F2-B1-K1^{v}$	61.95 (7)
$F3^{i}$ — $K1$ — $F2^{iv}$	99.45 (3)	F3—B1—K1 ^v	82.74 (8)
$F2^{ii}$ — $K1$ — $F2^{iv}$	111.45 (2)	F1—B1—K1 ^v	57.03 (7)
$F1^{iii}$ — $K1$ — $F2^{iv}$	83.24 (3)	C1—B1—K1 ^v	163.77 (11)
$F1^{iv}$ — $K1$ — $F2^{iv}$	47.18 (2)	F2—B1—K1	145.97 (10)
$F3-K1-F2^{iv}$	80.14 (3)	F3—B1—K1	57.04 (6)
$F1$ — $K1$ — $F2^{iv}$	67.51 (3)	F1—B1—K1	58.42 (6)
$F3^{i}$ — $K1$ — $F3^{iv}$	118.03 (3)	C1—B1—K1	98.93 (9)
$F2^{ii}$ — $K1$ — $F3^{iv}$	73.38 (3)	K1 ^v —B1—K1	85.12 (4)
F1 ⁱⁱⁱ —K1—F3 ^{iv}	65.53 (2)	B1—F1—K1 ⁱ	126.56 (8)
$F1^{iv}$ — $K1$ — $F3^{iv}$	41.51 (2)	B1—F1—K1 ^v	97.04 (8)
F3—K1—F3 ^{iv}	106.37 (3)	$K1^{i}$ $F1$ $K1^{v}$	117.58 (3)
$F1$ — $K1$ — $F3^{iv}$	109.07 (3)	B1—F1—K1	95.66 (8)
$F2^{iv}$ — $K1$ — $F3^{iv}$	41.62 (2)	$K1^{i}$ — $F1$ — $K1$	111.04 (3)
C2—C1—C6	116.82 (15)	K1 ^v —F1—K1	105.32 (3)
C2—C1—B1	122.05 (14)	B1—F2—K1 ^{vi}	158.46 (9)
C6-C1-B1	121.08 (14)	B1—F2—K1 ^v	92.38 (8)
C3—C2—C1	122.18 (15)	$K1^{vi}$ — $F2$ — $K1^{v}$	107.01 (3)
С3—С2—Н2	118.9	B1—F3—K1 ⁱⁱⁱ	148.62 (8)
C1—C2—H2	118.9	B1—F3—K1	97.55 (8)
C4—C3—C2	118.06 (15)	K1 ⁱⁱⁱ —F3—K1	113.33 (3)
С4—С3—Н3	121.0	B1—F3—K1 ^v	72.76 (8)
С2—С3—Н3	121.0	$K1^{iii}$ — $F3$ — $K1^{v}$	100.12 (3)
F4—C4—C5	118.69 (15)	K1—F3—K1 ^v	91.16 (3)
C6 C1 C2 C2	-0.7(2)	C^{2} C^{1} C^{6} C^{5}	0 8 (2)
$C_0 - C_1 - C_2 - C_3$	-0.7(2)	$C_2 = C_1 = C_0 = C_3$	0.0(2)
BI = CI = C2 = C3	1/0.05(15)	BI = CI = CO = CS	-1/0.30(15)
C1 - C2 - C3 - C4	0.1(3)	$C_2 - C_1 - B_1 - F_2$	155.24(15)
$C_2 = C_3 = C_4 = F_4$	-1/9.32(15)	$C_0 - C_1 - B_1 - F_2$	-47.0(2)
$\begin{array}{c} c_{2} \\ c_{3} \\ c_{4} \\ c_{5} \\ c_{6} \\$	0.4(3)	$C_{2} = C_{1} = B_{1} = F_{3}$	12.0(2)
$\mathbf{r}_{4} - \mathbf{U}_{5} - \mathbf{U}_{5}$	1/9.43 (15)	$C_{0} = C_{1} = B_{1} = F_{3}$	-1/0.75(13)
C_{3} C_{4} C_{5} C_{6} C_{1}	-0.3(3)	$C_2 - C_1 - B_1 - F_1$	-105.32(17)
C4—C5—C6—C1	-0.5(3)	C0-C1-B1-F1	/1.88 (18)

Symmetry codes: (i) -x+1/2, y+1/2, z; (ii) x-1, y, z; (iii) -x+1/2, y-1/2, z; (iv) x-1/2, y, -z+1/2; (v) x+1/2, y, -z+1/2; (vi) x+1, y, z.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C6—H6…F2 ^{vii}	0.95	2.53	3.4099 (19)	154

Symmetry code: (vii) -x+3/2, y+1/2, z.