organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(E)-3,4,5-Trimethoxy-N'-[(6-methoxy-4oxo-4H-chromen-3-yl)methylidene]benzohydrazide monohydrate

Yoshinobu Ishikawa* and Kohzoh Watanabe

School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan

Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Received 3 June 2014; accepted 24 June 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.076; *wR* factor = 0.230; data-to-parameter ratio = 15.8.

In the title chromone-tethered benzohydrazide derivative, $C_{21}H_{20}N_2O_7 \cdot H_2O$, the atoms of the 4*H*-chromen-4-one segment are essentially coplanar (r.m.s. deviation = 0.0073 Å) with the largest deviation from the mean plane [0.012 (3) Å] being found for the benzene C atom. The dihedral angles between the chromone segment and the hydrazide plane and between the chromone segment and the benzene ring of the trimethoxybenzene unit are 24.67 (9) and 41.28 (8) Å, respectively. The molecule is connected to the solvent water molecule by $O-H\cdots O$ hydrogen bonds and weak $C-H\cdots O$ interactions. Additional $N-H\cdots O$ interactions are observed and together they link the molecules into chains forming a two-dimensional network along (011).

Related literature

For the biological activity of related compounds, see: Khan *et al.* (2009); Tu *et al.* (2013). For related structures, see: Ishikawa *et al.* (2014*a*,*b*).

Experimental

Crystal data C₂₁H₂₀N₂O₇·H₂O

 $M_r = 430.41$

Triclinic, $P\overline{1}$ a = 7.782 (3) Å b = 9.015 (5) Å c = 14.991 (6) Å $\alpha = 103.17$ (5)° $\beta = 96.51$ (3)° $\gamma = 95.52$ (4)°

Data collection

Rigaku AFC-7R diffractometer 5621 measured reflections 4621 independent reflections 3518 reflections with $F^2 > 2\sigma(F^2)$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.076$ 292 parameters $wR(F^2) = 0.230$ H-atom parameters constrainedS = 1.02 $\Delta \rho_{max} = 0.65$ e Å⁻³4621 reflections $\Delta \rho_{min} = -0.57$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O8-H21\cdots O2^{i}$	0.91	1.93	2.829 (4)	168
O8−H22···O4	0.83	2.27	3.036 (3)	153
$N2-H9\cdots O6^{ii}$	0.88	2.28	3.062 (3)	149
$C1 - H1 \cdots O8$	0.95	2.30	3.214 (4)	161
$C4^{i}-H2^{i}\cdots O8$	0.95	2.60	3.489 (4)	155

Symmetry codes: (i) x, y + 1, z; (ii) -x, -y, -z + 1.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

We acknowledge the University of Shizuoka for instrumental support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: JJ2189).

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
- Ishikawa, Y. & Watanabe, K. (2014a). Acta Cryst. E70, 0472.
- Ishikawa, Y. & Watanabe, K. (2014b). Acta Cryst. E70, 0565.
- Khan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Choudhary, M. I. (2009). *Bioorg. Med. Chem.* 17, 2983–2988.
- Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tu, Q. D., Li, D., Sun, Y., Han, X. Y., Yi, F., Sha, Y., Ren, Y. L., Ding, M. W., Feng, L. L. & Wan, J. (2013). *Bioorg. Med. Chem.* 21, 2826–2831.

V = 1009.4 (8) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.18 \text{ mm}$

3 standard reflections every 150

intensity decay: 2.3%

 $\mu = 0.11 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.111$

reflections

7 - 2

supporting information

Acta Cryst. (2014). E70, o832 [doi:10.1107/S1600536814014937]

(*E*)-3,4,5-Trimethoxy-*N*'-[(6-methoxy-4-oxo-4*H*-chromen-3-yl)methylidene]benzohydrazide monohydrate

Yoshinobu Ishikawa and Kohzoh Watanabe

S1. Comment

Schiff base derivatives of 3-formyl chromones have attracted much attention due to their biological functions such as enzyme inhibition (Khan *et al.* 2009; Tu *et al.* 2013). We herein report the crystal structure of the title compound, which was obtained from the condensation reaction of 6-methoxy-3-formylchromone with 3,4,5-trimethoxybenzoylhydrazide in benzene.

The mean deviation of the least-square planes for the non-hydrogen atoms of the 4*H*-chromen-4-one segment is 0.0073 Å, and the largest deviation is 0.012 (3) Å for C6 (Fig.1) showing an essentially coplanar segment. The dihedral angles between this chromone segment and the hydrazide (N1/N2/C12/O4) plane and between the chromone segment and the benzene ring of the trimethoxybenzene unit are 24.67 (9) Å and 41.28 (8) Å, respectively. In the crystal, the molecule is connected to the solvent water molecule by O–H…O hydrogen bonds and weak O—H…O, C–H…O intermolecular interactions (Table 1). Additional weak N—H…O intermolecular interactions are observed and together they link the molecules into chains forming a 2-D network along (011) (Fig. 2).

S2. Experimental

3,4,5-Trimethoxybenzoylhydrazide (1.00 mmol), 6-methoxy-3-formylchromone (1.00mmol), and a few drops of acetic acid were dissolved in 25 ml of benzene, andthe mixture was refluxed with Dean-Stark apparatus for 6 h. After cooling, the precipitates were collected, washed with *n*-hexane, and dried (yield 63.6%). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an acetonitrile solution of the title compound at room temperature. DART-MS calcd for $[C_{21}H_{20}N_2O_7 + H^+]$: 413.135, found 413.158.

S3. Refinement

The C(*sp*²)- and N(*sp*²)-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, $U_{iso}(H) = 1.2U_{eq}(C)$, N–H 0.88 Å, $U_{iso}(H) = 1.2U_{eq}(N)$], and refined using a riding model. Hydrogen atoms of methyl groups were found in a difference Fourier map, and a rotating group model was applied with distance constraint [C–H = 0.98 Å, $U_{iso}(H) = 1.2U_{eq}(C)$]. Hydrogen atoms of the water molecule were found in a difference Fourier map, and were refined using a riding model.

Figure 1

Fig. .1 The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.

Figure 2

Crystal packing of the title compound viewed along the *a* axis. O–H…O hydrogen bonds and weak O—H…O, N—H…O, C–H…O intermolecular interactions are represented by dashed lines.

(E)-3,4,5-Trimethoxy-N'-[(6-methoxy-4-oxo-4H-chromen-3-yl)methylidene]benzohydrazide monohydrate

Crystal data	
$C_{21}H_{20}N_2O_7 \cdot H_2O$	<i>b</i> = 9.015 (5) Å
$M_r = 430.41$	c = 14.991 (6) Å
Triclinic, $P\overline{1}$	$\alpha = 103.17(5)^{\circ}$
Hall symbol: -P 1	$\beta = 96.51 (3)^{\circ}$
a = 7.782 (3) Å	$\gamma = 95.52 \ (4)^{\circ}$

V = 1009.4 (8) Å³ $\theta = 15.9 - 17.4^{\circ}$ Z = 2 $\mu = 0.11 \text{ mm}^{-1}$ F(000) = 452.00T = 100 K $D_{\rm x} = 1.416 {\rm Mg} {\rm m}^{-3}$ Block, colorless Mo *K* α radiation, $\lambda = 0.71069$ Å $0.30 \times 0.20 \times 0.18 \text{ mm}$ Cell parameters from 25 reflections Data collection Rigaku AFC-7R $\theta_{\rm max} = 27.5^{\circ}$ diffractometer $h = -10 \rightarrow 10$ ω –2 θ scans $k = -11 \rightarrow 6$ $l = -18 \rightarrow 19$ 5621 measured reflections 4621 independent reflections 3 standard reflections every 150 reflections 3518 reflections with $F^2 > 2\sigma(F^2)$ intensity decay: 2.3% $R_{\rm int} = 0.111$ Refinement Refinement on F^2 Secondary atom site location: difference Fourier $R[F^2 > 2\sigma(F^2)] = 0.076$ map $wR(F^2) = 0.230$ Hydrogen site location: inferred from S = 1.02neighbouring sites 4621 reflections H-atom parameters constrained 292 parameters $w = 1/[\sigma^2(F_o^2) + (0.1645P)^2 + 0.3451P]$ where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints Primary atom site location: structure-invariant $(\Delta/\sigma)_{\rm max} < 0.001$

Special details

direct methods

Experimental. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.73 (s, 3H), 3.88 (s, 6H), 3.89 (s, 3H), 7.27 (s, 2H), 7.46 (dd, 1H, *J* = 2.9 and 9.3 Hz), 7.51 (d, 1H, *J* = 2.9 Hz), 7.72 (d, 1H, *J* = 9.3 Hz), 8.68 (s, 1H), 8.85 (s, 1H), 11.80 (s, 1H). **Refinement**. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on *F*². *R*-factor (gt) are based on *F*. The threshold expression of *F*² > 2.0 σ (*F*²) is used only for calculating *R*-factor (gt).

 $\Delta \rho_{\text{max}} = 0.65 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.57 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.7962 (3)	0.25163 (18)	1.03469 (11)	0.0170 (4)	
O2	0.5804 (3)	-0.17435 (19)	0.88102 (12)	0.0192 (4)	
03	0.9883 (3)	-0.23616 (19)	1.16901 (11)	0.0182 (4)	
04	0.4338 (3)	0.4081 (2)	0.68493 (12)	0.0217 (4)	
05	-0.2787 (2)	0.0891 (2)	0.52041 (11)	0.0183 (4)	
O6	-0.2145 (2)	0.16565 (18)	0.36535 (11)	0.0168 (4)	
07	0.0852 (3)	0.3332 (2)	0.35685 (11)	0.0206 (4)	
08	0.6699 (3)	0.5255 (3)	0.86847 (14)	0.0302 (5)	
N1	0.4696 (3)	0.1985 (3)	0.78507 (12)	0.0140 (4)	
N2	0.3390 (3)	0.1774 (2)	0.71139 (13)	0.0135 (4)	
C1	0.6843 (3)	0.2331 (3)	0.95678 (15)	0.0154 (5)	
C2	0.6093 (3)	0.0946 (3)	0.90324 (14)	0.0127 (5)	
C3	0.6469 (3)	-0.0464 (3)	0.92841 (14)	0.0129 (5)	
C4	0.8169 (3)	-0.1504 (3)	1.04813 (15)	0.0140 (5)	

C5	0.0310(3)	-0.1250(3)	1 12022 (15)	0.0143(5)
C6	0.9310(3)	0.1250(5) 0.0268(3)	1.12933(13) 1.17845(15)	0.0143(3) 0.0161(5)
C0 C7	0.9501(3)	0.0208(3) 0.1495(3)	1.17649 (15)	0.0101(5)
C8	0.7690 (3)	-0.0245(3)	1.01460 (14)	0.0100(5)
C8	0.7090(3) 0.8361(3)	0.0243(3)	1.01400(14) 1.06352(15)	0.0121(5) 0.0135(5)
C10	0.0301(3) 0.0130(4)	-0.3915(3)	1 12624 (18)	0.0133(3) 0.0228(6)
C10	0.9139(4) 0.4829(3)	0.3713(3)	0.82108(14)	0.0220(0)
C12	0.3287(3)	0.0033 (3)	0.62100(14) 0.66582(15)	0.0130(5)
C12 C13	0.3287(3) 0.1788(3)	0.2913(3)	0.58907 (15)	0.0133(5)
C14	0.1700(3) 0.0185(3)	0.2051(3) 0.1864(3)	0.59606 (15)	0.0130(5)
C15	-0.1154(3)	0.1596 (3)	0.52197(15)	0.0140(5)
C16	-0.0862(3)	0.1000(3)	0.32177(15) 0.44125(15)	0.0130(5)
C17	0.0002(3)	0.2886(3)	0.44727(15)	0.0142(5) 0.0157(5)
C18	0.0755(3) 0.2067(3)	0.2000(3)	0.51160 (15)	0.0157(5)
C19	-0.3186(3)	0.0514(3)	0.60432 (16)	0.0193(5)
C20	-0.3090(4)	0.0911(3) 0.2905(4)	0.35235(19)	0.0193(3) 0.0297(7)
C21	0.2353(4)	0.2903(1) 0.4363(4)	0.35233(17)	0.0250(6)
H1	0.6559	0 3225	0.9380	0.0184*
H2	0.7713	-0.2522	1.0152	0.0168*
H3	1.0731	0.0437	1.2347	0.0193*
H4	0.9952	0.2512	1.1799	0.0202*
H5A	0.9310	-0.4163	1.0610	0.0273*
H6B	0.7888	-0.4030	1.1307	0.0273*
H7C	0.9709	-0.4614	1.1578	0.0273*
H8	0.4097	-0.0099	0.7941	0.0156*
H9	0.2647	0.0928	0.6944	0.0162*
H10	0.0007	0.1530	0.6504	0.0168*
H11	0.3152	0.3739	0.5094	0.0186*
H12A	-0.2449	-0.0245	0.6190	0.0231*
H13B	-0.4415	0.0086	0.5963	0.0231*
H14C	-0.2966	0.1443	0.6550	0.0231*
H15A	-0.3884	0.2583	0.2939	0.0357*
H16B	-0.2266	0.3788	0.3506	0.0357*
H17C	-0.3763	0.3193	0.4037	0.0357*
H18A	0.3401	0.3852	0.3603	0.0300*
H19B	0.2448	0.5277	0.4055	0.0300*
H20C	0.2238	0.4668	0.2954	0.0300*
H21	0.6256	0.6158	0.8696	0.0244*
H22	0.6069	0.4653	0.8237	0.0513*

Atomic	displ	lacement	parameters	$(Å^2)$
--------	-------	----------	------------	---------

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0212 (9)	0.0130 (8)	0.0137 (8)	-0.0027 (6)	-0.0035 (7)	0.0019 (6)
0.0221 (9)	0.0137 (8)	0.0171 (8)	-0.0023 (7)	-0.0051 (7)	-0.0001 (6)
0.0233 (9)	0.0160 (9)	0.0139 (8)	0.0005 (7)	-0.0003 (7)	0.0031 (6)
0.0215 (9)	0.0183 (9)	0.0213 (9)	-0.0093 (7)	-0.0059 (7)	0.0060 (7)
0.0122 (8)	0.0263 (9)	0.0138 (8)	-0.0063 (7)	-0.0002 (6)	0.0041 (7)
	U ¹¹ 0.0212 (9) 0.0221 (9) 0.0233 (9) 0.0215 (9) 0.0122 (8)	$\begin{array}{c cccc} U^{11} & U^{22} \\ \hline 0.0212 \ (9) & 0.0130 \ (8) \\ 0.0221 \ (9) & 0.0137 \ (8) \\ 0.0233 \ (9) & 0.0160 \ (9) \\ 0.0215 \ (9) & 0.0183 \ (9) \\ 0.0122 \ (8) & 0.0263 \ (9) \end{array}$	U^{11} U^{22} U^{33} 0.0212 (9) 0.0130 (8) 0.0137 (8) 0.0221 (9) 0.0137 (8) 0.0171 (8) 0.0233 (9) 0.0160 (9) 0.0139 (8) 0.0215 (9) 0.0183 (9) 0.0213 (9) 0.0122 (8) 0.0263 (9) 0.0138 (8)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

O6	0.0193 (9)	0.0155 (8)	0.0109 (8)	-0.0032 (7)	-0.0034 (6)	-0.0015 (6)
07	0.0243 (9)	0.0239 (9)	0.0103 (8)	-0.0108 (7)	-0.0019 (7)	0.0049 (7)
08	0.0449 (12)	0.0144 (9)	0.0239 (10)	-0.0013 (9)	-0.0122 (9)	0.0000 (8)
N1	0.0133 (9)	0.0170 (9)	0.0098 (9)	-0.0019 (7)	0.0009 (7)	0.0012 (7)
N2	0.0135 (9)	0.0127 (9)	0.0113 (9)	-0.0045 (7)	-0.0014 (7)	0.0013 (7)
C1	0.0170 (11)	0.0151 (11)	0.0130 (10)	-0.0007 (9)	-0.0010 (8)	0.0040 (8)
C2	0.0126 (10)	0.0150 (11)	0.0095 (10)	-0.0020 (8)	0.0013 (8)	0.0023 (8)
C3	0.0127 (10)	0.0141 (11)	0.0103 (10)	-0.0010 (8)	0.0014 (8)	0.0007 (8)
C4	0.0152 (11)	0.0140 (11)	0.0114 (10)	-0.0006 (8)	0.0034 (8)	0.0003 (8)
C5	0.0146 (11)	0.0177 (11)	0.0120 (10)	0.0026 (8)	0.0060 (8)	0.0040 (8)
C6	0.0165 (11)	0.0207 (12)	0.0086 (10)	-0.0011 (9)	-0.0022 (8)	0.0016 (8)
C7	0.0204 (12)	0.0153 (11)	0.0105 (10)	-0.0034 (9)	-0.0007 (9)	-0.0020 (8)
C8	0.0116 (10)	0.0149 (11)	0.0086 (10)	-0.0008 (8)	0.0019 (8)	0.0014 (8)
C9	0.0164 (11)	0.0123 (10)	0.0117 (10)	0.0001 (8)	0.0032 (8)	0.0031 (8)
C10	0.0306 (14)	0.0144 (12)	0.0222 (12)	0.0013 (10)	-0.0013 (10)	0.0051 (9)
C11	0.0129 (10)	0.0150 (11)	0.0094 (10)	-0.0009 (8)	0.0024 (8)	-0.0001 (8)
C12	0.0128 (10)	0.0138 (10)	0.0112 (10)	-0.0014 (8)	0.0006 (8)	0.0008 (8)
C13	0.0159 (11)	0.0095 (10)	0.0107 (10)	-0.0008 (8)	-0.0007 (8)	-0.0013 (8)
C14	0.0162 (11)	0.0135 (10)	0.0112 (10)	0.0008 (8)	0.0031 (8)	0.0007 (8)
C15	0.0131 (10)	0.0113 (10)	0.0136 (10)	-0.0019 (8)	0.0023 (8)	-0.0018 (8)
C16	0.0149 (11)	0.0121 (10)	0.0115 (10)	-0.0005 (8)	-0.0023 (8)	-0.0024 (8)
C17	0.0213 (12)	0.0145 (10)	0.0091 (10)	-0.0009 (9)	0.0014 (9)	0.0002 (8)
C18	0.0161 (11)	0.0150 (11)	0.0127 (10)	-0.0035 (8)	0.0000 (9)	0.0008 (8)
C19	0.0142 (11)	0.0276 (13)	0.0155 (11)	-0.0035 (9)	0.0049 (9)	0.0051 (9)
C20	0.0321 (15)	0.0259 (14)	0.0234 (13)	0.0072 (11)	-0.0108 (11)	-0.0044 (11)
C21	0.0240 (13)	0.0315 (14)	0.0171 (12)	-0.0119 (11)	-0.0010 (10)	0.0096 (10)

Geometric parameters (Å, °)

01—C1	1.343 (3)	C13—C18	1.391 (4)
O1—C9	1.373 (3)	C14—C15	1.394 (3)
O2—C3	1.238 (3)	C15—C16	1.403 (4)
O3—C5	1.362 (4)	C16—C17	1.398 (4)
O3—C10	1.435 (3)	C17—C18	1.393 (3)
O4—C12	1.226 (3)	O8—H21	0.911
O5—C15	1.360 (3)	O8—H22	0.832
O5—C19	1.434 (4)	N2—H9	0.880
O6—C16	1.381 (3)	C1—H1	0.950
O6—C20	1.440 (4)	C4—H2	0.950
O7—C17	1.364 (4)	С6—Н3	0.950
O7—C21	1.431 (4)	C7—H4	0.950
N1—N2	1.379 (3)	C10—H5A	0.980
N1-C11	1.277 (4)	C10—H6B	0.980
N2-C12	1.361 (4)	C10—H7C	0.980
C1—C2	1.357 (3)	C11—H8	0.950
C2—C3	1.451 (4)	C14—H10	0.950
C2—C11	1.465 (3)	C18—H11	0.950
C3—C8	1.477 (3)	C19—H12A	0.980

C4—C5	1.382 (3)	C19—H13B	0.980
C4—C8	1.407 (4)	C19—H14C	0.980
C5—C6	1.412 (4)	C20—H15A	0.980
С6—С7	1.363 (4)	C20—H16B	0.980
С7—С9	1.403 (3)	C20—H17C	0.980
С8—С9	1.387 (3)	C21—H18A	0.980
C12—C13	1.502 (3)	C21—H19B	0.980
C13—C14	1.394 (4)	C21—H20C	0.980
O1…C3	2.852 (3)	$C10$ ···· $H4^{iv}$	3.5884
O2…C1	3.571 (4)	C10····H5A ^{xiv}	3.3602
O2…C4	2.889 (3)	C10···H10 ⁱ	3.4958
O2…C11	2.818 (4)	C11···H2 ⁱ	3.4958
O4…N1	2.683 (4)	C11…H13B ^x	3.4119
O4…C14	3.576 (4)	C11····H14C ^x	3.2939
O4…C18	2.874 (3)	C11…H15Aviii	3.1437
05…06	2.656 (3)	C11…H22	3.4710
O5…C20	3.425 (4)	C12…H6B ⁱ	3.2503
06…07	2.686 (3)	C12H13B ^x	3.2962
07…C20	3.046 (4)	C12···H14C ^x	3.3222
N1···C1	2.842 (3)	C12…H16B ^v	3.2064
N2…C14	2.889 (3)	C12H22	3.0406
N2…C18	3,593 (4)	C13···H12A ^{viii}	3.4843
C1…C7	3 589 (4)	$C13\cdots H16B^{v}$	3 1208
C1···C8	2 768 (4)	$C14\cdots H19B^{v}$	3 4454
C2···C9	2.760 (1)	C15···H9 ^{viii}	3 5099
C4…C7	2.701(1) 2 804 (4)	$C15 \cdot H19B^{v}$	3 0881
C4…C10	2.804 (4)	C16···H3 ^{ix}	3 5247
C5C9	2.010(4) 2 773(4)	$C16H9^{viii}$	3.0781
C6C8	2.775(+)	$C16 \cdots H10^{viii}$	3 3785
C0 C0 C11C12	2.777(7)	$C16H12A^{viii}$	3 2876
C13···C16	2,769(4)	C16····H19Bv	3 3541
C14C17	2.709(4)	$C17 \cdots H3^{ix}$	3 3776
C14 C17	2.802(4)	$C17 \cdots H12 A^{viii}$	2 8/01
C14 C19	2.812(4)	$C18 \cdots H12 A^{viii}$	2.0491
C15 ···C20	2.800 (4)	$C18 \dots W16 B^{v}$	2.9718
C15 C20	3.512(3) 3.104(4)	$C18 \dots H17C^{v}$	3.0081
C17 ^m C20	3.104(4)	$C10H2^{i}$	3.3107
01 = 02i	2.024(4) 3.304(3)	C10H13Pvii	3.2283
0102	3.394 (3) 2.507 (4)	C20118viii	2 0211
01	3.307 (4)	C20H8***	2.9211
01C10	3.497 (4)	C_{20} H_{11}	2 2627
	3.195 (4)		3.2027
$02\cdots01^{n}$	3.394 (3)	C20H13B**	3.4512
0208"	2.829 (4)	C_{20} H10Dy	2.945/
$O_2 \cdots O_1^{i}$	5.45 / (4)	C21. U4iv	3.5820
02	5.485 (4)	C_{21} H1CA	3.0689
03N2 ¹	3.293 (3)	C21···H15A*	3.5799
03…C1 ⁿ	3.339 (4)	C21H17C ^x	3.3552

O3…C14 ⁱ	3.454 (4)	C21····H21 ^{vi}	3.5871
O4…O8	3.036 (3)	C21····H22 ^{vi}	3.3215
O4…C20 ^v	3.117 (4)	H1···O3 ⁱⁱ	3.4201
O4····C21 ^{vi}	2.995 (4)	H1…O8	2.3023
O5…O5 ^{vii}	3.583 (3)	H1…H2 ⁱ	3.5037
O5…C13 ^{viiii}	3.431 (4)	H1…H5A ⁱⁱⁱ	3.1121
O5…C19 ^{vii}	3.429 (3)	H1…H5A ⁱⁱ	3.2421
O6…N2 ^{viii}	3.062 (3)	H1···H6B ⁱⁱⁱ	3.3336
O6····C6 ^{ix}	3.455 (4)	H1…H21	3.0649
O6…C11 ^{viii}	3.485 (3)	H1…H22	2.3846
O7····C6 ^{ix}	3.332 (4)	H2…O1 ⁱⁱ	3.5296
O7…C7 ^{ix}	3.213 (3)	H2···O8 ^{iv}	2.6024
O8…O2 ⁱⁱⁱ	2.829 (4)	H2····C9 ⁱⁱ	3.5823
O8…O4	3.036 (3)	H2…C11 ⁱ	3.4958
O8…N1	3.111 (4)	H2…H1 ⁱ	3.5037
O8…C1	3.214 (4)	H2…H21 ^{iv}	2.3369
O8…C4 ⁱⁱⁱ	3.489 (4)	H2…H22 ^{iv}	3.4017
O8…C10 ⁱⁱ	3.563 (4)	H3…O6 ^{xi}	3.2462
O8…C21 ^{vi}	3.585 (4)	H3····O7 ^{xi}	2.8119
N1…O8	3.111 (4)	H3…C2 ⁱⁱ	3.5376
N1····C5 ⁱ	3.564 (4)	H3····C3 ⁱⁱ	3.4572
N1…C19 ^x	3.408 (4)	H3…C16 ^{xi}	3.5247
N2…O3 ⁱ	3.293 (3)	H3····C17 ^{xi}	3.3226
N2…O6 ^{viii}	3.062 (3)	H3…C19 ⁱ	3.2283
N2···C5 ⁱ	3.435 (4)	H3…H9 ⁱ	3.1881
N2…C19 ^x	3.418 (4)	H3…H10 ⁱ	2.8039
C1···O2 ⁱ	3.457 (4)	H3…H12A ⁱ	2.4864
C1···O3 ⁱⁱ	3.339 (4)	H3…H14C ⁱ	3.1349
C1…O8	3.214 (4)	H3…H18A ^{xi}	3.5468
C1…C5 ⁱⁱ	3.527 (4)	H4…O6 ^{xi}	3.5710
C2···C3 ⁱ	3.465 (4)	H4…O7 ^{xi}	2.5808
C2···C4 ⁱ	3.534 (4)	H4…O8 ^{xiii}	3.3844
C2···C8 ⁱ	3.377 (4)	H4…C10 ⁱⁱⁱ	3.5884
C3····C2 ⁱ	3.465 (4)	H4…C21 ^{xi}	3.0689
C3…C3 ⁱ	3.346 (4)	H4…H7C ⁱⁱⁱ	2.7068
C3···C6 ⁱⁱ	3.370 (4)	H4…H16B ^{xi}	3.3011
C3…C7 ⁱⁱ	3.582 (4)	H4…H18A ^{xi}	3.4956
C3····C8 ⁱ	3.520 (4)	H4…H20C ^{xi}	2.6541
C4…O1 ⁱⁱ	3.507 (4)	H4…H21 ^{xiii}	3.3041
C4…O8 ^{iv}	3.489 (4)	H5A…O1 ^{iv}	2.9971
$C4\cdots C2^{i}$	3.534 (4)	H5A…O1 ⁱⁱ	3.1342
C4···C9 ⁱⁱ	3.352 (4)	H5A···O8 ^{iv}	3.2416
C4···C11 ⁱ	3.228 (4)	H5A…O8 ⁱⁱ	3.4717
C5…O1 ⁱⁱ	3.497 (4)	H5A…C1 ^{iv}	3.4670
C5…N1 ⁱ	3.564 (4)	H5A…C1 ⁱⁱ	3.3456
C5…N2 ⁱ	3.435 (4)	H5A…C10 ^{xiv}	3.3602
C5····C1 ⁱⁱ	3.527 (4)	H5A…H1 ^{iv}	3.1121
C5…C9 ⁱⁱ	3.584 (4)	H5A…H1 ⁱⁱ	3.2421

C5…C11 ⁱ	3.423 (4)	H5A····H5A ^{xiv}	2.5047
C6···O6 ^{xi}	3.455 (4)	H5A····H7C ^{xiv}	3.4116
C6····O7 ^{xi}	3.332 (4)	H5A····H21 ^{iv}	3.5951
C6…C3 ⁱⁱ	3.370 (4)	H6B…O1 ^{iv}	3.1272
C6…C8 ⁱⁱ	3.591 (4)	H6B····O4 ⁱ	3.4309
C7····O7 ^{xi}	3.213 (3)	H6B…N1 ⁱ	3.0437
C7…C3 ⁱⁱ	3.582 (4)	$H6B$ ···· $N2^{i}$	3.0758
C7…C8 ⁱⁱ	3.507 (4)	H6B···C12 ⁱ	3.2503
C8····C2 ⁱ	3.377 (4)	H6B…H1 ^{iv}	3.3336
C8···C3 ⁱ	3.520 (4)	H6B···H9 ⁱ	3,4644
C8···C6 ⁱⁱ	3 591 (4)	$H6B\cdots H21^{i}$	3 5895
C8C7 ⁱⁱ	3.597(4)	$H6B\cdots H22^{i}$	3 2 5 3 4
C8C9 ⁱⁱ	3,532(4)	$H7C\cdotsO1^{iv}$	2 9201
$C8\cdots C11^{i}$	3419(4)	$H7C\cdots O8^{ii}$	2 9597
$C9\cdots O2^{i}$	3,483(4)	H7C····C7 ^{iv}	3 4597
C9C4 ⁱⁱ	3 352 (4)	$H7C\cdots H4^{iv}$	2 7068
	3.552(1) 3 584(4)	H7C····H5A ^{xiv}	3 4116
C9C8 ⁱⁱ	3,532(4)	$H7C\cdots H10^{i}$	3 4846
$C10\cdots O1^{iv}$	3.032(4) 3.195(4)	H7C···H20C ^{xv}	2 9120
$C10 \cdots O8^{ii}$	3.563 (4)	H7CH21 ⁱⁱ	3 5831
$C11 \cdots O6^{\text{viii}}$	3.485 (3)	H7C H21 ⁱⁱ	3 2704
$C_{11} = C_{11}$	3.703(3)		2 6803
	3.228(4)		2.0893
	3.423(4)	H8C5i	3.2002
	5.419 (4) 2.421 (4)		3.2398
C14O2i	5.451(4)		3.2243
	5.434(4)		3.2399
	5.417(4)		3.2910
	5.557 (4) 2.417 (4)		3.2870
	3.41/(4)		2.9211
	3.513 (4)		3.3359
	3.557 (4)		2.3060
	3.429 (3)		3.5914
	3.408 (4)		3.5439
$C19 \cdots N2^{xn}$	3.418 (4)	H9O3 ¹	3.1526
	3.117 (4)		3.2824
	2.995 (4)		2.2751
	3.585 (4)	H9····C5 ⁴	3.1682
Ol···H4	2.5254	H9C6 ¹	3.2112
02···H2	2.6293	H9····C15 ^{vin}	3.5099
O2…H8	2.5548	H9····C16 ^{vin}	3.0781
O3…H2	2.6658	H9····C20 ^{vin}	3.4245
O3…H3	2.4842	H9…H3 ¹	3.1881
O4…H9	3.0559	H9…H6B ¹	3.4644
O4…H11	2.6258	H9…H13B [×]	2.9239
O5…H10	2.6722	H9···H14C ^x	3.5354
O5…H17C	3.0991	H9···H15A ^{viii}	3.4315
O7…H11	2.6708	H10…O3 ¹	2.6288
O7…H16B	2.4953	H10····O6 ^{viii}	3.4311

N1…H1	2.5246	H10…C5 ⁱ	3.3557
N2…H8	2.3806	H10…C6 ⁱ	3.3319
N2…H10	2.6591	H10…C10 ⁱ	3.4958
C1…H8	3.2858	H10····C16 ^{viiii}	3.3785
С3…Н1	3.2893	H10…H3 ⁱ	2.8039
С3…Н2	2.6897	H10…H7C ⁱ	3.4846
С3…Н8	2.6729	H11C20 ^v	3.2627
С4…Н3	3.2702	H11····H11 ^{vi}	3.5697
C4…H5A	2.6739	H11…H12A ^{viii}	3.2547
C4…H6B	2.8310	H11…H16B ^v	2.8879
С5…Н4	3.2774	H11…H17C ^x	3.0416
С5…Н5А	2.5926	H11…H17C ^v	2.7454
С5…Н6В	2.6464	H11····H18A ^{vi}	3.3895
С5…Н7С	3.1970	$H11\cdots H19B^{vi}$	3.4714
С6…Н2	3.2796	H12A…O7 ^{viii}	3.2314
C8…H4	3.2835	H12A····C6 ⁱ	3.4168
С9…Н1	3.1871	H12A…C13 ^{viiii}	3.4843
С9…Н2	3.2735	H12A…C16 ^{viii}	3.2876
С9…Н3	3.2441	H12A…C17 ^{viii}	2.8491
С10…Н2	2.5261	H12A…C18 ^{viii}	2.9718
С11…Н1	2.5886	H12A…H3 ⁱ	2.4864
С11…Н9	2.4215	H12A…H11 ^{viii}	3.2547
C12…H10	2.6922	H12A…H18A ^{viii}	3.3566
C12…H11	2.6109	H13B····O5 ^{vii}	2.5780
С13…Н9	2.5219	H13B…O6 ^{vii}	3.1493
С14…Н9	2.6067	H13B…N1 ^{xii}	3.1430
C14…H11	3.2873	H13B…N2 ^{xii}	2.8594
C14…H12A	2.7645	H13B…C11 ^{xii}	3.4119
C14…H14C	2.7202	H13B…C12 ^{xii}	3.2962
C15…H12A	2.6452	H13B…C19 ^{vii}	3.2584
C15…H13B	3.1946	H13B····C20 ^{vii}	3.4512
C15…H14C	2.5898	H13B…H8 ^{xii}	3.3359
C15…H17C	3.2016	H13B····H9 ^{xii}	2.9239
C16…H10	3.2841	H13B…H13B ^{vii}	2.8924
C16…H11	3.2787	H13B…H15A ^{vii}	3.4548
C16…H15A	3.1837	H13B…H17C ^{vii}	3.1537
C16…H16B	2.5320	H14C····O3 ⁱ	3.2548
C16…H17C	2.6211	H14C…O4 ^{xii}	3.3077
C17…H16B	2.8208	H14C…N1 ^{xii}	2.8099
C17…H17C	3.5252	H14C…N2 ^{xii}	3.0718
C17…H18A	2.6551	H14C····C11 ^{xii}	3.2939
C17…H19B	2.5901	H14C····C12 ^{xii}	3.3222
C17…H20C	3.1984	H14C···H3 ⁱ	3.1349
C18…H10	3.2877	H14C···H9 ^{xii}	3.5354
C18…H18A	2.7626	H14C···H19B ^v	3.2867
C18···H19B	2.7518	H14C···H20C ^v	3.3909
С19…Н10	2.5246	H14C···H22 ^{xii}	3.5848
C21…H11	2.5388	H15A····O2 ^{viii}	2.7699

C21…H16B	3.5746	H15A…O4 ^v	3.0111
H1…H8	3.5095	H15A…C11 ^{viii}	3.1437
Н2…Н5А	2.1969	H15A…C21 ^{xii}	3.5799
Н2…Н6В	2.4330	H15A…H8 ^{viii}	2.3060
H2…H7C	3.4914	H15A…H9 ^{viii}	3.4315
Н3…Н4	2.3125	H15A…H13B ^{vii}	3.4548
Н8…Н9	2.1942	H15A…H18A ^{xii}	2.6808
H9…H10	2.2409	H15A…H21 ^v	3.3693
H10…H12A	2.3019	H16B…O4 ^v	2.7282
H10…H13B	3.4955	H16B…C12 ^v	3.2064
H10…H14C	2.3167	H16B…C13 ^v	3.1208
H11…H18A	2.2895	H16B…C18 ^v	3.0081
H11…H19B	2.3634	H16B…H4 ^{ix}	3.3011
H11···H20C	3.5100	H16B····H8 ^{viii}	3.5914
O1…H2 ⁱⁱ	3.5296	H16B…H11 ^v	2.8879
O1…H5A ⁱⁱⁱ	2.9971	H16B…H18A ^{xii}	3.3970
O1···H5A ⁱⁱ	3.1342	H16B…H19B ^v	3.5817
O1…H6B ⁱⁱⁱ	3.1272	H17C···O4 ^v	3.0931
01···H7C ⁱⁱⁱ	2.9201	H17C···C18 ^v	3.3107
O2…H15A ^{viii}	2.7699	H17C···C21 ^{xii}	3.3552
02H21 ^{iv}	1.9305	H17C···H8 ^{viii}	3.5439
02H22 ^{iv}	3,1983	$H17C\cdots H11^{xii}$	3.0416
03···H1 ⁱⁱ	3.4201	$H17C\cdots H11^{v}$	2.7454
03····H9 ⁱ	3.1526	H17C···H13B ^{vii}	3,1537
O3…H10 ⁱ	2.6288	H17C···H18A ^{xii}	2.3976
O3…H14C ⁱ	3.2548	H17C···H19B ^v	2.8980
O4…H6B ⁱ	3.4309	H18A····O4 ^{vi}	2.6920
O4…H14C ^x	3.3077	H18A···C20 ^x	2.9457
04…H15A ^v	3.0111	H18A···H3 ^{ix}	3.5468
04…H16B ^v	2.7282	H18A···H4 ^{ix}	3.4956
04…H17C ^v	3.0931	H18A···H11 ^{vi}	3,3895
O4…H18A ^{vi}	2.6920	H18A···H12A ^{viii}	3.3566
O4…H19B ^{vi}	3.0461	H18A···H15A ^x	2.6808
O4…H20C ^{vi}	2.7482	H18A···H16B ^x	3.3970
04…H21	3.0925	H18A···H17C ^x	2.3976
04…H22	2.2696	H18A···H21 ^{vi}	3.4855
05H9 ^{viii}	3.2824	H18A···H22 ^{vi}	3.3830
05…H13B ^{vii}	2.5780	$H19B\cdots O4^{vi}$	3.0461
05…H19B ^v	3.3534	H19B···O5 ^v	3.3534
06H3 ^{ix}	3.2462	H19B···C14 ^v	3.4454
O6…H4 ^{ix}	3.5710	H19B···C15 ^v	3.0881
06…H8 ^{viii}	2.6893	H19B···C16 ^v	3.3541
06…H9 ^{viii}	2 2751	H19B····C20 ^v	3 5820
06…H10 ^{viii}	3 4311	H19B···H11 ^{vi}	3 4714
06H13B ^{vii}	3 1493	H19B···H14C	3 2867
O7···H3 ^{ix}	2.8119	H19B···H16B ^v	3 5817
O7····H4 ^{ix}	2.5808	$H19B\cdots H17C^{v}$	2 8980
07H12A ^{viii}	3 2314	$H20C\cdots O4^{vi}$	2.0500
U 1114/1	J.4JIT	11200 07	2./ 702

O8…H1	2.3023	H20C····O8 ^{vi}	2.6934
O8…H2 ⁱⁱⁱ	2.6024	H20C····C7 ^{ix}	3.5405
O8…H4 ^{xiii}	3.3844	H20C····H4 ^{ix}	2.6541
O8…H5A ⁱⁱⁱ	3.2416	H20C····H7C ^{xvi}	2.9120
O8…H5A ⁱⁱ	3.4717	H20C···H14C ^v	3.3909
O8…H7C ⁱⁱ	2.9597	H20C···H21 ^{vi}	2.8349
O8…H20C ^{vi}	2.6934	H20C···H22 ^{vi}	2.4858
N1…H6B ⁱ	3.0437	H21…O2 ⁱⁱⁱ	1.9305
N1···H13B ^x	3.1430	H21…O4	3.0925
N1…H14C ^x	2.8099	H21····C3 ⁱⁱⁱ	2.9543
N1…H22	2.4483	H21····C4 ⁱⁱⁱ	3.1214
N2…H6B ⁱ	3.0758	H21····C8 ⁱⁱⁱ	3.4679
N2…H13B ^x	2.8594	H21····C21 ^{vi}	3.5871
N2…H14C ^x	3.0718	H21…H1	3.0649
N2…H22	3,1769	H21…H2 ⁱⁱⁱ	2.3369
C1···H5A ⁱⁱⁱ	3.4670	$H21\cdots H4^{xiii}$	3.3041
C1···H5A ⁱⁱ	3 3456		3 5951
C1H22	3 2556	H21···H6B ⁱ	3 5895
C2H3 ⁱⁱ	3 5376	$H21 \cdots H7C^{ii}$	3 5831
C2H3 ⁱⁱ	3 1572	H21H15AV	3 3603
C_{3} H_{21iv}	2 05/2		3.3095
	2.9545		2 9240
C4H21iv	3.2002		2.0349
	2 2208	H22O2	2.1905
C5 H0i	3.2398	H2204	2.2090
C5H9 ⁴	3.1682	H22NI	2.4483
	3.3557	H22N2	3.1/69
	3.2243	H22···C1	3.2556
C6…H9 ⁴	3.2112	H22…C11	3.4/10
C6…H10 ¹	3.3319	H22…C12	3.0406
C6…H12A ¹	3.4168	$H22\cdots C21^{v_1}$	3.3215
C7···H7C ⁱⁱⁱ	3.4597	H22…H1	2.3846
C7···H8 ⁱ	3.2599	H22…H2 ⁱⁱⁱ	3.4017
C7····H20C ^{xi}	3.5405	H22···H6B ⁱ	3.2534
C8····H8 ⁱ	3.2910	H22····H7C ⁱⁱ	3.2704
C8···H21 ^{iv}	3.4679	$H22 \cdots H14C^{x}$	3.5848
C9…H2 ⁱⁱ	3.5823	H22…H18A ^{vi}	3.3830
C9····H8 ⁱ	3.2870	H22···H20C ^{vi}	2.4858
C1—O1—C9	118.55 (17)	C13—C18—C17	119.1 (3)
C5—O3—C10	116.88 (18)	H21—O8—H22	102.354
C15—O5—C19	116.87 (17)	N1—N2—H9	121.020
C16—O6—C20	113.23 (18)	C12—N2—H9	121.023
C17—07—C21	117.20 (18)	O1—C1—H1	117,948
N2—N1—C11	115.76 (18)	C2-C1-H1	117.948
N1—N2—C12	117.96 (18)	C5—C4—H2	120.251
01	124.1 (3)	C8—C4—H2	120.249
C1 - C2 - C3	120.6 (2)	C5—C6—H3	119 452
C1 - C2 - C11	120.0 (2)	C7—C6—H3	110 456
01 - 02 - 011	120.9 (3)	$C_{1} = C_{0} = 113$	119.430

C3—C2—C11	118.44 (18)	C6—C7—H4	120.489
O2—C3—C2	122.1 (2)	С9—С7—Н4	120.492
O2—C3—C8	123.1 (3)	O3—C10—H5A	109.473
C2—C3—C8	114.81 (18)	O3—C10—H6B	109.469
C5—C4—C8	119.5 (2)	O3—C10—H7C	109.473
O3—C5—C4	125.4 (2)	H5A—C10—H6B	109.469
O3—C5—C6	114.78 (19)	H5A—C10—H7C	109.473
C4—C5—C6	119.8 (3)	H6B—C10—H7C	109.469
C5—C6—C7	121.1 (2)	N1—C11—H8	119.431
C6—C7—C9	119.0 (2)	С2—С11—Н8	119.431
C3—C8—C4	121.32 (19)	C13—C14—H10	120.569
C3—C8—C9	119.0 (3)	C15—C14—H10	120.565
C4—C8—C9	119.6 (2)	C13—C18—H11	120.463
O1—C9—C7	116.20 (19)	C17—C18—H11	120.485
O1—C9—C8	122.9 (2)	O5—C19—H12A	109.468
С7—С9—С8	120.9 (3)	O5—C19—H13B	109.467
N1—C11—C2	121.14 (19)	O5—C19—H14C	109.472
O4—C12—N2	123.0 (2)	H12A—C19—H13B	109.473
O4—C12—C13	122.0 (3)	H12A—C19—H14C	109.473
N2—C12—C13	114.93 (19)	H13B—C19—H14C	109.474
C12—C13—C14	121.0 (3)	O6—C20—H15A	109.471
C12—C13—C18	117.2 (2)	O6—C20—H16B	109.474
C14—C13—C18	121.8 (2)	O6—C20—H17C	109.469
C13—C14—C15	118.9 (3)	H15A—C20—H16B	109.475
O5—C15—C14	124.9 (3)	H15A—C20—H17C	109.468
O5—C15—C16	115.10 (19)	H16B—C20—H17C	109.470
C14—C15—C16	120.0 (2)	O7—C21—H18A	109.468
O6—C16—C15	119.2 (2)	O7—C21—H19B	109.474
O6—C16—C17	120.8 (3)	O7—C21—H20C	109.471
C15—C16—C17	120.1 (2)	H18A—C21—H19B	109.464
O7—C17—C16	115.1 (2)	H18A—C21—H20C	109.476
O7—C17—C18	124.8 (3)	H19B—C21—H20C	109.475
C16—C17—C18	120.1 (3)		
C1—O1—C9—C7	-178.53 (18)	C8—C4—C5—O3	-179.8 (2)
C1—O1—C9—C8	1.5 (4)	C8—C4—C5—C6	0.9 (4)
C9—O1—C1—C2	-1.1 (4)	H2—C4—C5—O3	0.2
C9—O1—C1—H1	178.9	H2-C4-C5-C6	-179.1
C5—O3—C10—H5A	55.8	H2—C4—C8—C3	0.3
С5—О3—С10—Н6В	-64.2	H2-C4-C8-C9	179.8
C5—O3—C10—H7C	175.8	O3—C5—C6—C7	179.66 (19)
C10—O3—C5—C4	-4.8 (4)	O3—C5—C6—H3	-0.3
C10—O3—C5—C6	174.59 (19)	C4—C5—C6—C7	-0.9 (4)
C15—O5—C19—H12A	-64.3	С4—С5—С6—Н3	179.0
С15—О5—С19—Н13В	175.7	C5—C6—C7—C9	0.2 (4)
C15—O5—C19—H14C	55.7	С5—С6—С7—Н4	-179.8
C19—O5—C15—C14	5.4 (3)	Н3—С6—С7—С9	-179.8
C19—O5—C15—C16	-174.81 (17)	H3—C6—C7—H4	0.2

C16—O6—C20—H15A	173.5	C6C7C9O1	-179.5 (2)
C16—O6—C20—H16B	53.5	C6—C7—C9—C8	0.5 (4)
C16—O6—C20—H17C	-66.5	H4—C7—C9—O1	0.5
C20	104.0 (3)	H4—C7—C9—C8	-179.5
C20-06-C16-C17	-78.1 (3)	C3—C8—C9—O1	-1.0 (4)
C17—O7—C21—H18A	65.0	C3—C8—C9—C7	179.00 (18)
С17—О7—С21—Н19В	-55.0	C4—C8—C9—O1	179.5 (2)
С17—О7—С21—Н20С	-175.0	C4—C8—C9—C7	-0.5 (4)
C21—O7—C17—C16	171.11 (19)	O4-C12-C13-C14	-145.3 (2)
C21—O7—C17—C18	-9.9 (4)	O4—C12—C13—C18	34.3 (3)
N2—N1—C11—C2	-176.26 (17)	N2-C12-C13-C14	35.3 (3)
N2—N1—C11—H8	3.7	N2-C12-C13-C18	-145.18 (19)
C11—N1—N2—C12	-174.65 (18)	C12—C13—C14—C15	-178.41 (18)
C11—N1—N2—H9	5.4	C12-C13-C14-H10	1.6
N1—N2—C12—O4	3.1 (4)	C12-C13-C18-C17	177.47 (17)
N1—N2—C12—C13	-177.47 (16)	C12-C13-C18-H11	-2.5
H9—N2—C12—O4	-176.9	C14—C13—C18—C17	-3.0 (4)
H9—N2—C12—C13	2.5	C14-C13-C18-H11	177.0
O1—C1—C2—C3	0.2 (4)	C18—C13—C14—C15	2.1 (4)
O1—C1—C2—C11	177.52 (19)	C18-C13-C14-H10	-177.9
H1—C1—C2—C3	-179.8	C13—C14—C15—O5	-178.63 (19)
H1—C1—C2—C11	-2.5	C13—C14—C15—C16	1.6 (3)
C1—C2—C3—O2	179.9 (2)	H10-C14-C15-O5	1.4
C1—C2—C3—C8	0.3 (3)	H10-C14-C15-C16	-178.4
C1—C2—C11—N1	16.5 (4)	O5-C15-C16-O6	-6.1 (3)
C1—C2—C11—H8	-163.5	O5-C15-C16-C17	175.94 (17)
C3—C2—C11—N1	-166.10 (19)	C14—C15—C16—O6	173.72 (19)
С3—С2—С11—Н8	13.9	C14—C15—C16—C17	-4.2 (4)
C11—C2—C3—O2	2.6 (4)	O6—C16—C17—O7	4.5 (3)
C11—C2—C3—C8	-177.11 (18)	O6—C16—C17—C18	-174.60 (18)
O2—C3—C8—C4	-0.1 (4)	C15—C16—C17—O7	-177.63 (19)
O2—C3—C8—C9	-179.6 (2)	C15—C16—C17—C18	3.3 (4)
C2—C3—C8—C4	179.60 (18)	O7—C17—C18—C13	-178.71 (19)
C2—C3—C8—C9	0.1 (3)	O7—C17—C18—H11	1.3
C5—C4—C8—C3	-179.71 (19)	C16—C17—C18—C13	0.3 (4)
C5—C4—C8—C9	-0.2 (4)	C16—C17—C18—H11	-179.7

Symmetry codes: (i) -*x*+1, -*y*, -*z*+2; (ii) -*x*+2, -*y*, -*z*+2; (iii) *x*, *y*+1, *z*; (iv) *x*, *y*-1, *z*; (v) -*x*, -*y*+1, -*z*+1; (vi) -*x*+1, -*y*+1, -*z*+1; (vii) -*x*-1, -*y*, -*z*+1; (viii) -*x*, -*y*, -*z*+1; (ix) *x*-1, *y*, *z*-1; (x) *x*+1, *y*, *z*; (xi) *x*+1, *y*, *z*; (xii) *x*-1, *y*, *z*; (xiii) -*x*+2, -*y*+1, -*z*+2; (xiv) -*x*+2, -*y*-1, -*z*+2; (xv) *x*+1, *y*-1, *z*+1; (xvi) *x*-1, *y*+1, *z*-1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A	
08—H21…O2 ⁱⁱⁱ	0.91	1.93	2.829 (4)	168	
O8—H22…O4	0.83	2.27	3.036 (3)	153	
N2—H9···O6 ^{viii}	0.88	2.28	3.062 (3)	149	

		supportin	supporting information		
0.95	2.30	3.214 (4)	161		
0.95	2.60	3.489 (4)	155		
	0.95	0.95 2.30	0.95 2.30 3.214 (4)		
	0.95	0.95 2.60	0.95 2.60 3.489 (4)		

Symmetry codes: (iii) x, y+1, z; (viii) -x, -y, -z+1.