Received 17 June 2014
Accepted 17 June 2014

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: Cyanohydrin; cyclohexa-2,5-diene; crystal structure

CCDC reference: 1008752

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \odot ACCESS

Crystal structure of trans-1,4-bis[(trimethylsilyl)-oxy]cyclohexa-2,5-diene-1,4-dicarbonitrile

Florian Glöcklhofer, ${ }^{\text {a }}$ Johannes Fröhlich, ${ }^{\text {a }}$ Berthold Stöger ${ }^{\text {b }}$ and Matthias Weil ${ }^{\text {b* }}$

${ }^{\text {a }}$ Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, A-1060 Vienna, Austria, and ${ }^{\mathbf{b}}$ Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria. *Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at

The asymmetric unit of the title compound, $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}_{2}$, contains one half of the molecule, which is completed by inversion symmetry. The cyclohexa-2,5diene ring is exactly planar and reflects the bond-length distribution of a pair of located double bonds [1.3224 (14) Å] and two pairs of single bonds [1.5121 (13) and 1.5073 (14) $\AA]$. The tetrahedral angle between the $s p^{3}$-C atom and the two neighbouring $s p^{2}$-C atoms in the cyclohexa-2,5-diene ring is enlarged by about 3°.

1. Chemical context

Cyanohydrins (Friedrich, 1983) are an important class of organic compounds. Silylated cyanohydrins are versatile precursor compounds in organic chemistry because the nitrile functional group can be modified by a variety of reactions such as hydrolysis, reduction or addition of organometallic reagents. The molecular and crystal structure of the title compound, a new silylated cyclohexa-2,5-diene with trans nitrile groups in the 1,4 positions, is reported herein.

2. Structural commentary

The molecular structure of the title compound is centrosymmetric, leading to a trans-1,4-configuration of the oxy(trimethylsilyl) and carbonitrile groups (Fig. 1). The cyclohexa-2,5-diene ring is exactly planar, but its angles differ from that of an ideal hexagon. Whereas the angle between the $s p^{3}$ - C atom (C 1) and the neighbouring $s p^{2}-\mathrm{C}$ atoms $(\mathrm{C} 2, \mathrm{C} 3)$ is reduced to $112.58(8)^{\circ}$, the other intra-ring angles are enlarged to $123.94(9)^{\circ}(\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3)$ and $123.48(9)^{\circ}\left(\mathrm{C}^{\mathrm{i}}-\mathrm{C} 3-\mathrm{C} 2\right)$ [symmetry code: (i) $-x+1,-y+1,-z$]. The tetrahedral angles around C 1 are likewise distorted due to the ring strain. The angles involving the O atom of the oxy(trimethylsilyl) group and the ring C atoms are enlarged to 110.79 (8) ${ }^{\circ}$ and 113.26 (8$)^{\circ}$ while the angle involving the O atom and the C atom of the carbonitrile group is reduced to $104.95(8)^{\circ}$. The backbone of the 1,1 -substituents is nearly perpendicular to the cyclohexa-2,5-diene ring, with a dihedral angle of 86.05 (7).

Figure 1
The molecular structure of the title compound, showing the atomlabelling scheme and displacement ellipsoids drawn at the 80% probability level. Non-labelled atoms are generated by the symmetry code $-x+1,-y+1,-z$.

3. Supramolecular features

Notable features in terms of non-classical hydrogen bonding interactions are not observed in the crystal structure of the title compound. As a result of the bulky trimethylsilyl groups, $\pi-\pi$ stacking interactions between the rings are not possible. The packing of the molecules (Fig. 2) seems to be dominated mainly by van der Waals forces.

4. Database survey

In the current Cambridge Structural Database (Version 5.35, last update February 2014; Allen, 2002) only one example of a cyclohexa-2,5-diene with trans nitrile groups in the 1,4 posi-

Figure 2
A view of the crystal packing of the title compound along [001]. Colour code: O red, C grey, N light-blue, Si off-white, H white.

Figure 3
Reaction scheme to obtain the title compound.
tions is listed, namely 3,5 -bis(4-(dimethylamino)phenyl)-cyclohexa-2,5-diene-1,1,2,4,4-pentacarbonitrile (Jayamurugan et al., 2011). The $\mathrm{C}-\mathrm{C}$ bond lengths within the cyclohexa-2,5diene are very similar to those of the title compound.

5. Synthesis and crystallization

1,4-Bis[(trimethylsilyl)oxy]cyclohexa-2,5-diene-1,4-dicarbonitrile was synthesized by a modified protocol reported by Onaka et al. (1989). The required heterogeneous catalyst Femontmorillonite (K10-FeAA) was prepared according to Pai et al. (2000) and activated at 393 K and 5 mbar for 2 h prior to use.

1,4-Benzoquinone ($1.62 \mathrm{~g}, 15 \mathrm{mmol}$) was dissolved in 75 ml dichloromethane (0.2 M), purged with argon and cooled to 273 K . Trimethylsilyl cyanide $(2.98 \mathrm{~g}, 30 \mathrm{mmol})$ and $\mathrm{Fe}-$ montmorillonite $(0.75 \mathrm{~g})$ were added sequentially and the mixture stirred for 1 h at 273 K under an argon atmosphere. The Fe-montmorillonite was filtered off (Por 4 glass filter) and the solvent was evaporated in vacuo to yield 4.23 g

Table 1
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}_{2}$
M_{r}	306.5
Crystal system, space group	Monoclinic, $P 2_{1} / n$
Temperature (K)	100
$a, b, c(\AA)$	$8.0770(5), 11.2234(6), 9.4377(6)$
$\beta\left({ }^{\circ}\right)$	$97.7087(19)$
$V\left(\AA^{3}\right)$	$847.81(9)$
Z	2
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{~mm}^{-1}\right)$	0.21
Crystal size (mm)	$0.65 \times 0.26 \times 0.12$
Data collection	Bruker Kappa APEXII CCD
Diffractometer	Multi-scan $(S A D A B S ;$ Bruker,
Absorption correction	$2013)$
	$0.94,0.98$
$T_{\text {min }}, T_{\text {max }}$	$15160,2487,2123$
No. of measured, independent and	
observed $[I>3 \sigma(I)]$ reflections	0.024
$R_{\text {int }}$	0.705
(sin $\theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	
Refinement	$0.030,0.042,2.38$
$R\left[F^{2}>3 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	2487
No. of reflections	91
No. of parameters	H -atom parameters constrained
H-atom treatment	$0.38,-0.20$
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	

Computer programs: APEX2 and SAINT-Plus (Bruker, 2013), SUPERFLIP (Palatinus \& Chapuis, 2007), JANA2006 (Petríček, et al., 2014), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).
($13.8 \mathrm{mmol}, 92 \%$) of a cis/trans (3/1) isomeric mixture of $1,4-$ bis[(trimethylsilyl)oxy]cyclohexa-2,5-diene-1,4-dicarbonitrile (Fig. 3). Crystallization from n-hexane selectively yielded white crystals of the trans-isomer, which were suitable for single-crystal X-ray diffraction analysis. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $200 \mathrm{MHz}): \delta=6.19(s, 4 \mathrm{H}), 0.23(\mathrm{~s}, 18 \mathrm{H})$ p.p.m.; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right): \delta=238.3(s), 129.4(d), 1.5(q)$ p.p.m.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms were included in calculated positions $(\mathrm{C}-\mathrm{H}=0.96 \AA)$ and treated as riding atoms with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Acknowledgements

The X-ray centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal diffractometer.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (2013). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Friedrich, K. (1983). The Chemistry of Functional Groups, Supplement C, Part 2, edited by S. Patai \& Z. Rappoport, pp. 1345-1390, New York: Wiley.
Jayamurugan, G., Gisselbrecht, J.-P., Boudon, C., Schoenebeck, F., Schweizer, W. B., Bernet, B. \& Diederich, F. (2011). Chem. Commun. 47, 4510-4522.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Onaka, M., Higuchi, K., Sugita, K. \& Izumi, Y. (1989). Chem. Lett. 18, 1393-1396.
Pai, S. G., Bajpai, A. R., Deshpande, A. B. \& Samant, S. D. (2000). J. Mol. Catal. A Chem. 156, 233-243.
Palatinus, L. \& Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
Petříček, V., Dušek, M. \& Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Crystal structure of trans-1,4-bis[(trimethylsilyl)oxy]cyclohexa-2,5-diene-1,4dicarbonitrile

Florian Glöcklhofer, Johannes Fröhlich, Berthold Stöger and Matthias Weil

Computing details

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT-Plus (Bruker, 2013); data reduction: SAINT-Plus (Bruker, 2013); program(s) used to solve structure: SUPERFLIP (Palatinus \& Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček, et al., 2014); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
trans-1,4-Bis[(trimethylsilyl)oxy]cyclohexa-2,5-diene-1,4-dicarbonitrile

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}_{2}$
$M_{r}=306.5$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=8.0770$ (5) \AA
$b=11.2234$ (6) \AA
$c=9.4377$ (6) \AA
$\beta=97.7087(19)^{\circ}$
$V=847.81(9) \AA^{3}$
$Z=2$

Data collection

Bruker Kappa APEXII CCD diffractometer
Radiation source: X-ray tube
Graphite monochromator
ω and φ-scans
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
$T_{\text {min }}=0.94, T_{\text {max }}=0.98$

Refinement

Refinement on F
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.042$
$S=2.38$
2487 reflections
91 parameters
0 restraints
$F(000)=328$
$D_{\mathrm{x}}=1.200 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7267 reflections
$\theta=2.8-29.9^{\circ}$
$\mu=0.21 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, clear colourless
$0.65 \times 0.26 \times 0.12 \mathrm{~mm}$

15160 measured reflections
2487 independent reflections
2123 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=30.1^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-11 \rightarrow 11$
$k=-15 \rightarrow 15$
$l=-13 \rightarrow 13$

44 constraints
H -atom parameters constrained
Weighting scheme based on measured s.u.'s $w=$

$$
1 /\left(\sigma^{2}(F)+0.0001 F^{2}\right)
$$

$(\Delta / \sigma)_{\text {max }}=0.023$
$\Delta \rho_{\text {max }}=0.38$ e \AA^{-3}
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{\prime} U_{\mathrm{eq}}$
Si1	$0.21973(4)$	$0.48658(3)$	$0.25729(3)$	$0.01515(9)$
O1	$0.34897(9)$	$0.59176(6)$	$0.20989(8)$	$0.0151(2)$
N1	$0.66734(12)$	$0.77227(8)$	$0.18067(10)$	$0.0203(3)$
C1	$0.47262(12)$	$0.58514(9)$	$0.11702(10)$	$0.0118(3)$
C2	$0.39530(12)$	$0.59953(9)$	$-0.03704(10)$	$0.0130(3)$
C3	$0.41937(12)$	$0.52449(9)$	$-0.14034(11)$	$0.0125(3)$
C4	$0.58275(13)$	$0.69117(9)$	$0.15441(10)$	$0.0136(3)$
C5	$0.04800(15)$	$0.57505(11)$	$0.31580(13)$	$0.0244(4)$
C6	$0.32433(16)$	$0.39773(11)$	$0.40911(13)$	$0.0303(4)$
C7	$0.14743(14)$	$0.38628(10)$	$0.10522(12)$	$0.0208(3)$
H1c2	0.324479	0.667221	-0.061301	0.0155^{*}
H1c3	0.365173	0.540694	-0.235238	0.015^{*}
H1c5	-0.036613	0.522349	0.341718	0.0293^{*}
H2c5	0.09082	0.622785	0.396915	0.0293^{*}
H3c5	0.000656	0.625942	0.239152	0.0293^{*}
H1c6	0.246714	0.341141	0.438738	0.0363^{*}
H2c6	0.417964	0.356223	0.379805	0.0363^{*}
H3c6	0.362472	0.449816	0.487404	0.0363^{*}
H1c7	0.049234	0.344384	0.124438	0.0249^{*}
H2c7	0.121741	0.432548	0.019545	0.0249^{*}
H3c7	0.233911	0.330007	0.093019	0.0249^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Si1	$0.01621(16)$	$0.01632(17)$	$0.01325(15)$	$-0.00379(11)$	$0.00316(11)$	$-0.00069(11)$
O1	$0.0166(4)$	$0.0138(4)$	$0.0161(4)$	$-0.0014(3)$	$0.0071(3)$	$-0.0023(3)$
N 1	$0.0220(5)$	$0.0178(5)$	$0.0210(5)$	$-0.0034(4)$	$0.0026(4)$	$-0.0036(4)$
C 1	$0.0132(4)$	$0.0106(5)$	$0.0118(4)$	$-0.0006(3)$	$0.0026(3)$	$-0.0006(3)$
C 2	$0.0126(4)$	$0.0112(5)$	$0.0147(5)$	$0.0009(4)$	$0.0001(4)$	$0.0016(4)$
C 3	$0.0126(5)$	$0.0121(5)$	$0.0122(4)$	$0.0000(4)$	$-0.0005(4)$	$0.0017(4)$
C4	$0.0151(5)$	$0.0143(5)$	$0.0115(4)$	$0.0018(4)$	$0.0021(3)$	$-0.0004(4)$
C5	$0.0226(6)$	$0.0291(7)$	$0.0236(6)$	$-0.0046(5)$	$0.0102(5)$	$-0.0070(5)$
C6	$0.0327(7)$	$0.0314(7)$	$0.0249(6)$	$-0.0108(5)$	$-0.0029(5)$	$0.0105(5)$
C7	$0.0215(6)$	$0.0219(6)$	$0.0198(5)$	$-0.0064(4)$	$0.0058(4)$	$-0.0038(4)$

Geometric parameters ($\AA,{ }^{\circ}$)

Si1-C5	$1.8495(13)$	$\mathrm{C} 3-\mathrm{H} 1 \mathrm{c} 3$	0.96
$\mathrm{Si} 1-\mathrm{C} 6$	$1.8537(13)$	$\mathrm{C} 5-\mathrm{H} 1 \mathrm{c} 5$	0.96
$\mathrm{Si}-\mathrm{C} 7$	$1.8555(11)$	$\mathrm{C} 5-\mathrm{H} 2 \mathrm{c} 5$	0.96
$\mathrm{O} 1-\mathrm{C} 1$	$1.4163(13)$	$\mathrm{C} 5-\mathrm{H} 3 \mathrm{c} 5$	0.96
$\mathrm{~N} 1-\mathrm{C} 4$	$1.1451(14)$	$\mathrm{C} 6-\mathrm{H} 1 \mathrm{c} 6$	0.96
$\mathrm{C} 1-\mathrm{C} 2$	$1.5121(13)$	$\mathrm{C} 6-\mathrm{H} 2 \mathrm{c} 6$	0.96
$\mathrm{C} 1-\mathrm{C}^{\mathrm{i}}$	$1.5073(14)$	$\mathrm{C} 6-\mathrm{H} 3 \mathrm{c} 6$	0.96

C1-C4	1.4993 (14)	C7-H1c7	0.96
C2-C3	1.3224 (14)	C7-H2c7	0.96
C2-H1c2	0.96	C7-H3c7	0.96
C5-Si1-C6	109.89 (6)	Si1-C5-H2c5	109.47
C5-Si1-C7	112.70 (5)	Si1-C5-H3c5	109.47
C6-Si1-C7	109.57 (5)	H1c5-C5-H2c5	109.47
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	110.79 (8)	H1c5-C5-H3c5	109.47
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C}^{\text {i }}$	113.26 (8)	H2c5-C5-H3c5	109.47
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 4$	104.95 (8)	Si1-C6-H1c6	109.47
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3{ }^{\text {i }}$	112.58 (8)	Si1-C6-H2c6	109.47
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4$	107.28 (8)	Si1-C6-H3c6	109.47
C3- ${ }^{\text {i }} 1-\mathrm{C} 4$	107.46 (8)	H1c6-C6-H2c6	109.47
C1-C2-C3	123.94 (9)	H1c6-C6-H3c6	109.47
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 1 \mathrm{c} 2$	118.03	H2c6-C6-H3c6	109.47
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 1 \mathrm{c} 2$	118.03	Si1-C7-H1c7	109.47
C1- ${ }^{\text {i }} 3-\mathrm{C} 2$	123.48 (9)	Si1-C7-H2c7	109.47
$\mathrm{C} 12-\mathrm{C} 3-\mathrm{H} 1 \mathrm{c} 3$	118.26	Si1-C7-H3c7	109.47
C2-C3-H1c3	118.26	H1c7-C7-H2c7	109.47
N1-C4-C1	178.87 (11)	H1c7-C7-H3c7	109.47
Si1-C5-H1c5	109.47	H2c7-C7-H3c7	109.47

Symmetry code: (i) $-x+1,-y+1,-z$.

