metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(3-Methylbenzonitrile-1 κ N)-cis-tetrakis-(μ -N-phenylacetamidato)-1:2 κ ⁴N:O;-1:2 κ ⁴O:N-dirhodium(II)(Rh—Rh)

Cassandra T. Eagle,* Fredricka Quarshie and Kevin M. Cook

Department of Chemistry, East Tennessee State University, PO Box 70695, Johnson City, TN 37614, USA Correspondence e-mail: eaglec@etsu.edu

Received 13 June 2014; accepted 9 July 2014 Edited by J. T. Mague, Tulane University, USA

Key indicators: single-crystal X-ray study; T = 223 K; mean σ (C–C) = 0.007 Å; *R* factor = 0.042; *wR* factor = 0.089; data-to-parameter ratio = 17.2.

The complex molecule of the title compound, $[Rh_{2}{N(C_{6}H_{5})COCH_{3}}_{4}(NCC_{7}H_{7})],$ has crystallographicallyimposed mirror symmetry. The four acetamide ligands bridging the dirhodium core are arranged in a 2,2-cis manner with two N atoms and two O atoms coordinating to the unique Rh^{II} atom *cis* to one another. The N_{eq}-Rh-Rh-O_{eq} torsion angles on the acetamide bridge are 0.75 (7) and 1.99 (9) $^{\circ}$. The axial nitrile ligand completes the distorted octahedral coordination sphere of one Rh^{II} atom and shows a nonlinear coordination, with an Rh-N-C bond angle of 162.8 (5) $^{\circ}$; the N-C bond length is 1.154 (7) Å.

Related literature

For the synthesis and structure of four related compounds, see: Lifsey *et al.* (1987); Eagle *et al.* (2000, 2012, 2013*a*,*b*).

Experimental

Crystal data

 $[\text{Rh}_2(\text{C}_8\text{H}_8\text{NO})_4(\text{C}_8\text{H}_7\text{N})]$ $M_r = 859.59$ Orthorhombic, *Pnma* a = 15.3319 (14) Å b = 18.3248 (16) Åc = 12.9564 (12) Å

Data collection

Rigaku XtaLAB mini
diffractometer36328 m
4292 indAbsorption correction: multi-scan
(REQAB; Rigaku, 1998)
 $T_{min} = 0.664, T_{max} = 0.873$ 3154 refl
 $R_{int} = 0.073$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ 250 para

 $wR(F^2) = 0.089$ H-atom

 S = 1.05 $\Delta \rho_{max} =$

 4292 reflections
 $\Delta \rho_{min} =$

Z = 4Mo K α radiation $\mu = 0.95 \text{ mm}^{-1}$ T = 223 K $0.17 \times 0.15 \times 0.14 \text{ mm}$

V = 3640.2 (6) Å³

36328 measured reflections 4292 independent reflections 3154 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.086$

CrossMark

250 parameters H-atom parameters constrained $\Delta\rho_{max}=0.75$ e Å^{-3} $\Delta\rho_{min}=-0.50$ e Å^{-3}

Data collection: *PROCESS-AUTO* (Rigaku, 2010); cell refinement: *PROCESS-AUTO*; data reduction: *PROCESS-AUTO*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalStructure* (Rigaku, 2010); software used to prepare material for publication: *CrystalStructure*.

We thank Dr Lee Daniels of Rigaku Americas for his training on the Rigaku XtaLAB diffractometer and his extended help in the completion of the structural determination. Support was provided by a Start Up Grant from ETSU. We thank Johnson Matthey for their generous loan of rhodium trichloride.

Supporting information for this paper is available from the IUCr electronic archives (Reference: MW2125).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Eagle, C. T., Atem-Tambe, N., Kpogo, K. K., Tan, J. & Quarshie, F. (2013a). *Acta Cryst.* E69, m639.
- Eagle, C. T., Farrar, D. G., Holder, G. N., Pennington, W. T. & Bailey, R. D. (2000). J. Organomet. Chem. 596, 90–94.
- Eagle, C. T., Kpogo, K. K., Zink, L. C. & Smith, A. E. (2012). Acta Cryst. E68, m877.
- Eagle, C. T., Quarshie, F., Ketron, M. E. & Atem-Tambe, N. (2013b). Acta Cryst. E69, m329.
- Lifsey, R. S., Lin, X. Q., Chavan, M. Y., Ahsan, M. Q., Kadish, K. M. & Bear, J. L. (1987). *Inorg. Chem.* **26**, 830–836.
- Rigaku (1998). *REQAB*. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.

Rigaku (2010). CrystalStructure and PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2014). E70, m304 [doi:10.1107/S1600536814016031]

(3-Methylbenzonitrile-1 κ N)-*cis*-tetrakis(μ -N-phenylacetamidato)-1:2 κ ⁴N:O;1:2 κ ⁴O:N-dirhodium(II)(*Rh*—*Rh*)

Cassandra T. Eagle, Fredricka Quarshie and Kevin M. Cook

S1. Experimental

S1.1. Synthesis and crystallization

Approximately 10mg of *cis*-tetrakis[μ -N-(phenyl)acetamidato]- κ^4 N:O; κ^4 O:N dirhodium(II)] was dissolved in 18 mL of dichloromethane. 4μ L of neat 3-methyl benzonitrile and 2μ L of acetone were then added to this solution *via* a gas-tight syringe turning the solution from forest green to dark blue. Crystals grew over a two week period *via* vapor diffusion. From the structure determination compound **1** is an adduct of *cis*-tetrakis[μ -N-(phenyl)acetamidato]- κ^4 N:O; κ^4 O:N rhodium(II)] with 3-methyl benzonitrile in one axial site.

S1.2. Refinement

H-atoms were included in calculated positions with C—H = 0.93 - 0.96 and included as riding contributions with isotropic displacement parameters 1.2-1.5 times those of the attached atom. H-atoms attached to C24 are disordered across the mirror plane.

The second parameter on the SHELXL weighting line has a large value (7.37) which may arise from inadequacies in the absorption correction.

S2. Results and discussion

Previous papers report the structures of the related complexes 2,2-*trans*-Rh₂[N(C₆H₅)COCH₃]₄·2NCC₆H₅ (**2**) (Eagle *et al.*, 2000), 2,2-*trans*-Rh₂[N(C₉H₁₁)COCH₃]₄·2NCC₆H₅ (**3**) (Eagle *et al.*, 2012), 2,2-*cis*-[Rh₂(N(C₆H₅)COCH₃)₄]·2NCC₆H₅ (**4**) (Eagle *et al.*, 2013*b*) and 2,2-*trans*-Rh₂[N(C₆H₅)COCH₃]₄·NCC₇H₇ (**5**) (Eagle *et al.*, 2013*a*). The numbering scheme of the title compound is adopted from that of compound **2**.

The axial rhodium-nitrogen-carbon bond angle for 1, 162.8 (5)° (Fig.1) is distinctly non-linear which is different from those found in compound 2 (178.5 (5)° and 169.3 (5)°), and compound 3 (180°; imposed by space group symmetry), but similar to those found in compound 4 (167.14 (15)°) and compound 5 (166.4 (4)°). The axial carbon–nitrogen bond length in 1 is 1.154 (7) Å which is comparable to corresponding distances found in 2 (1.135 (8) Å and 1.145 (8) Å) as well as 4 (1.135 (3) Å) and 5 (1.135 (3) Å) and slightly longer than 3 (1.106 (6) Å). The [Rh₂[N(C₆H₅)COCH₃)₄] portion of compound 1 has approximate -4 symmetry with non-eclipsed N_{eq}–Rh–Rh–O_{eq} torsion angles around each acetamide bridge of 0.75 (7)° or 1.99 (9)°. These can be compared to the range of 9.03° and 11.89° in 2, 1.12 (9)° in 3, the range between 1.62 (4)° and 1.78 (4)° in 4 and 12.55 (11)° or 14.04 (8)° in 5. There are no unusually short intermolecular distances.

The infrared absorption spectum of compound **1** showed bands at 2338 cm⁻¹ and 2359 cm⁻¹ attributable to carbon–nitrogen bond stretching modes. The corresponding band for uncomplexed 3-methylbenzonitrile appears at 2228 cm⁻¹. This indicates that there is a shortening of the carbon–nitrogen bond and a stronger σ -interaction with the rhodium metal compared to the π -back bonding which occurs upon complexation with *trans*-tetrakis[μ -N-(phenyl)acetamidato]- κ^4 N:O; κ^4 O:N rhodium(II)].

Figure 1

ORTEP of the title compound with 30% probability ellipsoids. Hydrogen atoms are drawn as small spheres.

$(3-Methylbenzonitrile-1\kappa N)$ -*cis*-tetrakis(μ -N-phenylacetamidato)-1:2 κ ⁴N:O;1:2 κ ⁴O:N-dirhodium(II)(*Rh*—*Rh*)

F(000) = 1744.00

 $D_{\rm x} = 1.568 {\rm Mg} {\rm m}^{-3}$

 $0.17 \times 0.15 \times 0.14 \text{ mm}$

 $\theta = 3.0-27.6^{\circ}$ $\mu = 0.95 \text{ mm}^{-1}$ T = 223 KChunk, green

Mo *K* α radiation, $\lambda = 0.71075$ Å Cell parameters from 27167 reflections

Crystal data
$[Rh_2(C_8H_8NO)_4(C_8H_7N)]$
$M_r = 859.59$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
<i>a</i> = 15.3319 (14) Å
<i>b</i> = 18.3248 (16) Å
c = 12.9564(12) Å
V = 3640.2 (6) Å ³
Z = 4

Data collection

Rigaku XtaLAB mini	4292 independent reflections
diffractometer	3154 reflections with $I > 2\sigma(I)$
Detector resolution: 6.849 pixels mm ⁻¹	$R_{\rm int} = 0.086$
ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.0^{\circ}$
Absorption correction: multi-scan	$h = -19 \rightarrow 19$
(<i>REQAB</i> ; Rigaku, 1998)	$k = -23 \rightarrow 23$
$T_{\min} = 0.664, \ T_{\max} = 0.873$	$l = -16 \rightarrow 16$
36328 measured reflections	

Acta Cryst. (2014). E70, m304

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from
$wR(F^2) = 0.089$ S = 1.05	neighbouring sites H-atom parameters constrained
4292 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0277P)^2 + 7.3733P]$
250 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{ m max} = 0.005$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.75 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.50 \ {\rm e} \ {\rm A}^{-3}$

Special details

Geometry. Compound 1 is coordinated by 3-methyl benzonitrile to only one axial site. In compounds 2 through 4 there are no methyl groups on the benzonitrile ligand and each of them has a benzonitrile ligand attached in each axial site. Like compound 1, compound 5 is coordinated by 3-methyl benzonitrile to only one axial site, however compound 5 exists as the *trans*-acetamide isomer, whereas compound 1 is the *cis*-acetamide isomer. The predominance of σ -bonding in the rhodium-nitrogen-carbon bond system (and lower affect of π -back bonding) is the likely cause of this deviation from linearity for compound 1, which has a similar rhodium-nitrogen-carbon angle as compound 5. The packing diagram shows that two acetamide phenyl rings on the same rhodium are stacked upon each other.

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameter.	s (À	ł²,)
---	------	-----	---

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Rh1	0.47995 (2)	0.2500	0.52236 (3)	0.02157 (11)	
Rh2	0.32933 (2)	0.2500	0.46954 (3)	0.02139 (11)	
01	0.35639 (16)	0.32962 (14)	0.36333 (19)	0.0294 (6)	
O2	0.44972 (15)	0.16995 (14)	0.62786 (18)	0.0254 (6)	
N1	0.49816 (19)	0.33240 (17)	0.4172 (2)	0.0262 (7)	
N2	0.30842 (19)	0.17003 (16)	0.5753 (2)	0.0237 (6)	
N3	0.6160 (3)	0.2500	0.5704 (4)	0.0336 (11)	
C1	0.4333 (2)	0.3578 (2)	0.3624 (3)	0.0273 (8)	
C2	0.4427 (3)	0.4243 (2)	0.2942 (3)	0.0401 (10)	
H2A	0.4958	0.4501	0.3121	0.048*	
H2B	0.3930	0.4562	0.3043	0.048*	
H2C	0.4453	0.4092	0.2226	0.048*	
C3	0.3715 (2)	0.1440 (2)	0.6319 (3)	0.0252 (8)	
C4	0.3608 (3)	0.0811 (2)	0.7052 (3)	0.0342 (9)	
H4A	0.4090	0.0473	0.6966	0.041*	
H4B	0.3064	0.0562	0.6908	0.041*	
H4C	0.3602	0.0991	0.7756	0.041*	
C5	0.5811 (2)	0.3681 (2)	0.4141 (3)	0.0283 (8)	
C6	0.6393 (3)	0.3544 (2)	0.3362 (3)	0.0342 (9)	
H6	0.6232	0.3231	0.2819	0.041*	
C7	0.7218 (3)	0.3860 (2)	0.3363 (3)	0.0386 (10)	
H7	0.7611	0.3766	0.2822	0.046*	
C8	0.7452 (3)	0.4311 (2)	0.4159 (4)	0.0428 (11)	

H8	0.8008	0.4527	0.4163	0.051*	
C9	0.6879 (3)	0.4451 (3)	0.4957 (4)	0.0457 (11)	
Н9	0.7047	0.4755	0.5506	0.055*	
C10	0.6056 (3)	0.4140 (2)	0.4942 (3)	0.0373 (10)	
H10	0.5661	0.4240	0.5478	0.045*	
C11	0.2218 (2)	0.1406 (2)	0.5787 (3)	0.0270 (8)	
C12	0.1718 (3)	0.1409 (2)	0.6679 (3)	0.0344 (9)	
H12	0.1944	0.1608	0.7291	0.041*	
C13	0.0885 (3)	0.1117 (2)	0.6669 (4)	0.0423 (11)	
H13	0.0555	0.1112	0.7280	0.051*	
C14	0.0535 (3)	0.0835 (2)	0.5780 (4)	0.0464 (12)	
H14	-0.0028	0.0633	0.5784	0.056*	
C15	0.1015 (3)	0.0850 (2)	0.4881 (4)	0.0424 (11)	
H15	0.0773	0.0668	0.4266	0.051*	
C16	0.1855 (3)	0.1134 (2)	0.4879 (3)	0.0334 (9)	
H16	0.2180	0.1142	0.4263	0.040*	
C17	0.6913 (4)	0.2500	0.5696 (5)	0.0339 (13)	
C18	0.7854 (3)	0.2500	0.5655 (5)	0.0295 (12)	
C19	0.8285 (4)	0.2500	0.4693 (4)	0.0331 (13)	
H19	0.7953	0.2500	0.4083	0.040*	
C20	0.9168 (4)	0.2500	0.4626 (4)	0.0356 (14)	
C21	0.9642 (4)	0.2500	0.5533 (4)	0.0315 (13)	
H21	1.0255	0.2500	0.5501	0.038*	
C22	0.9239 (4)	0.2500	0.6481 (4)	0.0354 (14)	
H22	0.9578	0.2500	0.7085	0.042*	
C23	0.8346 (4)	0.2500	0.6552 (4)	0.0317 (13)	
H23	0.8072	0.2500	0.7200	0.038*	
C24	0.9623 (5)	0.2500	0.3590 (5)	0.0500 (18)	
H24A	0.9234	0.2697	0.3070	0.060*	0.5
H24B	0.9783	0.2004	0.3407	0.060*	0.5
H24C	1.0144	0.2799	0.3630	0.060*	0.5

Atomic displacement parameters $(Å^2)$

-						
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Rh1	0.0146 (2)	0.0287 (2)	0.0214 (2)	0.000	0.00038 (16)	0.000
Rh2	0.0151 (2)	0.0283 (2)	0.0207 (2)	0.000	-0.00015 (16)	0.000
01	0.0226 (14)	0.0381 (15)	0.0275 (13)	-0.0035 (12)	-0.0011 (11)	0.0101 (12)
O2	0.0185 (13)	0.0331 (15)	0.0245 (13)	-0.0011 (11)	0.0004 (10)	0.0033 (11)
N1	0.0205 (16)	0.0297 (17)	0.0284 (16)	-0.0020 (13)	0.0027 (13)	0.0021 (14)
N2	0.0173 (15)	0.0270 (16)	0.0267 (15)	-0.0019 (13)	-0.0004 (13)	0.0021 (14)
N3	0.018 (2)	0.040 (3)	0.043 (3)	0.000	-0.004(2)	0.000
C1	0.025 (2)	0.034 (2)	0.0230 (18)	-0.0017 (17)	0.0019 (16)	0.0006 (16)
C2	0.031 (2)	0.044 (3)	0.045 (2)	-0.004(2)	0.001 (2)	0.014 (2)
C3	0.0210 (19)	0.029 (2)	0.0253 (18)	-0.0006 (16)	0.0037 (15)	-0.0027 (16)
C4	0.029 (2)	0.033 (2)	0.041 (2)	-0.0041 (18)	-0.0036 (18)	0.0046 (19)
C5	0.025 (2)	0.029 (2)	0.031 (2)	-0.0025 (16)	0.0002 (16)	0.0043 (17)
C6	0.031 (2)	0.037 (2)	0.034 (2)	-0.0065 (19)	0.0060 (18)	-0.0054 (19)

C7	0.024 (2)	0.040 (2)	0.052 (3)	-0.0002 (18)	0.0121 (19)	0.000 (2)
C8	0.027 (2)	0.044 (3)	0.058 (3)	-0.008 (2)	-0.002 (2)	0.003 (2)
C9	0.044 (3)	0.048 (3)	0.046 (3)	-0.014 (2)	-0.004 (2)	-0.009 (2)
C10	0.033 (2)	0.042 (2)	0.037 (2)	-0.0073 (19)	0.0066 (18)	-0.004 (2)
C11	0.0205 (19)	0.026 (2)	0.034 (2)	0.0012 (15)	-0.0014 (16)	0.0012 (18)
C12	0.027 (2)	0.037 (2)	0.039 (2)	-0.0050 (18)	0.0002 (18)	-0.0017 (19)
C13	0.028 (2)	0.045 (3)	0.053 (3)	-0.003 (2)	0.010 (2)	0.008 (2)
C14	0.021 (2)	0.041 (3)	0.077 (3)	-0.0094 (19)	-0.001 (2)	0.007 (3)
C15	0.030 (2)	0.038 (2)	0.059 (3)	-0.0072 (19)	-0.011 (2)	-0.002 (2)
C16	0.029 (2)	0.037 (2)	0.034 (2)	-0.0027 (17)	-0.0006 (17)	-0.0021 (19)
C17	0.032 (3)	0.030 (3)	0.040 (3)	0.000	-0.006 (3)	0.000
C18	0.019 (3)	0.030 (3)	0.040 (3)	0.000	-0.004 (2)	0.000
C19	0.034 (3)	0.035 (3)	0.030 (3)	0.000	-0.007 (3)	0.000
C20	0.039 (3)	0.032 (3)	0.035 (3)	0.000	-0.001 (3)	0.000
C21	0.027 (3)	0.035 (3)	0.033 (3)	0.000	0.000 (2)	0.000
C22	0.024 (3)	0.048 (4)	0.034 (3)	0.000	-0.005 (2)	0.000
C23	0.032 (3)	0.040 (3)	0.024 (3)	0.000	0.002 (2)	0.000
C24	0.050 (4)	0.067 (5)	0.033 (3)	0.000	0.008 (3)	0.000

Geometric parameters (Å, °)

Rh1—N1	2.053 (3)	С8—С9	1.380 (6)
Rh1—N1 ⁱ	2.053 (3)	C8—H8	0.9400
Rh1—O2 ⁱ	2.058 (2)	C9—C10	1.385 (6)
Rh1—O2	2.058 (2)	С9—Н9	0.9400
Rh1—N3	2.177 (4)	C10—H10	0.9400
Rh1—Rh2	2.4086 (6)	C11—C12	1.387 (5)
Rh2—N2 ⁱ	2.032 (3)	C11—C16	1.394 (5)
Rh2—N2	2.032 (3)	C12—C13	1.384 (5)
Rh2—O1	2.048 (2)	C12—H12	0.9400
Rh2—O1 ⁱ	2.048 (2)	C13—C14	1.371 (6)
O1—C1	1.288 (4)	C13—H13	0.9400
O2—C3	1.290 (4)	C14—C15	1.378 (6)
N1—C1	1.308 (5)	C14—H14	0.9400
N1—C5	1.431 (5)	C15—C16	1.389 (5)
N2—C3	1.304 (5)	C15—H15	0.9400
N2—C11	1.434 (4)	C16—H16	0.9400
N3—C17	1.154 (7)	C17—C18	1.444 (8)
C1—C2	1.511 (5)	C18—C23	1.385 (7)
C2—H2A	0.9700	C18—C19	1.411 (8)
C2—H2B	0.9700	C19—C20	1.356 (8)
C2—H2C	0.9700	C19—H19	0.9400
C3—C4	1.503 (5)	C20—C21	1.381 (8)
C4—H4A	0.9700	C20—C24	1.513 (8)
C4—H4B	0.9700	C21—C22	1.375 (8)
C4—H4C	0.9700	C21—H21	0.9400
C5—C6	1.370 (5)	C22—C23	1.372 (8)
C5—C10	1.387 (5)	C22—H22	0.9400

C6 C7	1 202 (5)	C23 H23	0.0400
$C_0 = C_1$	1.392 (3)	C24 U24A	0.9400
	0.9400	C24—H24R	0.9700
	1.3/0 (6)	C24—H24B	0.9700
С/—Н/	0.9400	С24—Н24С	0.9700
	04.50 (15)		110 5
NI—RhI—NI ¹	94.72 (17)	С/—Сб—Нб	119.5
NI—RhI—O2 ¹	86.96 (11)	C8—C/—C6	119.3 (4)
$N1^{i}$ —Rh1—O2 ⁱ	174.72 (11)	С8—С7—Н7	120.3
N1—Rh1—O2	174.72 (11)	С6—С7—Н7	120.3
N1 ⁱ —Rh1—O2	86.96 (11)	C7—C8—C9	120.7 (4)
$O2^{i}$ —Rh1—O2	90.92 (14)	С7—С8—Н8	119.7
N1—Rh1—N3	93.41 (12)	С9—С8—Н8	119.7
N1 ⁱ —Rh1—N3	93.41 (12)	C8—C9—C10	119.5 (4)
O2 ⁱ —Rh1—N3	91.48 (11)	С8—С9—Н9	120.2
O2—Rh1—N3	91.48 (11)	С10—С9—Н9	120.2
N1—Rh1—Rh2	86.66 (8)	C9—C10—C5	120.4 (4)
N1 ⁱ —Rh1—Rh2	86.66 (8)	С9—С10—Н10	119.8
$O2^{i}$ —Rh1—Rh2	88.44 (7)	C5-C10-H10	119.8
Ω^2 —Rh1—Rh2	88 44 (7)	C12-C11-C16	118.9(3)
N_3 —Rh1—Rh2	179 89 (13)	C12 - C11 - N2	1225(3)
$N2^{i}$ _Rh2_N2	92.30(17)	$C_{12} = C_{11} = N_2$	122.5(3)
$N2^i$ Rh2 O1	88 36 (11)	C_{13} C_{12} C_{11}	120.1(4)
N2 = Ph2 = O1	177.38(11)	$C_{13} = C_{12} = C_{11}$	120.1 (4)
N2i Ph2 O1i	177.38(11)	C13 - C12 - H12	120.0
$N_2 - Rn_2 - OI^2$	1/7.38(11)	CII—CI2—HI2	120.0
N_2 — Rh_2 — OI^4	88.36 (11)	C14 - C13 - C12	121.0 (4)
01—Rh2—01 ¹	90.86 (15)	С14—С13—Н13	119.5
$N2^{i}$ —Rh2—Rh1	87.68 (8)	C12—C13—H13	119.5
N2—Rh2—Rh1	87.68 (8)	C13—C14—C15	119.6 (4)
O1—Rh2—Rh1	89.81 (7)	C13—C14—H14	120.2
O1 ⁱ —Rh2—Rh1	89.81 (7)	C15—C14—H14	120.2
C1—O1—Rh2	118.6 (2)	C14—C15—C16	120.3 (4)
C3—O2—Rh1	119.9 (2)	C14—C15—H15	119.9
C1—N1—C5	119.8 (3)	C16—C15—H15	119.9
C1—N1—Rh1	121.3 (2)	C15—C16—C11	120.1 (4)
C5—N1—Rh1	118.4 (2)	C15—C16—H16	119.9
C3—N2—C11	122.2 (3)	C11—C16—H16	119.9
C3—N2—Rh2	121.7 (2)	N3-C17-C18	178.5 (7)
C11 - N2 - Rh2	1160(2)	C_{23} C_{18} C_{19}	1190(5)
C17 = N3 = Rh1	162.8 (5)	C_{23} C_{18} C_{17}	120.9(5)
01-C1-N1	102.0(3) 123.2(3)	C19 - C18 - C17	120.9(5)
$O_1 = C_1 = C_2$	125.2(3) 114.6(3)	$C_{10} = C_{10} = C_{17}$	120.0(5) 121.6(5)
$V_1 = C_1 = C_2$	114.0(3) 122.2(2)	$C_{20} = C_{19} = C_{18}$	121.0(3)
$N_1 = C_1 = C_2$	122.2 (5)	C18 C10 H10	119.2
C1 = C2 = M2D	109.5	$C_{10} = C_{12} = C_{13}$	119.2
	109.5	C19 - C20 - C21	118.1 (6)
$H_2A - C_2 - H_2B$	109.5	C19 - C20 - C24	121.1 (6)
C1—C2—H2C	109.5	C21—C20—C24	120.8 (5)
H2A—C2—H2C	109.5	C22—C21—C20	121.5 (5)
H2B—C2—H2C	109.5	C22—C21—H21	119.2

$0^{2}-C^{3}-N^{2}$	122 1 (3)	C20-C21-H21	119.2
02 - C3 - C4	114.2 (3)	C_{23} C_{22} C_{21} C_{21}	120.6 (5)
N2-C3-C4	123.7(3)	C_{23} C_{22} H_{22}	119.7
C3—C4—H4A	109 5	C21—C22—H22	119.7
C3—C4—H4B	109.5	C_{22} C_{23} C_{18}	119.2 (5)
H4A - C4 - H4B	109.5	C22—C23—H23	120.4
C3—C4—H4C	109.5	C18—C23—H23	120.4
H4A - C4 - H4C	109.5	C20—C24—H24A	109 5
H4B-C4-H4C	109.5	C20—C24—H24B	109.5
C6-C5-C10	1191(4)	H24A - C24 - H24B	109.5
C6-C5-N1	121 0 (4)	C_{20} C_{24} H_{24} H_{24} C_{24} H_{24} C_{24} H_{24} H_{24} C_{24} H_{24} H	109.5
C10-C5-N1	1198(3)	$H_{24} - C_{24} - H_{24}C$	109.5
$C_{5}-C_{6}-C_{7}$	121 0 (4)	H24B— $C24$ — $H24C$	109.5
C5-C6-H6	119 5		109.5
	119.5		
Rh2-01-C1-N1	8.4 (5)	N1-C5-C10-C9	175.7 (4)
Rh2-01-C1-C2	-170.2(2)	$C_3 - N_2 - C_{11} - C_{12}$	61.3 (5)
$C_{5}-N_{1}-C_{1}-O_{1}$	-1782(3)	Rh2 - N2 - C11 - C12	-122.9(3)
Rh1-N1-C1-O1	-6.1(5)	$C_3 - N_2 - C_{11} - C_{16}$	-121.2(4)
C5-N1-C1-C2	0.3 (5)	Rh2—N2—C11—C16	54.6 (4)
Rh1-N1-C1-C2	172.4 (3)	C_{16} $-C_{11}$ $-C_{12}$ $-C_{13}$	2.6 (6)
Rh1 - O2 - C3 - N2	-4.4 (5)	N2-C11-C12-C13	-179.9(4)
Rh1—O2—C3—C4	174.4 (2)	C11—C12—C13—C14	-1.3(7)
$C_{11} = N_2 = C_3 = O_2$	179.1 (3)	C12-C13-C14-C15	-0.8(7)
Rh2—N2—C3—O2	3.6 (5)	C_{13} C_{14} C_{15} C_{16}	1.4 (7)
C11—N2—C3—C4	0.4 (5)	C14—C15—C16—C11	-0.1 (6)
Rh2—N2—C3—C4	-175.1 (3)	C12—C11—C16—C15	-1.9(6)
C1—N1—C5—C6	-82.5 (5)	N2-C11-C16-C15	-179.5(4)
Rh1—N1—C5—C6	105.1 (4)	C23—C18—C19—C20	0.000 (1)
C1—N1—C5—C10	101.5 (4)	C17—C18—C19—C20	180.000 (1)
Rh1—N1—C5—C10	-70.9(4)	C18—C19—C20—C21	0.000(1)
C10—C5—C6—C7	-0.4 (6)	C18—C19—C20—C24	180.000 (1)
N1—C5—C6—C7	-176.4(4)	C19—C20—C21—C22	0.000 (1)
C5—C6—C7—C8	0.5 (7)	C24—C20—C21—C22	180.000 (1)
C6—C7—C8—C9	0.1 (7)	C20—C21—C22—C23	0.000(1)
C7—C8—C9—C10	-0.9 (7)	C21—C22—C23—C18	0.000(1)
C8—C9—C10—C5	1.1 (7)	C19—C18—C23—C22	0.000(1)
C6—C5—C10—C9	-0.4 (6)	C17—C18—C23—C22	180.000 (1)

Symmetry code: (i) x, -y+1/2, z.