

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(5*R**)-5-[(2*S**,5*S**)-1-Methoxy-5-phenylpyrrolidin-2-yl]-3-methylfuran-2(5*H*)-one

Takeshi Oishi,^a* Makoto Yoritate,^b Takaaki Sato^b and Noritaka Chida^b

^aSchool of Medicine, Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan, and ^bDepartment of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan

Correspondence e-mail: oec@a6.keio.jp

Received 16 June 2014; accepted 25 June 2014

Key indicators: single-crystal X-ray study; T = 90 K; mean σ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.075; data-to-parameter ratio = 8.2.

In the title compound, $C_{16}H_{19}NO_3$, the pyrrolidine ring is in a twist conformation. The dihedral angle between the dihydrofuran ring [maximum deviation = 0.0016 (11) Å] and the phenyl ring is 47.22 (8)°. In the crystal, molecules are linked by weak C-H···O hydrogen bonds, forming helical chains along the *b*-axis direction. The chains are further linked by C-H··· π interactions to constitute a three-dimensional architecture.

Related literature

For noteworthy mild reactions of *N*-alkoxyamines, see: Hawker *et al.* (2001). For the reaction of Weinreb amide, see: Nahm & Weinreb (1981). For the synthesis of the title compound, see: Yoritate *et al.* (2014). For a related article utilizing similar compounds, see: Yanagita *et al.* (2013). For details of ring conformations, see: Cremer & Pople (1975).

Experimental

Crystal data C₁₆H₁₉NO₃

 $M_r=273.32$

organic compounds

Z = 4Mo *K* α radiation

 $\mu = 0.09 \text{ mm}^{-1}$

 $0.54 \times 0.51 \times 0.40 \text{ mm}$

12710 measured reflections

1510 independent reflections

1474 reflections with $I > 2\sigma(I)$

T = 90 K

 $R_{\rm int} = 0.027$

Orthorhombic, $P2_12_12_1$ a = 6.5427 (3) Å b = 10.8219 (5) Å c = 19.8397 (10) Å V = 1404.74 (12) Å³

Data collection

Bruker D8 diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2012) $T_{min} = 0.95, T_{max} = 0.97$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ 184 parameters $wR(F^2) = 0.075$ H-atom parameters constrainedS = 1.04 $\Delta \rho_{max} = 0.21$ e Å⁻³1510 reflections $\Delta \rho_{min} = -0.17$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg3 are the centroids of the O1/C2–C5 dihydrofuran and C15–C20 phenyl rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C5-H5···O6 ⁱ	1.00	2.51	3.185 (2)	125
$C10-H10A\cdots Cg1^{ii}$	0.99	2.89	3.686 (2)	138
$C16-H16\cdots Cg3^{iii}$	0.95	2.99	3.761 (2)	139

Data collection: *APEX2* (Bruker, 2012); cell refinement: *SAINT* (Bruker, 2012); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010) and *PLATON* (Spek, 2009).

We thank Professor S. Ohba (Keio University, Japan) for his valuable advice.

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5367).

References

- Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Hawker, C. J., Bosman, A. W. & Harth, E. (2001). *Chem. Rev.* **101**, 3661–3688. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor,
- R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Nahm, S. & Weinreb, S. M. (1981). Tetrahedron Lett. 22, 3815-3818.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Yanagita, Y., Nakamura, H., Shirokane, K., Kurosaki, Y., Sato, T. & Chida, N. (2013). *Chem. Eur. J.* **19**, 678–684.

Yoritate, M., Sato, T. & Chida, N. (2014). In preparation.

supporting information

Acta Cryst. (2014). E70, o839 [doi:10.1107/S1600536814014974]

$(5R^*)$ -5-[$(2S^*, 5S^*)$ -1-Methoxy-5-phenylpyrrolidin-2-yl]-3-methylfuran-2(5H)-one

Takeshi Oishi, Makoto Yoritate, Takaaki Sato and Noritaka Chida

S1. Comment

A number of compounds containing oxidized nitrogen functionality have been widely used in organic synthesis. In these substances, the *N*-alkoxyamines are known as the initiators for the stable free radical polymerization (Hawker *et al.*, 2001), and the *N*-alkoxyamides are utilized for mild and effective acylating agents (*cf.* Weinreb amide; Nahm & Weinreb, 1981). We noticed this inert N—O covalent bond, to develop a novel reaction to synthesize the natural alkaloids (Yanagita *et al.*, 2013).

In the title compound, the dihydrofuran ring is planar with a maximum deviation of 0.0016 (11) Å at atom C4, and the pyrrolidine ring is in a twist conformation with puckering parameters of Q(2) = 0.4145 (18) Å and $\varphi(2) = 10.6$ (3)° (Cremer & Pople, 1975). Atoms N8 and C9 are deviated by -0.4566 (13) and 0.1991 (19) Å, respectively, from the plane of other carbon atoms (C10–C12). Angles of O13—N8—C9, O13—N8—C12 and C9—N8—C12 being 110.28 (13), 108.44 (12) and 106.87 (13)°, respectively, revealed the *sp*³ configuration of the N8 atom. The relative configurations were confirmed by the X-ray analysis as C5*R*, C9*S* and C12*S*.

The crystal packing iss stabilized by an intermolecular C5—H5···O6 (-x + 1, y + 1/2, -z + 3/2) hydrogen bond (Table 1), forming a helical chain along to the [010] direction (Fig. 2). Further intermolecular C—H··· π interactions form a threedimensional network in the crystal structure (Fig. 3). Distances for C10—H10A···*Cg*1 (x - 1, y, z) and C16—H···*Cg*3 (x + 1/2, -y + 1/2, -z + 1) are 3.686 (2) and 3.761 (2) Å, respectively. *Cg*1 and *Cg*3 are the centroids of the O1/C2–C5 dihydrofuran and C15–C20 phenyl rings, respectively. Additionally, weak intramolecular interactions, C12—H···O1, C5— H···O13 and C10—H10B···*Cg*1 being 2.957 (2), 2.791 (2) and 2.963 (2) Å, respectively, adopt the molecule into a sterically hindered conformation. The C5—O1 bond of dihydrofuran is overhanged on the pyrrolidine ring, with torsion angles of O1—C5—C9—N8 and O1—C5—C9—C10 being –69.7 (2) and 46.5 (2)°, respectively (Fig. 4).

S2. Experimental

The title compound was synthesized from 4-oxo-4-phenylbutyric acid (Yoritate *et al.*, 2014), and recrystallized from a toluene solution by slow evaporation at ambient temperature; M.p. 358.5–359.9 K (not corrected). ¹H NMR (500 MHz, CDCl₃) δ (p.p.m.) = 7.41–7.37 (m, 2H, Ph), 7.36–7.31 (m, 2H, Ph), 7.29–7.24 (m, 1H, Ph), 7.13 (qd, J = 1.7, 1.7 Hz, 1H, H4), 5.35–5.31 (m, 1H, H5), 4.33 (dd, J = 8.2, 7.5 Hz, 1H, H12), 3.56 (ddd, J = 8.3, 4.9, 4.9 Hz, 1H, H9), 3.35 (s, 3H, OMe), 2.20 (dddd, J = 12.9, 10.0, 7.5, 4.0 Hz, 1H, H11A), 2.00 (dddd, J = 13.1, 10.3, 8.3, 4.0 Hz, 1H, H10A), 1.95 (dd, J = 1.7, 1.7 Hz, 3H, CMe), 1.93–1.84 (m, 1H, H11B), 1.62 (dddd, J = 13.1, 10.0, 6.6, 4.9 Hz, 1H, H10B); ¹³C NMR (125 MHz, CDCl₃) δ (p.p.m.) = 174.6 (C), 148.1 (CH), 141.1 (C), 130.7 (C), 128.3 (CH), 128.1 (CH), 127.4 (CH), 80.5 (CH), 68.6 (CH), 65.3 (CH), 61.2 (CH₂), 28.9 (CH₂), 22.6 (CH₂), 10.9 (CH₃); Anal. calcd. for C₁₆H₁₉NO₃: C 70.31, H 7.01, N 5.12%, found: C 70.15, H 7.00, N 5.06%.

S3. Refinement

C-bound H atoms were positioned geometrically with C—H = 0.95-1.00 Å, and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. The Friedel opposites were merged before the final refinement because no significant anomalous dispersion was observed and the Flack parameter was a meaningless value of -1.2 (10) with 1054 Bijvoet pairs. One reflection (7 3 4) has been omitted in the final refinement.

Figure 1

The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Figure 2

The crystal packing of the title compound, viewed down the *a* axis. Dashed lines indicate the intermolecular C5—H···O6 interactions, making helical chains along [010]. Only H atoms involved in hydrogen bonds were shown for clarity. Symmetry codes: (i) -x + 1, y + 1/2, -z + 3/2; (iv) x - 1/2, -y + 1/2, -z + 1; (v) -x + 1/2, -y + 1, z - 1/2; (vi) x - 1/2, -y + 3/2, -z + 1; (vii) -x + 1, y - 1/2, -z + 3/2.

Figure 3

A view for the intermolecular C—H··· π interactions (dashed lines), showing parallel (C10—H10A···*Cg*1) and alternated (C16—H16···*Cg*3) chains along [100]. *Cg*1 and *Cg*3 are the centroids of the O1/C2–C5 dihydrofuran and the C15–C20 phenyl rings, respectively. Only H atoms involved in hydrogen bonds were shown for clarity. Symmetry codes: (ii) x - 1, y, z; (iii) x + 1/2, -y + 1/2, -z + 1; (iv) x - 1/2, -y + 1/2, -z + 1; (viii) x + 1, y, z.

Figure 4

Molecular conformation indicating intramolecular C—H···O and C—H··· π interactions with dashed lines. Cg1 is a centroid of the O1/C2–C5 dihydrofuran ring.

(5R*)-5-[(2S*,5S*)-1-Methoxy-5-phenylpyrrolidin-2-yl]-3-methylfuran-2(5H)-one

 $D_{\rm x} = 1.292 {\rm Mg} {\rm m}^{-3}$

 $\theta = 2.8 - 25.4^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$ T = 90 K

 $R_{\rm int} = 0.027$

 $h = -7 \rightarrow 7$

 $k = -13 \rightarrow 11$

 $l = -23 \rightarrow 22$

Prism. colourless

 $0.54 \times 0.51 \times 0.40$ mm

 $\theta_{\rm max} = 25.4^\circ, \ \theta_{\rm min} = 2.8^\circ$

12710 measured reflections

1510 independent reflections 1474 reflections with $I > 2\sigma(I)$

Melting point: 358.5 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9968 reflections

Crystal data

C₁₆H₁₉NO₃ $M_r = 273.32$ Orthorhombic, $P2_12_12_1$ a = 6.5427 (3) Å b = 10.8219 (5) Å c = 19.8397 (10) Å V = 1404.74 (12) Å³ Z = 4F(000) = 584

Data collection

Bruker D8 diffractometer Radiation source: fine-focus sealed tube Multilayered confocal mirror monochromator Detector resolution: 8.333 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2012) $T_{min} = 0.95$, $T_{max} = 0.97$

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.031$ Hydrogen site location: inferred from $wR(F^2) = 0.075$ neighbouring sites S = 1.04H-atom parameters constrained 1510 reflections $w = 1/[\sigma^2(F_o^2) + (0.0428P)^2 + 0.402P]$ 184 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{\rm max} = 0.014$ Primary atom site location: structure-invariant $\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods Extinction correction: SHELXL Extinction coefficient: 0.029 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
O1	0.28934 (19)	0.36404 (11)	0.70066 (5)	0.0197 (3)
C2	0.3603 (3)	0.29777 (16)	0.75407 (8)	0.0200 (4)
C3	0.3704 (3)	0.37890 (16)	0.81354 (8)	0.0198 (4)

C4	0.3059 (3)	0.48928 (16)	0.79475 (8)	0.0198 (4)
H4	0.2965	0.559	0.8237	0.024*
C5	0.2496 (3)	0.48950 (17)	0.72169 (8)	0.0181 (4)
Н5	0.3424	0.5469	0.6967	0.022*
O6	0.4060 (2)	0.19033 (12)	0.74867 (6)	0.0268 (3)
C7	0.4522 (3)	0.33239 (18)	0.87893 (8)	0.0272 (4)
H7A	0.4346	0.3959	0.9137	0.041*
H7B	0.5978	0.3132	0.874	0.041*
H7C	0.3779	0.2576	0.8921	0.041*
N8	-0.0284 (2)	0.53897 (13)	0.63598 (7)	0.0185 (3)
С9	0.0267 (3)	0.52517 (16)	0.70776 (8)	0.0179 (4)
Н9	-0.0038	0.6045	0.7316	0.021*
C10	-0.1287 (3)	0.42769 (16)	0.73027 (8)	0.0209 (4)
H10A	-0.2569	0.4672	0.7457	0.025*
H10B	-0.0728	0.3768	0.7674	0.025*
C11	-0.1671 (3)	0.34798 (17)	0.66697 (8)	0.0245 (4)
H11A	-0.1119	0.2636	0.6735	0.029*
H11B	-0.3154	0.3418	0.6576	0.029*
C12	-0.0570 (3)	0.41297 (15)	0.60873 (8)	0.0193 (4)
H12	0.0794	0.3736	0.6014	0.023*
O13	0.13547 (19)	0.59737 (11)	0.59960 (6)	0.0208 (3)
C14	0.0574 (3)	0.70653 (17)	0.56898 (9)	0.0251 (4)
H14A	-0.0573	0.6851	0.5394	0.038*
H14B	0.1653	0.7461	0.5424	0.038*
H14C	0.0103	0.7636	0.604	0.038*
C15	-0.1725 (3)	0.41689 (16)	0.54286 (8)	0.0205 (4)
C16	-0.0888 (3)	0.36521 (18)	0.48516 (8)	0.0258 (4)
H16	0.0411	0.3262	0.4873	0.031*
C17	-0.1934 (4)	0.36997 (19)	0.42435 (9)	0.0358 (5)
H17	-0.1347	0.3345	0.385	0.043*
C18	-0.3824 (4)	0.42609 (19)	0.42089 (10)	0.0398 (6)
H18	-0.4529	0.4303	0.3791	0.048*
C19	-0.4695 (4)	0.47615 (19)	0.47816 (11)	0.0370 (5)
H19	-0.6006	0.5136	0.4758	0.044*
C20	-0.3655 (3)	0.47190 (18)	0.53920 (10)	0.0276 (4)
H20	-0.4257	0.5064	0.5785	0.033*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0201 (6)	0.0197 (6)	0.0194 (5)	0.0030 (5)	-0.0008 (5)	-0.0022 (5)
C2	0.0136 (8)	0.0222 (9)	0.0241 (8)	0.0007 (7)	0.0023 (7)	0.0019 (7)
C3	0.0147 (8)	0.0230 (8)	0.0218 (8)	-0.0029 (8)	0.0017 (7)	0.0009 (7)
C4	0.0176 (9)	0.0211 (8)	0.0208 (8)	-0.0024 (8)	0.0002 (7)	-0.0018 (7)
C5	0.0195 (9)	0.0159 (8)	0.0188 (8)	-0.0004 (7)	0.0000 (7)	0.0002 (6)
06	0.0274 (7)	0.0209 (6)	0.0321 (6)	0.0070 (6)	-0.0013 (6)	-0.0006 (5)
C7	0.0262 (10)	0.0310 (10)	0.0243 (8)	0.0009 (9)	-0.0032 (8)	0.0054 (8)
N8	0.0179 (7)	0.0181 (7)	0.0194 (7)	-0.0025 (6)	0.0022 (6)	0.0024 (6)

supporting information

C9	0.0182 (9)	0.0168 (8)	0.0187 (8)	0.0017 (7)	0.0014 (7)	0.0000 (7)	
C10	0.0175 (8)	0.0214 (9)	0.0237 (8)	-0.0005 (8)	0.0027 (7)	0.0025 (7)	
C11	0.0253 (10)	0.0231 (9)	0.0251 (8)	-0.0063 (8)	-0.0019 (8)	0.0039 (7)	
C12	0.0198 (9)	0.0159 (8)	0.0223 (8)	0.0000 (7)	-0.0003 (7)	0.0002 (7)	
O13	0.0178 (6)	0.0212 (6)	0.0235 (6)	-0.0030 (5)	0.0019 (5)	0.0052 (5)	
C14	0.0280 (10)	0.0247 (9)	0.0227 (8)	-0.0052 (8)	-0.0044 (8)	0.0078 (7)	
C15	0.0238 (9)	0.0151 (8)	0.0226 (8)	-0.0051 (8)	-0.0028 (7)	0.0015 (6)	
C16	0.0297 (10)	0.0222 (9)	0.0254 (8)	-0.0071 (9)	0.0004 (8)	0.0003 (7)	
C17	0.0543 (14)	0.0300 (10)	0.0231 (8)	-0.0180 (12)	-0.0020 (9)	0.0010 (8)	
C18	0.0557 (15)	0.0305 (11)	0.0330 (10)	-0.0178 (11)	-0.0238 (11)	0.0103 (9)	
C19	0.0349 (12)	0.0220 (10)	0.0541 (13)	-0.0045 (9)	-0.0221 (11)	0.0069 (9)	
C20	0.0268 (10)	0.0198 (9)	0.0362 (10)	-0.0017 (9)	-0.0062 (9)	-0.0002 (8)	

Geometric parameters (Å, °)

O1—C2	1.361 (2)	C11—C12	1.532 (2)
O1—C5	1.444 (2)	C11—H11A	0.99
C2—O6	1.205 (2)	C11—H11B	0.99
С2—С3	1.472 (2)	C12—C15	1.510 (2)
C3—C4	1.321 (3)	C12—H12	1.0
С3—С7	1.491 (2)	O13—C14	1.423 (2)
C4—C5	1.495 (2)	C14—H14A	0.98
C4—H4	0.95	C14—H14B	0.98
С5—С9	1.534 (3)	C14—H14C	0.98
С5—Н5	1.0	C15—C16	1.387 (2)
С7—Н7А	0.98	C15—C20	1.398 (3)
С7—Н7В	0.98	C16—C17	1.388 (3)
С7—Н7С	0.98	C16—H16	0.95
N8—013	1.4385 (19)	C17—C18	1.380 (4)
N8—C9	1.477 (2)	C17—H17	0.95
N8—C12	1.479 (2)	C18—C19	1.382 (3)
C9—C10	1.532 (2)	C18—H18	0.95
С9—Н9	1.0	C19—C20	1.390 (3)
C10-C11	1.544 (2)	C19—H19	0.95
C10—H10A	0.99	C20—H20	0.95
C10—H10B	0.99		
C2 01 C5	100 38 (12)	C12 C11 C10	106 28 (14)
06-02-01	109.58 (12)	C12 - C11 - C10	110.5
06-02-01	121.57 (10)	C10-C11-H11A	110.5
00-02-03	129.40(17) 108 97 (14)	C12-C11-H11B	110.5
$C_{4} C_{3} C_{2}$	100.97(14) 107.40(14)	C10-C11-H11B	110.5
$C_{4} = C_{3} = C_{7}$	131 73 (16)	H11A_C11_H11B	108.7
$C_{1}^{2} - C_{2}^{3} - C_{7}^{7}$	120.80 (16)	N8-C12-C15	110.73 (13)
$C_2 = C_3 = C_4 = C_5$	120.00 (10)	N8-C12-C11	101.97 (13)
C_{3} C_{4} H_{4}	124.6	C_{15} C_{12} C_{11}	115 48 (15)
C5 - C4 - H4	124.6	N8-C12-H12	109 5
01 - C5 - C4	103.55 (14)	C15—C12—H12	109.5
	100.000 (1.)		102.0

O1—C5—C9	110.83 (14)	C11—C12—H12	109.5
C4—C5—C9	114.14 (15)	C14—O13—N8	108.14 (13)
O1—C5—H5	109.4	O13—C14—H14A	109.5
С4—С5—Н5	109.4	O13—C14—H14B	109.5
С9—С5—Н5	109.4	H14A—C14—H14B	109.5
С3—С7—Н7А	109.5	O13—C14—H14C	109.5
С3—С7—Н7В	109.5	H14A—C14—H14C	109.5
H7A—C7—H7B	109.5	H14B—C14—H14C	109.5
С3—С7—Н7С	109.5	C16—C15—C20	119.04 (17)
H7A—C7—H7C	109.5	C16—C15—C12	120.38 (17)
H7B-C7-H7C	109.5	C_{20} C_{15} C_{12}	120.58 (16)
013 - N8 - C9	110.28 (13)	C_{15} C_{16} C_{17}	120.55(19)
013 - N8 - C12	108 44 (12)	C15—C16—H16	119.7
C9-N8-C12	106.87 (13)	C17—C16—H16	119.7
N8-C9-C10	100.89(14)	C18 - C17 - C16	1201(2)
N8-C9-C5	115,55(14)	C18 - C17 - H17	120.1 (2)
C10-C9-C5	113.92 (14)	C16—C17—H17	120.0
N8_C9_H9	108 7	C17 - C18 - C19	120.08(19)
C10 - C9 - H9	108.7	C17 - C18 - H18	120.00 (19)
C5_C9_H9	108.7	C19-C18-H18	120.0
C9-C10-C11	104.81 (13)	C_{18} C_{19} C_{20} C_{20}	120.0 120.1(2)
C9-C10-H10A	110.8	C18 - C19 - H19	110.0
C_{11} C_{10} H_{10A}	110.8	$C_{10} - C_{10} - H_{10}$	119.9
C_{10} C_{10} H_{10R}	110.8	$C_{20} = C_{19} = M_{19}$	119.9
$C_{11} = C_{10} = H_{10}B$	110.8	$C_{19} = C_{20} = C_{13}$	120.10 (19)
$H_{10A} = C_{10} = H_{10B}$	108.0	$C_{15} = C_{20} = H_{20}$	120.0
III0A—C10—III0B	100.9	015-020-1120	120.0
C5-01-C2-06	-17935(17)	C9-C10-C11-C12	-7 74 (19)
$C_{5} = 01 = C_{2} = C_{3}$	-0.06(19)	013 - N8 - C12 - C15	-77.91(17)
06-02-03-04	17944(19)	$C_{12} = C_{12} = C_{13}$	163 22 (14)
01 C2 C3 C4	(1)	013 N8 012 011	103.22(14) 158.60(13)
$06 C^2 C^3 C^7$	0.2(2)	C_{0} N8 C_{12} C_{11}	30.81 (18)
00 - 02 - 03 - 07	2.1(3) -177 16 (15)	$C_{10} = C_{11} = C_{12} = C_{11}$	-18.38(18)
$C_{1}^{2} = C_{2}^{2} = C_{1}^{2} = C_{1}^{2}$	-0.2(2)	$C_{10} = C_{11} = C_{12} = C_{15}$	-13850(10)
$C_2 - C_3 - C_4 - C_5$	1.5(2)	$C_{10} = C_{11} = C_{12} = C_{13}$	-122 23 (14)
$C_{1}^{2} = C_{1}^{2} = C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	-0.11(18)	$C_{2} = N_{0} = 0.13 = 0.14$	122.23(14)
$C_2 = 01 = C_3 = C_4$	-0.11(10) -122(02(14))	12 - 10 - 013 - 014	121.07(14) 122.42(18)
$C_2 = C_1 = C_2 = C_3$	-122.92(14)	$N_0 - C_{12} - C_{13} - C_{16}$	123.43(10) 121.25(10)
$C_{3} = C_{4} = C_{5} = C_{1}$	0.23(19)	11 - 12 - 15 - 10	-121.55(18) -570(2)
C_{3} C_{4} C_{5} C_{9}	120.03(17) 162.41(12)	$N_0 - C_{12} - C_{13} - C_{20}$	-37.0(2)
013 - 18 - 09 - 010	-162.41(13)	C11 - C12 - C13 - C20	58.5(2)
C12 = N8 = C9 = C10	-44./4(1/)	C_{20} C_{15} C_{16} C_{17}	1.2 (3)
$\begin{array}{c} 013 - N\delta - 09 - 03 \\ 013 - N\delta - 09 - 05 \\ 013 - N\delta - 09 - 05 \\ 013 - 0$	-39.07 (19)	C_{12} $-C_{13}$ $-C_{16}$ $-C_{17}$ C_{18}	-1/9.20(1/)
U_{12} —N δ —U 9 —U 5	/8.00 (18)	C10 - C10 - C17 - C18	-0.2(3)
01 - 05 - 09 - 108	-09.0/(1/)	C10 - C17 - C18 - C19	-0.9 (3)
C4 - C5 - C9 - N8	1/3.89 (13)	C17 - C18 - C19 - C20	1.0 (3)
01 - 05 - 09 - 010	40.50 (18)	C18 - C19 - C20 - C15	0.0(3)
C4—C5—C9—C10	-69.9 (2)	C16—C15—C20—C19	-1.1 (3)
N8—C9—C10—C11	30.75 (17)	C12—C15—C20—C19	179.31 (17)

C5—C9—C10—C11 –93.70 (17)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the O1/C2–C5 dihydrofuran and C15–C20 phenyl rings, respectively.

D—H···A	D—H	H···A	D····A	D—H…A
С12—Н12…О1	1.00	2.40	2.957 (2)	114
С5—Н5…О13	1.00	2.42	2.791 (2)	101
C10—H10 <i>B</i> … <i>Cg</i> 1	0.99	2.56	2.963 (2)	104
C5—H5···O6 ⁱ	1.00	2.51	3.185 (2)	125
C10—H10 <i>A</i> … <i>Cg</i> 1 ⁱⁱ	0.99	2.89	3.686 (2)	138
C16—H16…Cg3 ⁱⁱⁱ	0.95	2.99	3.761 (2)	139

Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (ii) x-1, y, z; (iii) x+1/2, -y+1/2, -z+1.