

Received 27 June 2014 Accepted 10 July 2014

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

Keywords: thiosemicarbazone complex; anagostic interactions; crystal structure

CCDC reference: 1013220

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of *cis*-bis[4-phenyl-2-(1,2,3,4-tetrahydronaphthalen-1-ylidene)hydrazinecarbo-thioamidato- $\kappa^2 N^1$,S]nickel(II) monohydrate tetrahydrofuran disolvate

Adriano Bof de Oliveira,^a* Bárbara Regina Santos Feitosa,^a Christian Näther^b and Inke Jess^b

^aDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000 São Cristóvão–SE, Brazil, and ^bInstitut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany. *Correspondence e-mail: adriano@daad-alumni.de

The reaction of Ni^{II} acetate tetrahydrate with the ligand 4-phenyl-2-(1,2,3,4tetrahydronaphthalen-1-ylidene)hydrazinecarbothioamide in a 2:1 molar ratio yielded the title compound, $[Ni(C_{16}H_{16}N_3S)_2]\cdot 2C_4H_8O\cdot H_2O$. The deprotonated ligands act as *N*,*S*-donors, forming five-membered metallacycles with the metal ion exhibiting a *cis* coordination mode unusual for thiosemicarbazone complexes. The Ni^{II} ion is four-coordinated in a tetrahedrally distorted square-planar geometry. *Trans*-arranged anagostic C-H···Ni interactions are observed. In the crystal, the complex molecules are linked by water molecules through N-H···O and O-H···S hydrogen-bonding interactions into centrosymmetric dimers stacked along the *c* axis, forming rings of graph-set $R_4^4(12)$. Classical O-H···O hydrogen bonds involving the water and tetrahydrofuran solvent molecules as well as weak C-H··· π interactions are also present.

1. Chemical context

Thiosemicarbazone ligands are *N*,*S*-donors that show a wide range of coordination modes (Lobana *et al.*, 2009). As a part of our ongoing project on the synthesis and structures of thiosemicarbazone derivatives and their metal complexes, the crystal structure of an Ni^{II} complex of 2-(1,2,3,4-tetrahydronaphthalen-1-ylidene)-4-phenyl-hydrazinecarbothioamide is reported. The crystal structure of the free ligand was published recently by our group (de Oliveira *et al.*, 2014), but one of the first reports on the synthesis of thiosemicarbazone derivatives was done by Freund & Schander (1902). The complex shows a *cis* coordination mode, which is unusual for this ligands, and two *trans*-arranged anagostic interactions between C—H groups and the metal ion are also observed. These interactions are typical for several complexes with catalytic applications (Brookhart *et al.*, 2007).

research communications

The molecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level.

2. Structural commentary

In the crystal structure of the title compound, the Ni^{II} cation is four-coordinated by two crystallographically independent deprotonated ligands into discrete complexes that are located in general positions (Fig. 1). The metal displays a remarkable tetrahedrally distorted square-planar coordination geometry (maximum displacement 0.5049 (13) Å for atom N2) with the ligands showing an uncommon $cis N^1$,S-coordination mode. The values of the Ni-N and N-S bond lengths (Table 1) and N2-Ni1-S21 and N22-Ni1-S1 bond angles [164.04 (5) and 162.63 (4) $^{\circ}$, respectively] confirm the distortion from the ideal coordination geometry. In the complex molecule significant structural changes of the N-N-C-S fragment are observed. For the non-coordinating2-(1,2,3,4-tetrahydronaphthalen-1vlidene)-4-phenyl-hydrazinecarbothioamide ligand, the N-N, N-C and C-S bond lengths amount to 1.385(2), 1.364(2)and 1.677 (2) Å. These lengths indicate the double-bond character of the N=N and C=S bonds, and the single-bond character of the N-C bond (de Oliveira et al., 2014). In contrast, in the title complex the acidic hydrogen of the hydrazine fragment is removed and the negative charge is delocalized over the N-N-C-S fragment. Therefore, the N-N, N–C and C–S bond lengths amount to 1.405(2), 1.304(2)and 1.757 (2) Å respectively in one ligand and 1.401 (2), 1.298 (3) and 1.761 (2) Å in the other. The N-C bond lengths indicate a considerable double-bond character, while the

Figure 2

Coordination environment of the metal ion showing the $C-H\cdots M$ anagostic interactions (dashed lines).

Table 1		
Selected	bond lengths	(Å).

Ni1-N2	1.9313 (14)	Ni1-S21	2.1524 (5)
Ni1-N22	1.9417 (14)	Ni1-S1	2.1664 (5)

Table 2

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C32–C37 and C12–C17 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N3-H1N\cdots O1$	0.88	2.06	2.934 (2)	172
N23−H2N···O51	0.88	2.02	2.895 (2)	171
$O1-H1O1\cdots S1^{i}$	0.84	2.63	3.4609 (16)	170
$O1-H2O1\cdots O41^{ii}$	0.84	2.00	2.836 (2)	173
$C27 - H27 \cdots Cg1^{iii}$	0.95	2.80	3.595 (2)	142
$C54-H54B\cdots Cg2^{iv}$	0.99	2.67	3.633 (2)	164

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (iv) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

N−N and C−S bond distances are consistent with an increased single-bond character. It is worth noting that two *trans*-arranged anagostic interactions between aromatic C−H groups and the metal ion are observed (Fig. 2). For a three-centre-two-electron $M \cdots H$ −C agostic interaction, the $M \cdots H$ −C angle should range between 1.8 and 2.3 Å and the $M \cdots H$ −C angle should range between 90 and 140°. For an anagostic interaction these values should range from 2.3 to 2.9 Å and from 110 to 170°, respectively (Brookhart *et al.*, 2007). The title complex shows Ni1 \cdots H30 and Ni1 \cdots H10 contacts of 2.61 and 2.45 Å [both values are shorter than the sum of the van der Waals radii for Ni (1.63 Å; Bondi, 1964) and H (1.10 Å; Rowland & Taylor, 1996)], and C30−H30−Ni1 and C10−H10−Ni1 angles of 118 and 121°, in agreement with the presence of anagostic interactions.

3. Supramolecular features

The asymmetric unit of the title complex contains one water and two tetrahydrofurane solvate molecules. The water molecules bridge the complex molecules through $N-H\cdots O$ and $O-H\cdots S$ hydrogen bonds (Table 2) into centrosymmetric dimers arranged along the *c* axis, forming rings of graph-set $R_4^4(12)$ (Fig. 3). In addition, classical $O-H\cdots O$ hydrogen

Molecules of the title compound connected through inversion centres *via* pairs of $N-H\cdots O$ and $O-H\cdots S$ interactions. Intermolecular $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds are also shown. Hydrogen bonds are shown as dashed lines.

Experimental details.	
Crystal data	
Chemical formula	$[Ni(C_{16}H_{16}N_{3}S)_{2}]\cdot 2C_{4}H_{8}O\cdot H_{2}O$
$M_{ m r}$	809.71
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	200
<i>a</i> , <i>b</i> , <i>c</i> (Å)	20.9248 (13), 8.7872 (5), 21.2833 (15)
β (°)	92.841 (8)
$V(Å^3)$	3908.6 (4)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.65
Crystal size (mm)	$0.19\times0.15\times0.10$
Data collection	
Diffractometer	Stoe IPDS1
Absorption correction	Numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008)
T_{\min}, T_{\max}	0.787, 0.941
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	40358, 8412, 7107
R _{int}	0.064
$(\sin \theta / \lambda)_{ m max} ({ m \AA}^{-1})$	0.639
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.090, 1.04
No. of reflections	8412
No. of parameters	488
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.32, -0.48

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2008), SHELXS97 and SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

bonds between tetrahydrofurane and water molecules and weak $C-H\cdots\pi$ interactions are observed (Table 2).

4. Synthesis and crystallization

Table 2

Starting materials were commercially available and were used without further purification. The synthesis of the ligand was adapted from a procedure reported previously (Freund & Schander, 1902) and its structure is already published (de Oliveira *et al.*, 2014). 2-(1,2,3,4-Tetrahydronaphthalen-1-ylidene)-4-phenyl-hydrazinecarbothioamide was dissolved in THF (2 mmol/40 ml) with stirring maintained for 30 min until the solution turned yellow. At the same time, a solution of

nickel acetate tetrahydrate (1 mmol/40 ml) in THF was prepared under continuous stirring. A mixture of both solutions was maintained with stirring at room temperature for 6 h. Crystals suitable for X-ray diffraction were obtained by the slow evaporation of the solvent.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The imine and water H atoms were located in difference Fourier map, and were refined as riding with N-H = 0.88, O-H = 0.84 Å, and with $U_{iso}(H) = 1.2$ $U_{eq}(N)$ or 1.5 $U_{eq}(O)$. All other H atoms were positioned with idealized geometry and refined using a riding model approximation, with C-H = 0.95-0.99 Å and with $U_{iso}(H) = 1.2$ $U_{eq}(C)$. An outlier (17 0 20) was omitted in the last cycles of refinement.

Acknowledgements

We gratefully acknowledge the financial support by the State of Schleswig–Holstein, Germany. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities. BRSF thanks the CNPq/UFS for the award of a PIBIC scholarship and ABO acknowledges financial support through the FAPITEC/SE/FUNTEC/CNPq PPP 04/2011 program.

References

- Bondi, A. (1964). J. Phys. Chem. 68, 441-452.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Brookhart, M., Green, M. L. H. & Parkin, G. (2007). Proc. Natl. Acad. Sci. 104, 6908–6914.
- Freund, M. & Schander, A. (1902). Chem. Ber. 35, 2602-2606.
- Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.
- Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014). Acta Cryst. E70, o205.
- Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, 101-103 [doi:10.1107/S1600536814016079]

Crystal structure of *cis*-bis[4-phenyl-2-(1,2,3,4-tetrahydronaphthalen-1-yl-idene)hydrazinecarbothioamidato- $\kappa^2 N^1$,*S*]nickel(II) monohydrate tetrahydro-furan disolvate

Adriano Bof de Oliveira, Bárbara Regina Santos Feitosa, Christian Näther and Inke Jess

Computing details

Data collection: *X-AREA* (Stoe & Cie, 2008); cell refinement: *X-AREA* (Stoe & Cie, 2008); data reduction: *X-RED32* (Stoe & Cie, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

cis-Bis[4-phenyl-2-(1,2,3,4-tetrahydronaphthalen-1-ylidene)hydrazinecarbothioamidato- $\kappa^2 N^1$,S]nickel(II) monohydrate tetrahydrofuran disolvate

Crystal data	
$[Ni(C_{16}H_{16}N_{3}S)_{2}]\cdot 2C_{4}H_{8}O\cdot H_{2}O$	F(000) = 1712
$M_r = 809.71$	$D_{\rm x} = 1.376 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo Ka radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 40358 reflections
a = 20.9248 (13) Å	$\theta = 2.5 - 27.0^{\circ}$
b = 8.7872 (5) Å	$\mu = 0.65 \text{ mm}^{-1}$
c = 21.2833 (15) Å	T = 200 K
$\beta = 92.841 \ (8)^{\circ}$	Prism, red
$V = 3908.6 (4) Å^3$	$0.19 \times 0.15 \times 0.10 \text{ mm}$
Z = 4	
Data collection	
Stoe IPDS-1	40358 measured reflections
diffractometer	8412 independent reflections
Radiation source: fine-focus sealed tube, Stoe	7107 reflections with $I > 2\sigma(I)$
IPDS-1	$R_{\rm int} = 0.064$
Graphite monochromator	$\theta_{\rm max} = 27.0^\circ, \theta_{\rm min} = 2.5^\circ$
φ scans	$h = -26 \rightarrow 26$
Absorption correction: numerical	$k = -11 \longrightarrow 11$
(X-SHAPE and X-RED32; Stoe & Cie, 2008)	$l = -27 \rightarrow 27$
$T_{\min} = 0.787, \ T_{\max} = 0.941$	
Refinement	
Refinement on F^2	S = 1.04
Least-squares matrix: full	8412 reflections

488 parameters

0 restraints

Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.090$

Primary atom site location: structure-invariant	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0495P)^{2} + 1.531P]$
direct methods	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Secondary atom site location: difference Fourier	$(\Delta/\sigma)_{max} = 0.002$
man	$\Delta a = 0.32 \text{ e}^{\Delta^{-3}}$
Hydrogen site location: inferred from	$\Delta \rho_{\min} = -0.48 \text{ e } \text{Å}^{-3}$
neighbouring sites	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}
H-atom parameters constrained	Extinction coefficient: 0.0043 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ni1	0.763345 (10)	0.57702 (2)	0.542635 (10)	0.01599 (8)
S1	0.85498 (2)	0.51110 (5)	0.50807 (2)	0.02150 (10)
C1	0.84794 (8)	0.63429 (18)	0.44282 (8)	0.0176 (3)
N1	0.80744 (7)	0.74626 (15)	0.43901 (6)	0.0193 (3)
N2	0.77215 (7)	0.75911 (15)	0.49300 (6)	0.0176 (3)
C2	0.74873 (8)	0.89550 (17)	0.50036 (8)	0.0176 (3)
C3	0.75309 (9)	1.01216 (19)	0.44862 (8)	0.0239 (4)
H3A	0.7289	0.9747	0.4106	0.029*
H3B	0.7984	1.0230	0.4381	0.029*
C4	0.72730 (9)	1.16776 (19)	0.46591 (9)	0.0272 (4)
H4A	0.7214	1.2308	0.4275	0.033*
H4B	0.7585	1.2197	0.4950	0.033*
C5	0.66362 (10)	1.1516 (2)	0.49709 (10)	0.0312 (4)
H5A	0.6470	1.2536	0.5076	0.037*
H5B	0.6320	1.1016	0.4677	0.037*
C6	0.67272 (9)	1.05810 (19)	0.55612 (9)	0.0249 (4)
C7	0.64126 (10)	1.0929 (2)	0.61052 (11)	0.0339 (5)
H7	0.6105	1.1724	0.6094	0.041*
C8	0.65380 (11)	1.0144 (2)	0.66589 (11)	0.0380 (5)
H8	0.6306	1.0376	0.7019	0.046*
C9	0.70038 (11)	0.9014 (2)	0.66901 (10)	0.0334 (4)
Н9	0.7103	0.8502	0.7076	0.040*
C10	0.73221 (9)	0.8639 (2)	0.61548 (8)	0.0249 (4)
H10	0.7646	0.7880	0.6177	0.030*
C11	0.71703 (8)	0.93683 (18)	0.55811 (8)	0.0204 (3)
N3	0.88815 (7)	0.60673 (16)	0.39553 (7)	0.0219 (3)
H1N	0.9185	0.5384	0.4020	0.026*
C12	0.88886 (8)	0.67796 (19)	0.33607 (8)	0.0208 (3)

C13	0.84043 (10)	0.7741 (2)	0.31185 (9)	0.0281 (4)
H13	0.8049	0.7976	0.3362	0.034*
C14	0.84464 (12)	0.8354 (2)	0.25151 (9)	0.0358 (5)
H14	0.8116	0.9004	0.2351	0.043*
C15	0.89587 (12)	0.8032 (2)	0.21546 (10)	0.0384 (5)
H15	0.8985	0.8465	0.1748	0.046*
C16	0.94352 (10)	0.7069(3)	0.23938 (9)	0.0358 (5)
H16	0.9787	0.6832	0.2146	0.043*
C17	0.94061 (9)	0.6444(2)	0.29920 (9)	0.0273 (4)
H17	0.9738	0.5790	0.3150	0.033*
S21	0.77040(2)	0 40904 (5)	0.61626(2)	0.02150 (10)
C21	0.69687(8)	0.45636(18)	0.64762(8)	0.02190(10) 0.0189(3)
N21	0.65424(7)	0.54193 (16)	0.61843(7)	0.0214(3)
N22	0.63121(7) 0.67275(7)	0.58376(15)	0.55827 (6)	0.0211(3) 0.0179(3)
C22	0.67275(7)	0.63338(18)	0.52027(0) 0.52238(8)	0.0175(3)
C23	0.56144(8)	0.65550(10)	0.55078 (9)	0.0105(3) 0.0265(4)
U23 Н23 Δ	0.5686	0.0005 (2)	0.5857	0.0205 (4)
H23R	0.5451	0.7390	0.5689	0.032*
C24	0.51066 (9)	0.3710 0.7303(2)	0.5087 0 50437 (10)	0.032 0.0314(4)
H24A	0.4914	0.6466	0.4787	0.038*
H24R	0.4763	0.7789	0.5276	0.038*
C25	0.54023 (9)	0.8468(2)	0.46163 (10)	0.028(4)
H25A	0.5068	0.8908	0.4325	0.0298 (1)
H25B	0.5599	0.9303	0.4871	0.036*
C26	0.59041 (9)	0.7688(2)	0.42476 (9)	0.030
C27	0.59580(11)	0.7000(2) 0.7956(2)	0.36072 (9)	0.0211(1) 0.0350(4)
H27	0.5691	0.8697	0.3402	0.042*
C28	0.63934 (11)	0.7161 (3)	0.32660 (9)	0.0376(5)
H28	0.6429	0.7375	0.2832	0.045*
C29	0.67788 (10)	0.6050 (2)	0.35546 (9)	0.0306 (4)
H29	0.7070	0.5487	0.3317	0.037*
C30	0.67348 (9)	0.57702(19)	0.41940 (9)	0.0233(4)
H30	0.6994	0.5005	0.4392	0.028*
C31	0.63103 (8)	0.66085 (18)	0.45479 (8)	0.0195(3)
N23	0.68631 (7)	0.39556 (17)	0.70534 (7)	0.0229(3)
H2N	0.7178	0.3384	0.7209	0.027*
C32	0.62840 (9)	0.38489 (19)	0.73636 (8)	0.0221 (3)
C33	0.57121 (9)	0.4550 (2)	0.71649 (9)	0.0285 (4)
H33	0.5697	0.5192	0.6806	0.034*
C34	0.51621 (10)	0.4305(2)	0.74952 (10)	0.0339 (4)
H34	0.4772	0.4776	0.7354	0.041*
C35	0.51734 (10)	0.3391 (2)	0.80225 (10)	0.0356 (5)
H35	0.4795	0.3227	0.8242	0.043*
C36	0.57417 (11)	0.2718 (2)	0.82274 (10)	0.0357 (5)
H36	0.5755	0.2098	0.8594	0.043*
C37	0.62939 (10)	0.2937 (2)	0.79037 (9)	0.0298 (4)
H37	0.6682	0.2464	0.8050	0.036*
01	0.99770 (7)	0.40290 (16)	0.41952 (8)	0.0417 (4)

H1O1	1.0309	0.4309	0.4401	0.062*
H2O1	1.0030	0.3084	0.4169	0.062*
O41	0.97593 (8)	0.58636 (16)	0.08169 (9)	0.0448 (4)
C41	0.90931 (12)	0.5585 (3)	0.07052 (16)	0.0538 (7)
H41A	0.8912	0.6291	0.0381	0.065*
H41B	0.8864	0.5735	0.1097	0.065*
C42	0.90244 (13)	0.3977 (3)	0.04853 (15)	0.0531 (7)
H42A	0.8981	0.3930	0.0020	0.064*
H42B	0.8645	0.3492	0.0661	0.064*
C43	0.96318 (13)	0.3203 (3)	0.07266 (12)	0.0455 (6)
H43A	0.9842	0.2683	0.0380	0.055*
H43B	0.9540	0.2443	0.1053	0.055*
C44	1.00526 (12)	0.4463 (2)	0.10005 (13)	0.0448 (6)
H44A	1.0089	0.4382	0.1465	0.054*
H44B	1.0487	0.4394	0.0838	0.054*
O51	0.78020 (7)	0.19400 (17)	0.76536 (7)	0.0344 (3)
C51	0.81446 (12)	0.2516 (3)	0.82019 (11)	0.0467 (6)
H51A	0.8107	0.1802	0.8558	0.056*
H51B	0.7967	0.3512	0.8323	0.056*
C52	0.88412 (11)	0.2691 (3)	0.80450 (11)	0.0408 (5)
H52A	0.9120	0.2021	0.8314	0.049*
H52B	0.8985	0.3758	0.8103	0.049*
C53	0.88546 (10)	0.2222 (2)	0.73570 (10)	0.0347 (4)
H53A	0.8835	0.3122	0.7077	0.042*
H53B	0.9245	0.1630	0.7278	0.042*
C54	0.82624 (9)	0.1255 (2)	0.72640 (10)	0.0297 (4)
H54A	0.8106	0.1259	0.6817	0.036*
H54B	0.8351	0.0192	0.7395	0.036*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.01618 (12)	0.01577 (11)	0.01627 (11)	0.00208 (7)	0.00338 (8)	0.00228 (7)
S 1	0.0184 (2)	0.0223 (2)	0.0243 (2)	0.00532 (15)	0.00491 (16)	0.00550 (15)
C1	0.0171 (8)	0.0168 (7)	0.0191 (7)	-0.0003 (6)	0.0028 (6)	-0.0024 (6)
N1	0.0229 (7)	0.0191 (6)	0.0164 (6)	0.0042 (5)	0.0067 (6)	-0.0001 (5)
N2	0.0176 (7)	0.0197 (6)	0.0157 (6)	0.0022 (5)	0.0035 (5)	-0.0018 (5)
C2	0.0175 (8)	0.0163 (7)	0.0189 (8)	0.0006 (6)	0.0019 (6)	-0.0006 (6)
C3	0.0301 (9)	0.0188 (8)	0.0234 (8)	0.0055 (7)	0.0056 (7)	0.0026 (6)
C4	0.0326 (10)	0.0158 (8)	0.0335 (10)	0.0048 (7)	0.0065 (8)	0.0019 (7)
C5	0.0275 (10)	0.0212 (8)	0.0451 (11)	0.0079 (7)	0.0031 (9)	-0.0016 (8)
C6	0.0211 (9)	0.0185 (8)	0.0358 (10)	-0.0011 (6)	0.0064 (8)	-0.0077 (7)
C7	0.0285 (10)	0.0273 (9)	0.0473 (12)	-0.0029 (7)	0.0167 (9)	-0.0147 (8)
C8	0.0411 (12)	0.0367 (11)	0.0384 (11)	-0.0119 (9)	0.0229 (10)	-0.0165 (9)
C9	0.0423 (12)	0.0348 (10)	0.0242 (9)	-0.0111 (8)	0.0117 (9)	-0.0071 (8)
C10	0.0308 (10)	0.0237 (8)	0.0204 (8)	-0.0057 (7)	0.0049 (7)	-0.0052 (7)
C11	0.0209 (8)	0.0191 (7)	0.0217 (8)	-0.0034 (6)	0.0062 (7)	-0.0051 (6)
N3	0.0213 (7)	0.0228 (7)	0.0220 (7)	0.0063 (6)	0.0054 (6)	-0.0005 (6)

C12	0.0224 (8)	0.0216 (8)	0.0187 (8)	-0.0039 (6)	0.0055 (7)	-0.0036 (6)
C13	0.0348 (10)	0.0295 (9)	0.0205 (8)	0.0045 (8)	0.0073 (8)	0.0007 (7)
C14	0.0518 (13)	0.0330 (10)	0.0229 (9)	0.0043 (9)	0.0053 (9)	0.0045 (8)
C15	0.0557 (14)	0.0387 (11)	0.0217 (9)	-0.0103 (10)	0.0102 (9)	0.0022 (8)
C16	0.0345 (11)	0.0485 (12)	0.0258 (10)	-0.0151 (9)	0.0146 (8)	-0.0088 (9)
C17	0.0224 (9)	0.0340 (9)	0.0261 (9)	-0.0048 (7)	0.0068 (7)	-0.0081 (7)
S21	0.0219 (2)	0.0233 (2)	0.0197 (2)	0.00565 (15)	0.00496 (16)	0.00627 (15)
C21	0.0214 (8)	0.0183 (7)	0.0171 (7)	-0.0010 (6)	0.0026 (6)	0.0006 (6)
N21	0.0214 (7)	0.0243 (7)	0.0189 (7)	0.0009 (6)	0.0060 (6)	0.0042 (5)
N22	0.0197 (7)	0.0178 (6)	0.0164 (6)	0.0016 (5)	0.0029 (5)	0.0011 (5)
C22	0.0192 (8)	0.0160 (7)	0.0204 (8)	0.0006 (6)	0.0022 (6)	-0.0015 (6)
C23	0.0189 (8)	0.0323 (9)	0.0288 (9)	0.0031 (7)	0.0042 (7)	0.0005 (7)
C24	0.0186 (9)	0.0361 (10)	0.0394 (11)	0.0043 (7)	0.0004 (8)	-0.0007 (8)
C25	0.0258 (10)	0.0294 (9)	0.0338 (10)	0.0105 (7)	-0.0030 (8)	0.0006 (8)
C26	0.0239 (9)	0.0239 (8)	0.0250 (9)	0.0041 (7)	-0.0035 (7)	-0.0011 (7)
C27	0.0404 (12)	0.0388 (11)	0.0251 (9)	0.0109 (9)	-0.0056 (8)	0.0050 (8)
C28	0.0486 (13)	0.0465 (12)	0.0175 (9)	0.0073 (10)	-0.0003 (8)	0.0013 (8)
C29	0.0337 (11)	0.0358 (10)	0.0225 (9)	0.0028 (8)	0.0034 (8)	-0.0079 (7)
C30	0.0245 (9)	0.0214 (8)	0.0238 (8)	0.0026 (7)	-0.0004 (7)	-0.0041 (6)
C31	0.0196 (8)	0.0192 (7)	0.0194 (8)	0.0008 (6)	-0.0015 (6)	-0.0029 (6)
N23	0.0228 (8)	0.0277 (7)	0.0185 (7)	0.0042 (6)	0.0039 (6)	0.0058 (6)
C32	0.0261 (9)	0.0223 (8)	0.0183 (8)	-0.0021 (6)	0.0064 (7)	-0.0010 (6)
C33	0.0273 (10)	0.0348 (10)	0.0238 (9)	0.0009 (8)	0.0056 (8)	0.0047 (7)
C34	0.0248 (10)	0.0429 (11)	0.0343 (11)	-0.0005 (8)	0.0068 (8)	0.0019 (8)
C35	0.0335 (11)	0.0394 (11)	0.0355 (11)	-0.0082 (9)	0.0170 (9)	0.0019 (9)
C36	0.0443 (12)	0.0347 (10)	0.0294 (10)	-0.0021 (9)	0.0153 (9)	0.0080 (8)
C37	0.0347 (11)	0.0301 (9)	0.0252 (9)	0.0038 (8)	0.0077 (8)	0.0063 (7)
O1	0.0317 (8)	0.0309 (7)	0.0613 (11)	0.0075 (6)	-0.0092 (7)	-0.0028 (7)
O41	0.0357 (9)	0.0262 (7)	0.0711 (12)	-0.0026 (6)	-0.0108 (8)	0.0095 (7)
C41	0.0352 (13)	0.0342 (11)	0.090 (2)	0.0029 (9)	-0.0133 (13)	-0.0017 (12)
C42	0.0458 (14)	0.0434 (13)	0.0685 (18)	-0.0082 (11)	-0.0121 (13)	-0.0022 (12)
C43	0.0606 (16)	0.0306 (10)	0.0443 (13)	0.0010 (10)	-0.0074 (11)	-0.0035 (9)
C44	0.0422 (13)	0.0310 (10)	0.0602 (15)	0.0027 (9)	-0.0069 (11)	0.0046 (10)
O51	0.0256 (7)	0.0425 (8)	0.0351 (8)	0.0066 (6)	0.0017 (6)	0.0013 (6)
C51	0.0449 (14)	0.0643 (15)	0.0309 (11)	0.0098 (12)	0.0022 (10)	-0.0047 (11)
C52	0.0393 (12)	0.0409 (11)	0.0409 (12)	0.0005 (9)	-0.0103 (10)	-0.0025 (9)
C53	0.0279 (10)	0.0370 (11)	0.0395 (11)	0.0015 (8)	0.0039 (9)	0.0030 (9)
C54	0.0296 (10)	0.0266 (9)	0.0329 (10)	0.0055 (7)	0.0006 (8)	0.0016 (7)

Geometric parameters (Å, °)

Ni1—N2	1.9313 (14)	C24—H24B	0.9900	
Ni1—N22	1.9417 (14)	C25—C26	1.506 (3)	
Ni1—S21	2.1524 (5)	C25—H25A	0.9900	
Ni1—S1	2.1664 (5)	C25—H25B	0.9900	
S1—C1	1.7612 (17)	C26—C27	1.393 (3)	
C1—N1	1.298 (2)	C26—C31	1.406 (2)	
C1—N3	1.365 (2)	C27—C28	1.382 (3)	

N1—N2	1.4008 (18)	С27—Н27	0.9500
N2—C2	1.307 (2)	C28—C29	1.390 (3)
C2—C11	1.471 (2)	C28—H28	0.9500
C2—C3	1.511 (2)	C29—C30	1.390 (3)
C3—C4	1.522 (2)	С29—Н29	0.9500
С3—НЗА	0.9900	C30—C31	1.402 (2)
С3—Н3В	0.9900	С30—Н30	0.9500
C4—C5	1.524 (3)	N23—C32	1.412 (2)
C4—H4A	0.9900	N23—H2N	0.8800
C4—H4B	0.9900	C32—C33	1.393 (3)
C5-C6	1 505 (3)	$C_{32} - C_{37}$	1 401 (2)
C5—H5A	0.9900	C_{33} C_{34}	1.101(2) 1.395(3)
C5 H5B	0.9900	C33 H33	0.9500
C6_C7	1 304 (3)	C_{34} C_{35}	1.379(3)
C6_C11	1.397(3)	C_{24} H_{24}	1.579(5)
C_{0}	1.412(2) 1.270(2)	C_{24}	0.9300
C7C8	1.579 (5)	C35_U35	1.379 (3)
C/—H/	0.9500	C35—H35	0.9500
C8-C9	1.390 (3)	$C_{36} - C_{37}$	1.388 (3)
С8—Н8	0.9500	C36—H36	0.9500
C9—C10	1.388 (3)	С37—Н37	0.9500
С9—Н9	0.9500	01—H101	0.8400
C10-C11	1.401 (3)	01—H2O1	0.8397
C10—H10	0.9500	O41—C44	1.422 (3)
N3—C12	1.413 (2)	O41—C41	1.424 (3)
N3—H1N	0.8798	C41—C42	1.493 (3)
C12—C13	1.398 (3)	C41—H41A	0.9900
C12—C17	1.400 (2)	C41—H41B	0.9900
C13—C14	1.400 (3)	C42—C43	1.509 (4)
С13—Н13	0.9500	C42—H42A	0.9900
C14—C15	1.378 (3)	C42—H42B	0.9900
C14—H14	0.9500	C43—C44	1.513 (3)
C15—C16	1.386 (3)	C43—H43A	0.9900
С15—Н15	0.9500	C43—H43B	0.9900
C16-C17	1 391 (3)	C44—H44A	0.9900
C16—H16	0.9500	C44—H44B	0.9900
C17—H17	0.9500	051-051	1431(3)
S21-C21	1 7571 (17)	051 - C54	1.431(3) 1 434(2)
C21 N21	1.7571(17) 1.301(2)	C51 C52	1.434(2) 1.510(3)
C_{21} N_{23}	1.301(2) 1.368(2)	C51 H51A	0.0000
N21 N22	1.308(2) 1.4050(10)	C51 H51D	0.9900
N21—N22	1.4030 (19)		0.9900
N22-C22	1.304 (2)	C52—C53	1.525 (3)
C22—C31	1.470 (2)	C52—H52A	0.9900
C22—C23	1.513 (2)	С52—Н52В	0.9900
C23—C24	1.522 (3)	C53—C54	1.508 (3)
С23—Н23А	0.9900	С53—Н53А	0.9900
С23—Н23В	0.9900	С53—Н53В	0.9900
C24—C25	1.521 (3)	C54—H54A	0.9900
C24—H24A	0.9900	C54—H54B	0.9900

N2—Ni1—N22	100.89 (6)	C26—C25—C24	108.67 (15)
N2—Ni1—S21	164.04 (5)	C26—C25—H25A	110.0
N22—Ni1—S21	85.90 (4)	C24—C25—H25A	110.0
N2—Ni1—S1	85.74 (4)	C26—C25—H25B	110.0
N22—Ni1—S1	162.63 (4)	C24—C25—H25B	110.0
S21—Ni1—S1	91.944 (18)	H25A—C25—H25B	108.3
C1—S1—Ni1	93.59 (5)	C27—C26—C31	118.83 (17)
N1—C1—N3	120.84 (15)	C27—C26—C25	121.67 (17)
N1—C1—S1	122.94 (12)	C31—C26—C25	119.43 (16)
N3—C1—S1	116.22 (12)	C28—C27—C26	121.06 (18)
C1—N1—N2	112.26 (13)	C28—C27—H27	119.5
C2—N2—N1	112.85 (13)	C26—C27—H27	119.5
C2—N2—Nil	130.35 (11)	C27—C28—C29	120.40 (18)
N1—N2—Ni1	116.77 (10)	C27—C28—H28	119.8
N2—C2—C11	120.93 (14)	C29—C28—H28	119.8
N2—C2—C3	119.88 (14)	C28—C29—C30	119.46 (18)
$C_{11} - C_{2} - C_{3}$	119.19 (14)	C28—C29—H29	120.3
C2—C3—C4	113.48 (14)	C30—C29—H29	120.3
С2—С3—Н3А	108.9	C_{29} C_{30} C_{31}	120.48 (17)
C4—C3—H3A	108.9	C29—C30—H30	119.8
C2—C3—H3B	108.9	C31—C30—H30	119.8
C4—C3—H3B	108.9	C30-C31-C26	119.68 (16)
H3A—C3—H3B	107.7	$C_{30} - C_{31} - C_{22}$	121.87 (15)
C3—C4—C5	110.47 (15)	$C_{26} - C_{31} - C_{22}$	118.36 (15)
C3—C4—H4A	109.6	C21—N23—C32	128.82 (16)
C5—C4—H4A	109.6	C21—N23—H2N	114.1
C3—C4—H4B	109.6	C32—N23—H2N	115.6
C5—C4—H4B	109.6	C33—C32—C37	118.67 (17)
H4A—C4—H4B	108.1	C33—C32—N23	124.97 (16)
C6—C5—C4	109.69 (16)	C37—C32—N23	116.34 (17)
C6—C5—H5A	109.7	C32—C33—C34	119.79 (18)
C4—C5—H5A	109.7	C32—C33—H33	120.1
C6—C5—H5B	109.7	C34—C33—H33	120.1
C4—C5—H5B	109.7	C35—C34—C33	121.2 (2)
H5A—C5—H5B	108.2	C35—C34—H34	119.4
C7—C6—C11	118.49 (18)	C33—C34—H34	119.4
C7—C6—C5	121.87 (17)	C34—C35—C36	119.13 (18)
C11—C6—C5	119.53 (16)	C34—C35—H35	120.4
C8—C7—C6	121.49 (19)	C36—C35—H35	120.4
С8—С7—Н7	119.3	C35—C36—C37	120.63 (19)
С6—С7—Н7	119.3	C35—C36—H36	119.7
С7—С8—С9	120.08 (18)	С37—С36—Н36	119.7
С7—С8—Н8	120.0	C36—C37—C32	120.52 (19)
С9—С8—Н8	120.0	С36—С37—Н37	119.7
C10—C9—C8	119.6 (2)	С32—С37—Н37	119.7
С10—С9—Н9	120.2	H101—01—H2O1	102.5
С8—С9—Н9	120.2	C44—O41—C41	107.61 (17)
			× /

C9—C10—C11	120.61 (18)	O41—C41—C42	107.1 (2)
C9—C10—H10	119.7	O41—C41—H41A	110.3
C11—C10—H10	119.7	C42—C41—H41A	110.3
C10—C11—C6	119.45 (16)	O41—C41—H41B	110.3
C10—C11—C2	121.53 (15)	C42—C41—H41B	110.3
C6—C11—C2	118.94 (16)	H41A—C41—H41B	108.6
C1—N3—C12	128.03 (15)	C41—C42—C43	104.7 (2)
C1—N3—H1N	118.2	C41—C42—H42A	110.8
C12—N3—H1N	113.8	C43—C42—H42A	110.8
C13—C12—C17	119.16 (17)	C41—C42—H42B	110.8
C13—C12—N3	123.95 (15)	C43—C42—H42B	110.8
C17—C12—N3	116.85 (16)	H42A—C42—H42B	108.9
C12—C13—C14	119.57 (18)	C42—C43—C44	105.43 (19)
C12—C13—H13	120.2	C42—C43—H43A	110.7
C14—C13—H13	120.2	C44—C43—H43A	110.7
C15—C14—C13	121.2 (2)	C42—C43—H43B	110.7
C15—C14—H14	119.4	C44—C43—H43B	110.7
C13—C14—H14	119.4	H43A—C43—H43B	108.8
C14—C15—C16	119.09 (19)	O41—C44—C43	107.00 (19)
C14—C15—H15	120.5	O41—C44—H44A	110.3
C16—C15—H15	120.5	C43—C44—H44A	110.3
C15—C16—C17	120.95 (18)	O41—C44—H44B	110.3
С15—С16—Н16	119.5	C43—C44—H44B	110.3
С17—С16—Н16	119.5	H44A—C44—H44B	108.6
C16-C17-C12	120.02 (19)	$C_{51} - C_{54}$	107.23 (16)
C16—C17—H17	120.0	051 - 051 - 051	107.68 (18)
C12—C17—H17	120.0	051—C51—H51A	110.2
$C_{21} = S_{21} = N_{11}$	94.84 (6)	C52—C51—H51A	110.2
N21—C21—N23	121.14(15)	051—C51—H51B	110.2
N21—C21—S21	123.24(13)	C52—C51—H51B	110.2
N_{23} C_{21} S_{21}	115 61 (13)	H51A-C51-H51B	108.5
$C_{21} = N_{21} = N_{22}$	111 90 (14)	$C_{51} - C_{52} - C_{53}$	104.34 (18)
$C_{22} = N_{22} = N_{21}$	112 50 (14)	C51—C52—H52A	110.9
$C_{22} = N_{22} = N_{12}$	129.64 (12)	C53—C52—H52A	110.9
N21—N22—Ni1	117.63(11)	C51—C52—H52B	110.9
N22-C22-C31	121 71 (15)	C53—C52—H52B	110.9
N22 - C22 - C23	119 56 (15)	H52A-C52-H52B	108.9
$C_{31} - C_{22} - C_{23}$	118 72 (15)	$C_{54} C_{53} C_{52}$	100.9 102.98(17)
C^{22} C^{23} C^{24}	114 16 (15)	C54—C53—H53A	102.90 (17)
$C_{22} = C_{23} = H_{23} A$	108 7	C52-C53-H53A	111.2
$C_{22} = C_{23} = H_{23} A$	108.7	C54_C53_H53B	111.2
$C_{2}^{2} - C_{2}^{2} - H_{2}^{2} B$	108.7	C52_C53_H53B	111.2
$C_{22} = C_{23} = H_{23B}$	108.7	H53A C53 H53B	100.1
$H_{23}A = C_{23} = H_{23}B$	107.6	051 C54 C53	105.00 (16)
C_{25} C	110 19 (16)	051_054_H54A	110.7
$C_{25} - C_{24} - C_{25}$	100.6	C53_C54_H54A	110.7
$C_{23} = C_{24} = H_{24} A$	109.0	$O_{51} = C_{54} = H_{54} P$	110.7
$C_{2J} = C_{24} = \Pi_{24} + \Pi$	109.0	$C_{51} = C_{54} = D_{54}$	110.7
U2J—U24—II24D	107.0	UJJ—UJ4—ПJ4D	110./

supporting information

C23—C24—H24B	109.6	H54A—C54—H54B	108.8
H24A—C24—H24B	108.1		

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C32–C37 and C12–C17 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N3—H1 <i>N</i> …O1	0.88	2.06	2.934 (2)	172
N23—H2 <i>N</i> ···O51	0.88	2.02	2.895 (2)	171
O1—H1O1···S1 ⁱ	0.84	2.63	3.4609 (16)	170
01—H2 <i>0</i> 1····O41 ⁱⁱ	0.84	2.00	2.836 (2)	173
С27—Н27…Сд1 ^{ііі}	0.95	2.80	3.595 (2)	142
C54—H54 B ···Cg2 ^{iv}	0.99	2.67	3.633 (2)	164

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, y-1/2, -z+1/2; (iii) x, -y+3/2, z-1/2; (iv) x, -y+1/2, z+1/2.