

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

7-Chloro-4-oxo-4*H*-chromene-3carbaldehyde

Yoshinobu Ishikawa

School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan

Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Received 24 June 2014; accepted 24 June 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.104; data-to-parameter ratio = 15.0.

In the title compound, $C_{10}H_5ClO_3$, a chlorinated 3-formylchromone derivative, all atoms are essentially coplanar (r.m.s. deviation = 0.0592 Å for all non-H atoms), with the largest deviation from the least-squares plane [0.1792 (19) Å] being for the chromone-ring carbonyl O atom. In the crystal, molecules are linked through $C-H\cdots O$ hydrogen bonds to form tetrads, which are assembled by stacking interactions [centroid–centroid distance between the pyran rings = 3.823 (3) Å] and van der Waals contacts between the Cl atoms [Cl···Cl = 3.4483 (16) Å and C-Cl···Cl = 171.73 (7)°] into a three-dimensional architecture.

Related literature

For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014*a*,*b*). For halogen bonding, see: Auffinger *et al.* (2004); Metrangolo *et al.* (2005); Wilcken *et al.* (2013); Sirimulla *et al.* (2013). For halogen–halogen interactions, see: Metrangolo & Resnati (2014); Mukherjee & Desiraju (2014).

Experimental

Crystal data

C ₁₀ H ₅ ClO ₃	
$M_r = 208.60$	
Triclinic, P1	
a = 3.823 (2) Å	
b = 5.973 (3) Å	
c = 18.386 (8) Å	

 $\alpha = 85.99 (4)^{\circ}$ $\beta = 87.74 (4)^{\circ}$ $\gamma = 86.58 (4)^{\circ}$ $V = 417.8 (4) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation organic compounds

1690 reflections with $F^2 > 2\sigma(F^2)$

3 standard reflections every 150

H-atom parameters constrained

intensity decay: -1.1%

 $0.42 \times 0.25 \times 0.08 \text{ mm}$

 $R_{\rm int} = 0.050$

reflections

127 parameters

 $\Delta \rho_{\text{max}} = 0.41 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$

 $\mu = 0.43 \text{ mm}^{-1}$ T = 100 K

Data collection

Rigaku AFC-7R diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.865$, $T_{max} = 0.966$ 2429 measured reflections 1899 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.104$ S = 1.101899 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C7 - H4 \cdots O2^{i}$	0.95	2.34	3.204 (3)	151 (1)
$C1 - H1 \cdots O3^{ii}$	0.95	2.37	3.209 (3)	148 (1)

Symmetry codes: (i) x + 1, y + 1, z; (ii) -x + 1, -y + 1, -z + 1.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

The University of Shizuoka is acknowledged for instrumental support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5323).

References

- Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
- Ishikawa, Y. (2014a). Acta Cryst. E70, o514.
- Ishikawa, Y. (2014b). Acta Cryst. E70, 0743.
- Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.
- Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.
- Metrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5-7.
- Mukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49-60.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791.
- Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388.

supporting information

Acta Cryst. (2014). E70, o831 [doi:10.1107/S1600536814014925]

7-Chloro-4-oxo-4H-chromene-3-carbaldehyde

Yoshinobu Ishikawa

S1. Structural commentary

Halogen bonding and halogen···halogen interactions have recently attracted much attention in medicinal chemistry, chemical biology, supramolecular chemistry and crystal engineering (Auffinger *et al.*, 2004, Metrangolo *et al.*, 2005, Wilcken *et al.*, 2013, Sirimulla *et al.*, 2013, Mukherjee & Desiraju, 2014, Metrangolo & Resnati, 2014). We have recently reported the crystal structures of a dichlorinated 3-formylchromone derivative 6,8-dichloro-4-oxochromene-3- carbaldehyde (Ishikawa & Motohashi, 2013), and monochlorinated 3-formylchromone derivatives 6-chloro-4-oxo-4*H*-chromene-3-carbaldehyde (Ishikawa, 2014*a*) and 8-chloro-4-oxo-4*H*-chromene-3-carbaldehyde (Ishikawa, 2014*a*). Halogen bonding between the formyl oxygen atom and the chlorine atom at 8-position and type I halogen···halogen interaction between the chlorine atoms at 6-position are observed in 6,8-dichloro-4-oxochromene-3-carbaldehyde (Fig·2 A). On the other hand, van der Waals contacts between the formyl oxygen atom and the chlorine atom at 6-position in 6-chloro-4-oxo-4*H*-chromene-3-carbaldehyde (Fig·2 B) and between the formyl oxygen atom and the chlorine atom at 8-position in 8-chloro-4-oxo-4*H*-chromene-3-carbaldehyde (Fig·2 C) are found. As part of our interest in these types of chemical bonding, we herein report the crystal structure of a monochlorinated 3-formylchromone derivative 7-chloro-4-oxo-4*H*-chromene-3-carbaldehyde. The objective of this study is to reveal whether a short contact is found for the chlorine atom at 7-position.

The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0592 Å, and the largest deviation is 0.1792 (19) Å for O3.

In the crystal, the molecules are linked through C–H···O hydrogen bonds among the translation-symmetryⁱ and inversion-symmetry equivalents^{ii,iii} to form tetrads [i: x - 1, y - 1, z, ii: -x, -y, -z + 1, iii: -x + 1, -y + 1, -z + 1], which are assembled by stacking interactions [centroid–centroid distance between the pyran rings = 3.823 (3) Å], as shown in Fig. 1.

Van der Waals contacts between the chlorine atoms of inversion-symmetry equivalents are found [C11…C11^{iv} = 3.4483 (16) Å, C6–Cl1…C11^{iv} = 171.73 (7)°, iv: -x + 1, -y + 2, -z + 2], as shown in Fig. 2D. Thus, significant short contact for the chlorine atom at 7-position is not observed. Whereas the characteristic short C1…O contact is observed in the dichlorinated 3-formylchromone (Fig. 2A), such a short contact is not found in the monochlorinated ones (Fig. 2B, C and D). These findings should be helpful to understand interactions of halogenated ligands with proteins, and thus invaluable for rational drug design.

S2. Synthesis and crystallization

To a solution of 4-chloro-2-hydroxyacetophenone (5.9 mmol) in *N*,*N*-dimethylformamide (15 ml) was added dropwise POCl₃ (14.7 mmol) at 0 °C. After the mixture was stirred for 14 h at room temperature, water (50 ml) was added. The precipitates were collected, washed with water, and dried *in vacuo* (yield: 85%). ¹H NMR (400 MHz, CDCl₃): δ = 7.48 (d, 1H, *J* = 8.8 Hz), 7.57 (s, 1H), 8.24 (d, 1H, *J* = 8.8 Hz), 8.52 (s, 1H), 10.37 (s, 1H). DART-MS calcd for [C₁₀H₅Cl₁O₃ +

H⁺]: 209.001, found 209.029. Single crystals suitable for X-ray diffraction were obtained from a 1,2-dichloroethane/cyclohexane solution of the title compound at room temperature.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The C(*sp*²)-bound hydrogen atoms were placed in geometrical positions [C—H 0.95 Å, $U_{iso}(H) = 1.2U_{eq}(C)$], and refined using a riding model.

Figure 1

A packing view of the title compound, with displacement ellipsoids drawn at the 50% probability level. C—H···O hydrogen bonds are represented by dashed lines.

Figure 2

Sphere models of the crystal structures of 6,8-dichloro-4-oxochromene-3-carbaldehyde (A, Ishikawa & Motohashi, 2013), 6-chloro-4-oxo-4*H*-chromene-3-carbaldehyde (B, Ishikawa, 2014*a*), 8-chloro-4-oxo-4*H*-chromene-3-carbaldehyde (C, Ishikawa, 2014*b*), and the title compound (D).

7-Chloro-4-oxo-4H-chromene-3-carbaldehyde

Crystal data	
$C_{10}H_5ClO_3$	$\gamma = 86.58 \ (4)^{\circ}$
$M_r = 208.60$	$V = 417.8 (4) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 2
Hall symbol: -P 1	F(000) = 212.00
a = 3.823 (2) Å	$D_{\rm x} = 1.658 {\rm ~Mg} {\rm ~m}^{-3}$
b = 5.973 (3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71069$ Å
c = 18.386 (8) Å	Cell parameters from 25 reflections
$\alpha = 85.99 \ (4)^{\circ}$	$\theta = 15.2 - 17.0^{\circ}$
$\beta = 87.74 \ (4)^{\circ}$	$\mu = 0.43 \text{ mm}^{-1}$

T = 100 K	$0.42 \times 0.25 \times 0.08 \text{ mm}$
Plate, yellow	
Data collection	
Rigaku AFC-7R diffractometer ω -2 θ scans Absorption correction: ψ scan (North <i>et al.</i> , 1968) $T_{min} = 0.865, T_{max} = 0.966$ 2429 measured reflections 1899 independent reflections	1690 reflections with $F^2 > 2\sigma(F^2)$ $R_{int} = 0.050$ $\theta_{max} = 27.5^{\circ}$ $h = -4 \rightarrow 2$ $k = -7 \rightarrow 7$ $l = -23 \rightarrow 23$ 3 standard reflections every 150 reflections intensity decay: -1.1%
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.104$ S = 1.10 1899 reflections 127 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0425P)^2 + 0.5019P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta a_{max} = 0.41 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.50 \text{ e}^{-3}$

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.40101 (12)	0.80466 (8)	0.94032 (2)	0.01990 (15)	
01	0.3743 (4)	0.6471 (3)	0.67507 (7)	0.0171 (3)	
O2	-0.1431 (4)	0.0675 (3)	0.71337 (8)	0.0199 (3)	
03	0.2057 (5)	0.2458 (3)	0.50473 (8)	0.0265 (4)	
C1	0.3077 (5)	0.5184 (4)	0.62091 (10)	0.0162 (4)	
C2	0.1464 (5)	0.3212 (4)	0.62998 (10)	0.0160 (4)	
C3	0.0256 (5)	0.2365 (3)	0.70234 (10)	0.0152 (4)	
C4	0.0441 (5)	0.3071 (4)	0.83526 (10)	0.0159 (4)	
C5	0.1313 (5)	0.4379 (4)	0.88996 (10)	0.0164 (4)	
C6	0.2909 (5)	0.6400 (3)	0.87083 (10)	0.0150 (4)	
C7	0.3697 (5)	0.7116 (3)	0.79955 (10)	0.0153 (4)	
C8	0.1182 (5)	0.3730 (3)	0.76188 (10)	0.0138 (4)	
C9	0.2831 (5)	0.5741 (3)	0.74571 (10)	0.0140 (4)	
C10	0.0936 (6)	0.1938 (4)	0.56551 (11)	0.0201 (4)	
H1	0.3784	0.5687	0.5727	0.0194*	
H2	-0.0674	0.1709	0.8474	0.0191*	
H3	0.0840	0.3919	0.9397	0.0197*	
H4	0.4785	0.8490	0.7877	0.0183*	
H5	-0.0367	0.0629	0.5723	0.0241*	

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0221 (3)	0.0227 (3)	0.0159 (3)	-0.00304 (17)	-0.00206 (16)	-0.00573 (17)
O1	0.0201 (7)	0.0185 (7)	0.0129 (7)	-0.0055 (5)	0.0019 (5)	-0.0007(5)
O2	0.0204 (7)	0.0195 (7)	0.0207 (8)	-0.0079 (6)	0.0003 (6)	-0.0018 (6)
O3	0.0359 (9)	0.0303 (9)	0.0146 (8)	-0.0111 (7)	0.0031 (6)	-0.0054 (6)
C1	0.0151 (9)	0.0198 (9)	0.0139 (9)	-0.0017 (7)	-0.0004 (7)	-0.0019 (7)
C2	0.0145 (9)	0.0181 (9)	0.0154 (9)	-0.0010 (7)	-0.0012 (7)	-0.0018 (7)
C3	0.0108 (8)	0.0168 (9)	0.0181 (9)	-0.0001 (7)	-0.0010 (7)	-0.0015 (7)
C4	0.0122 (9)	0.0182 (9)	0.0171 (9)	-0.0010 (7)	0.0001 (7)	0.0011 (7)
C5	0.0158 (9)	0.0179 (9)	0.0151 (9)	0.0001 (7)	0.0010 (7)	0.0007 (7)
C6	0.0134 (9)	0.0181 (9)	0.0138 (9)	0.0002 (7)	-0.0021 (7)	-0.0042 (7)
C7	0.0126 (9)	0.0167 (9)	0.0167 (9)	-0.0017 (7)	-0.0004 (7)	-0.0016 (7)
C8	0.0109 (8)	0.0152 (9)	0.0151 (9)	-0.0000 (6)	0.0005 (7)	-0.0010 (7)
C9	0.0121 (8)	0.0173 (9)	0.0122 (9)	-0.0005 (7)	0.0004 (6)	0.0007 (7)
C10	0.0225 (10)	0.0232 (10)	0.0154 (10)	-0.0048 (8)	-0.0013 (7)	-0.0036 (8)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cl1—C6	1.745 (2)	C4—C8	1.402 (3)
01—C1	1.341 (3)	C5—C6	1.402 (3)
O1—C9	1.379 (3)	C6—C7	1.377 (3)
O2—C3	1.231 (3)	С7—С9	1.392 (3)
O3—C10	1.208 (3)	C8—C9	1.398 (3)
C1—C2	1.359 (3)	C1—H1	0.950
C2—C3	1.458 (3)	C4—H2	0.950
C2-C10	1.480 (3)	С5—Н3	0.950
C3—C8	1.476 (3)	C7—H4	0.950
C4—C5	1.378 (3)	С10—Н5	0.950
O1…C3	2.865 (3)	C10…H1	2.5619
O1…C6	3.598 (3)	H1…H5	3.4961
O2…C1	3.577 (3)	H2…H3	2.3320
O2…C4	2.877 (3)	Cl1····H2 ⁱⁱⁱ	3.1871
O2…C10	2.895 (3)	Cl1····H2 ^{iv}	3.4009
O3…C1	2.827 (3)	Cl1····H3 ⁱⁱ	3.4824
C1…C7	3.578 (3)	Cl1····H3 ^{xi}	3.0426
C1…C8	2.759 (3)	Cl1····H3 ^{xii}	3.1343
C2…C9	2.777 (3)	O1…H5 ⁱⁱⁱ	3.3638
C4…C7	2.809 (3)	O2…H4 ^v	2.3412
С5…С9	2.769 (3)	O2…H4 ^{vi}	2.9752
C6…C8	2.769 (3)	O3…H1 ^{ix}	2.8238
Cl1…Cl1 ⁱ	3.4483 (16)	O3…H1x	2.3652
Cl1…C5 ⁱⁱ	3.578 (3)	O3…H5 ⁱⁱ	3.2929
O1…O2 ⁱⁱⁱ	3.202 (3)	O3…H5 ^{viii}	2.5304
01…02 ^{iv}	3.333 (3)	C1···H5 ⁱⁱⁱ	3.5044
O1…C2 ⁱⁱ	3.540 (3)	C2…H1 ^{vii}	3.3800

O1…C3 ⁱⁱ	3.415 (3)	C2…H5 ⁱⁱ	3.5566
O1…C8 ⁱⁱ	3.571 (3)	C3…H4 ^v	3.4647
O2…O1 ^v	3.333 (3)	C3····H4 ^{vi}	3.1692
O2…O1 ^{vi}	3.202 (3)	C4···H2 ⁱⁱ	3.4575
O2···C2 ^{vii}	3.397 (3)	C4····H4 ^{vi}	3.2692
O2····C3 ^{vii}	3.286 (3)	C5…H2 ⁱⁱ	3.4558
O2…C7 ^v	3.204 (3)	C5····H3 ^{xi}	3.4146
O2····C7 ^{vi}	3.185 (3)	C6····H2 ⁱⁱⁱ	3.3840
O2····C8 ^{vii}	3.393 (3)	C6…H3 ⁱⁱ	3.5349
O2…C9 ^{vi}	3.309 (3)	C7···H2 ⁱⁱⁱ	3.2808
03…03 ^{viii}	3.430 (3)	C7····H4 ^{vii}	3.4681
O3…O3 ^{ix}	3.332 (3)	C8····H4 ^{vi}	3.3537
O3…C1 ^{ix}	3.278 (3)	C9····H4 ^{vii}	3,4840
03…C1 ^x	3.209 (3)	C10···H1 ^{vii}	3.4338
O3···C10 ^{viii}	3.289 (3)	C10…H1 ^{ix}	3,3580
	3.278 (3)	C10···H1×	3.4611
C1···O3 ^x	3,209 (3)	C10H5 ⁱⁱ	3.3751
C1C2 ⁱⁱ	3 356 (3)	$C10H5^{viii}$	3 0735
C1C3 ⁱⁱ	3468(3)	$H1\cdots O3^{ix}$	2.8238
C2···O1 ^{vii}	3 540 (3)	H1O3 ^x	2,3652
$C^2 \cdots O^{2^{ii}}$	3 397 (3)	H1···C2 ⁱⁱ	3 3800
$C2\cdots C1^{\text{vii}}$	3.356(3)	$H1 \cdots C10^{ii}$	3 4338
$C3\cdots O1^{vii}$	3,320(3) 3,415(3)	H1····C10 ^{ix}	3 3580
$C3\cdots O2^{ii}$	3 286 (3)	$H1\cdots C10^{x}$	3 4611
$C3\cdots C1^{\text{vii}}$	3.268(3)	H1H1×	2 9506
	3,481(3)	H1···H5 ⁱⁱⁱ	3 2659
C4···C6 ^{vii}	3 467 (3)	H1····H5 ^{ix}	3 5735
C4···C7 ^{vii}	3 476 (3)	$H2\cdots Cl1^{v}$	3 4009
C5···Cl1 ^{vii}	3 578 (3)	$H2\cdots Cl1^{vi}$	3 1871
C5···C6 ^{vii}	3 386 (4)	$H2\cdots C4^{vii}$	3 4575
C6···C4 ⁱⁱ	3 467 (3)	H2····C5 ^{vii}	3 4558
C6···C5 ⁱⁱ	3 386 (4)	$H2\cdots C6^{vi}$	3 3840
$C7\cdots O2^{iii}$	3.185(3)	$H2\cdots C7^{vi}$	3 2808
$C7\cdots O2^{iv}$	3 204 (3)	$H2\cdots H4^{v}$	2,9597
C7···C4 ⁱⁱ	3.476 (3)	$H2\cdots H4^{vi}$	2.9822
C7C8 ⁱⁱ	3 479 (3)	H3····Cl1 ^{vii}	3 4824
C8···O1 ^{vii}	3 571 (3)	H3····Cl1 ^{xi}	3.0426
C8···O2 ⁱⁱ	3393(3)	H3····Cl1 ^{xii}	3 1343
C8···C7 ^{vii}	3,479 (3)	H3···C5 ^{xi}	3.4146
C8····C9 ^{vii}	3 360 (3)	H3···C6 ^{vii}	3 5349
C9O2 ⁱⁱⁱ	3 309 (3)	H3···H3 ^{xi}	2,6802
C9···C3 ⁱⁱ	3.481 (3)	H4····O2 ⁱⁱⁱ	2.9752
C9···C8 ⁱⁱ	3.360 (3)	H4…O2 ^{iv}	2.3412
C10····O3 ^{viii}	3.289 (3)	H4···C3 ⁱⁱⁱ	3,1692
C10···C10 ^{viii}	3.575 (4)	H4····C3 ^{iv}	3,4647
Cl1···H3	2.8121	H4···C4 ⁱⁱⁱ	3.2692
Cl1…H4	2.8064	H4…C7 ⁱⁱ	3 4681
01····H4	2.5238	H4···C8 ⁱⁱⁱ	3 3537
Q 1 111	2.2200		5.5551

O2…H2	2.6135	H4····C9 ⁱⁱ	3.4840
O2…H5	2.6106	H4…H2 ⁱⁱⁱ	2.9822
O3…H1	2.5045	H4…H2 ^{iv}	2.9597
C1…H5	3.2854	H5…O1 ^{vi}	3.3638
C3…H1	3.2928	H5…O3 ^{vii}	3.2929
C3…H2	2.6818	H5…O3 ^{viii}	2.5304
С3…Н5	2.6956	H5…C1 ^{vi}	3.5044
C5…H4	3,2981	H5…C2 ^{vii}	3.5566
C6…H2	3.2536	H5…C10 ^{vii}	3.3751
C7…H3	3.2895	H5…C10 ^{viii}	3.0735
C8H3	3 2766	H5…H1 ^{vi}	3 2659
C8H4	3 3034	H5…H1 ^{ix}	3 5735
C9H1	3 1896		2 8132
C9H2	3 2637	110 110	2.0152
0) 112	5.2057		
C1—O1—C9	118.62 (16)	C4—C8—C9	118.32 (18)
O1—C1—C2	124.73 (17)	O1—C9—C7	115.76 (17)
C1—C2—C3	120.42 (18)	O1—C9—C8	121.83 (18)
C1—C2—C10	119.24 (17)	C7—C9—C8	122.41 (17)
C3—C2—C10	120.34 (18)	O3—C10—C2	124.1 (2)
O2—C3—C2	123.38 (18)	O1—C1—H1	117.638
O2—C3—C8	122.38 (17)	C2—C1—H1	117.633
C2—C3—C8	114.24 (17)	C5—C4—H2	119.644
C5—C4—C8	120.70 (18)	C8—C4—H2	119.653
C4—C5—C6	118.78 (17)	С4—С5—Н3	120.611
Cl1—C6—C5	118.56 (15)	С6—С5—Н3	120.611
Cl1—C6—C7	118.76 (15)	С6—С7—Н4	121.444
C5—C6—C7	122.66 (18)	С9—С7—Н4	121.444
С6—С7—С9	117.11 (18)	O3—C10—H5	117.967
C3—C8—C4	121.70 (17)	C2—C10—H5	117.976
C3—C8—C9	119.98 (17)		
C1—O1—C9—C7	177.96 (14)	C8—C4—C5—C6	0.9 (3)
C1—O1—C9—C8	-1.3 (3)	C8—C4—C5—H3	-179.1
C9—O1—C1—C2	1.8 (3)	H2—C4—C5—C6	-179.1
C9—O1—C1—H1	-178.2	H2—C4—C5—H3	0.9
O1—C1—C2—C3	1.1 (3)	H2—C4—C8—C3	0.4
O1—C1—C2—C10	-179.09 (14)	H2—C4—C8—C9	-179.8
H1—C1—C2—C3	-178.9	C4—C5—C6—C11	-179.93 (14)
H1-C1-C2-C10	0.9	C4—C5—C6—C7	-1.1 (3)
C1—C2—C3—O2	174.85 (16)	H3—C5—C6—C11	0.1
C1—C2—C3—C8	-4.3 (3)	H3—C5—C6—C7	178.9
C1—C2—C10—O3	5.1 (3)	Cl1—C6—C7—C9	178.98 (11)
C1-C2-C10-H5	-174.9	Cl1—C6—C7—H4	-1.0
C3—C2—C10—O3	-175.13 (16)	C5—C6—C7—C9	0.2 (3)
C3—C2—C10—H5	4.9	С5—С6—С7—Н4	-179.8
C10—C2—C3—O2	-4.9 (3)	C6—C7—C9—O1	-178.22 (14)
C10—C2—C3—C8	175.94 (14)	C6—C7—C9—C8	1.0 (3)
			× /

supporting information

5.4 (3)	H4—C7—C9—O1	1.8
-174.38 (15)	H4—C7—C9—C8	-179.0
-175.44 (14)	C3—C8—C9—O1	-2.2 (3)
4.8 (3)	C3—C8—C9—C7	178.65 (14)
-179.64 (15)	C4—C8—C9—O1	178.01 (14)
0.1 (3)	C4—C8—C9—C7	-1.1 (3)
	5.4 (3) -174.38 (15) -175.44 (14) 4.8 (3) -179.64 (15) 0.1 (3)	5.4 (3)H4—C7—C9—O1 $-174.38 (15)$ H4—C7—C9—C8 $-175.44 (14)$ C3—C8—C9—O1 $4.8 (3)$ C3—C8—C9—C7 $-179.64 (15)$ C4—C8—C9—O1 $0.1 (3)$ C4—C8—C9—C7

Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x+1, y+1, z; (v) x-1, y-1, z; (vi) x, y-1, z; (vii) x-1, y, z; (viii) -x, -y, -z+1; (ix) -x, -y+1, -z+1; (x) -x+1, -y+1, -z+2; (xii) -x, -

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C7—H4····O2 ^{iv}	0.95	2.34	3.204 (3)	151 (1)
C1—H1···O3 ^x	0.95	2.37	3.209 (3)	148 (1)

Symmetry codes: (iv) *x*+1, *y*+1, *z*; (x) -*x*+1, -*y*+1, -*z*+1.