Received 22 April 2014
Accepted 16 May 2014

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

This work forms part of the PhD thesis (Neuchâtel, 1999) of TA.

Keywords: crystal structure; tetrakis-substituted; pyrazine; chiral

CCDC reference: 1004263

Supporting information: this article has supporting information at journals.iucr.org/e

Molecule A

OPEN $\bigodot A C C E S S$

Crystal structure of a tetrakis-substituted pyrazine compound: 2,3,5,6-tetrakis(bromomethyl)pyrazine

Tokouré Assoumatine ${ }^{\mathrm{a}}$ and Helen Stoeckli-Evans ${ }^{\text {b* }}$

 University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland. ${ }^{*}$ Correspondence e-mail: helen.stoeckli-evans@unine.ch

The title compound, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{Br}_{4} \mathrm{~N}_{2}$, crystallizes in the enantiomorphic-defining space group $P 4_{1} 2_{1} 2$ and has a refined Flack x parameter of 0.04 (4). In the asymmetric unit, there are two half-molecules; the whole molecules (A and B) are generated by twofold rotation symmetry. In molecule A, the twofold axis is normal to the pyrazine ring passing through the centre of the ring, while in molecule B, the twofold rotation axis lies in the plane of the pyrazine ring bisecting the $\mathrm{C}-\mathrm{C}$ aromatic bonds. The two molecules are pseudo-mirror images of one another, and the best fit of the two molecules was obtained for inverted molecule B on molecule A, with an r.m.s. deviation of $0.1048 \AA$ and a maximum deviation of any two equivalent atoms of $0.2246 \AA$. In the crystal, the A molecules are linked by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds and $\mathrm{Br} \cdots \mathrm{Br}$ interactions [3.524 (3) Å], forming a three-dimensional framework. The B molecules are also linked by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds and $\mathrm{Br} \cdots \mathrm{Br}$ interactions [3.548 (3) \AA], forming a three-dimensional network that interpenetrates the network of A molecules.

1. Chemical context

The title compound is the starting material used for the synthesis of a number of 2,3,5,6-tetrakis-substituted pyrazine compounds (Ferigo et al., 1994; Assoumatine, 1999). For example, 2,3,5,6-tetrakis(aminomethyl)pyrazine has been used as a ligand to prepare copper(II), zinc(II) and manganese(II) binuclear and polymeric complexes (Ferigo et al., 1994).

2. Structural commentary

The title compound, Fig. 1, crystallizes with two half-molecules per asymmetric unit. The whole molecules $(A$ and $B)$ are generated by twofold rotation symmetry. In molecule A, the twofold axis is normal to the pyrazine ring passing through the centre of the ring. In molecule B, the twofold rotation axis lies in the plane of the pyrazine ring bisecting the $\mathrm{C} 6-6^{\mathrm{ii}}$ and $\mathrm{C} 7-$ $C 7^{\mathrm{ii}}$ bonds [symmetry code: (ii) $y, x,-z$]. Placed side by side, it can be seen that the two molecules are almost perfect mirror images of each other (Fig. 1). The best fit of the two molecules,

Table 1
Selected torsion angles (${ }^{\circ}$).

$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$91.3(13)$	$\mathrm{Br} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 2$	$-93.3(12)$
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-92.6(15)$	$\mathrm{Br} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 6^{\mathrm{ii}}$	$84.8(17)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 2$	$103.1(11)$	$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{Br} 3$	$-101.0(12)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 2$	$-78.6(15)$	$\mathrm{C}^{7 i}-\mathrm{C} 7-\mathrm{C} 8-\mathrm{Br} 3$	$77.4(18)$

Symmetry codes: (i) $-y+1,-x+1,-z+\frac{1}{2}$; (ii) $y, x,-z$.

Table 2
Hydrogen-bond geometry $\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{Br} 2^{\mathrm{iii}}$	0.97	3.02	$3.863(14)$	146
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{Br} 2$	0.97	2.86	$3.617(16)$	135
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{Br}^{\mathrm{ii}}$	0.97	3.04	$3.748(16)$	131
$\mathrm{C} 5-\mathrm{H} 5 B \cdots \mathrm{Br}^{\mathrm{iv}}$	0.97	3.03	$3.864(14)$	145
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{Br}^{\mathrm{ii}}$	0.97	2.96	$3.654(15)$	130

Symmetry codes: (ii) $y, x,-z$; (iii) $-y+\frac{3}{2}, x-\frac{1}{2}, z+\frac{1}{4}$; (iv) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{4}$.
calculated using the Molecular Overlay routine in Mercury (Macrae et al., 2008), was obtained for inverted molecule B on molecule A with an r.m.s. deviation of $0.1048 \AA$ and a maximum deviation of any two equivalent atoms of $0.2246 \AA$.

The main difference appears for the torsion angles $\mathrm{Br} 1-$ $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3=-92.6(15)^{\circ}$ in molecule A and $\mathrm{Br} 4-\mathrm{C} 5-$ $\mathrm{C} 6-\mathrm{C}^{\mathrm{ii}}=84.8(17)^{\circ}$ in molecule B [Table 1 ; symmetry code: (ii) $y, x,-z]$. The other torsion angles involving the $\mathrm{Br}-\mathrm{C}-$ $\mathrm{C}_{\mathrm{ar}}-\mathrm{C}_{\mathrm{ar}} \quad(\mathrm{ar}=$ aromatic $)$ arms do not differ significantly (Table 2).

3. Supramolecular features

In the crystal, there are two interpenetrating three-dimensional networks composed of a network of A molecules, linked by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds and $\mathrm{Br} 1 \cdots \mathrm{Br} 2^{\text {iii }}$ interactions $[3.524$ (3) \AA; symmetry code: (iii) $-y+2,-x+1$, $-z+\frac{1}{2}$], and a network of B molecules, are also linked by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds and $\mathrm{Br} 3 \cdots \mathrm{Br} 4^{\text {iv }}$ interactions

Figure 1
A view of the molecular structure of the two independent molecules (A and B) of the title compound, with atom labelling [symmetry codes: (i) $-y+1,-x+1,-z+\frac{1}{2}$; (ii) $\left.y, x,-z\right]$. The displacement ellipsoids are drawn at the 50% probability level.

Figure 2
A view along the b axis of the crystal packing of the A molecules of the title compound. The weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds and $\mathrm{Br} \cdots \mathrm{Br}$ interactions are shown as dashed lines (see Table 2 for details).
[3.548 (3) A, symmetry code: (iv) $x, y-1, z$] (Table 2 and Fig. 3).

4. Database survey

A search of the Cambridge Structural Database (Version 5.33, last update November 2013; Allen, 2002) indicated the presence of a large number of tetrasubstituted pyrazine derivatives and their metal complexes, mainly involving

Figure 3
A view along the b axis of the crystal packing of the title compound. The $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds and $\mathrm{Br} \cdots \mathrm{Br}$ interactions are shown as dashed lines (see Table 2 for details; A molecules blue, B molecules red).

Table 3
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{Br}_{4} \mathrm{~N}_{2}$
M_{r}	451.80
Crystal system, space group	Tetragonal, $P 4_{1} 2_{1} 2$
Temperature (K)	293
$a, c(\AA)$	$9.6858(4), 26.5116(17)$
$V\left(\AA^{3}\right)$	$2487.2(3)$
Z	8
Radiation type	Mo $\mathrm{K} \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	12.91
Crystal size (mm)	$0.50 \times 0.40 \times 0.30$
Data collection	Stoe $I P D S 1$
Diffractometer	Multi-scan $(M U L s c a n A B S$ in
Absorption correction	$P L A T O N ;$ Spek, 2009)
	$0.430,1.000$
$T_{\text {min }}, T_{\text {max }}$	$19463,2417,1276$
No. of measured, independent and	
\quad observed $[I>2 \sigma(I)]$ reflections	0.113
$R_{\text {int }}$	0.616
(sin $\theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	
Refinement	$0.043,0.096,0.84$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	2417
No. of reflections	127
No. of parameters	H -atom parameters constrained
H-atom treatment	$0.69,-0.54$
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	Flack x determined using 419
Absolute structure	quotients $\left.\left[\left(\mathrm{I}^{+}\right)-\mathrm{I}^{-}\right)\right] /\left[\left(\mathrm{I}^{+}\right)+\left(\mathrm{I}^{-}\right)\right]$
	$($Parsons \& Flack, 2004)
Absolute structure parameter	$0.04(4)$

Computer programs: EXPOSE, CELL and INTEGRATE in IPDS-I (Stoe \& Cie, 2004), SHELXS97 and SHELXL2013 (Sheldrick, 2008), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
tetramethylpyrazine. A small number of them involve 2,3,5,6tetrakis(aminomethyl)pyrazine (tampyz), which was used to prepare transition metal binuclear complexes, for example $\left[\mathrm{Cl}_{2} \mathrm{Zn}\right.$ (tampyz) ZnCl_{2}], and a quasi-linear one-dimensional coordination polymer, $\left\{\mathrm{Mn}(\text { tampyz }) \mathrm{Cl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ (Ferigo et al., 1994). The title compound has also been used in the synthesis of two triclinic polymorphs of 2,3,5,6 tetrakis(naphthalen-2ylsulfanylmethyl)pyrazine (Pacifico \& Stoeckli-Evans, 2004), 2,3,5,6-tetrakis((naphthalen-2-yloxy)methyl)pyrazine (Gasser \& Stoeckli-Evans, 2007), 2,3,5,6-tetrakis(phenoxymethyl)pyrazine and 2,3,5,6-tetrakis(phenylsulfanylmethyl)pyrazine (Assoumatine et al., 2007). All five structures possess inversion symmetry. The sulfanyl derivatives crystallize in the triclinic space group $P \overline{1}$, while the oxy derivatives crystallize in the monoclinic space group $P 2_{1} / c$.

5. Synthesis and crystallization

The title compound was prepared by a modification of the procedure described by Ferigo et al. (1994). To 2,3,5,6-tetramethylpyrazine ($28 \mathrm{~g}, 0.28 \mathrm{~mol}$) in $\mathrm{CCl}_{4}(1 \mathrm{l})$ was added wellground N-bromosuccinimide ($150 \mathrm{~g}, 0.84 \mathrm{~mol}$). The mixture
was stirred vigorously and heated to reflux. As soon as the reflux set in, the mixture was irradiated for 5 h with two 200 W lamps fitted at least 10 cm at opposite sides of the flask. After the mixture was then cooled firstly to room temperature and the floating succinimide filtered off. The orange filtrate was cooled overnight to 278 K to crystallize the remaining traces of succinimide, which was filtered off. The filtrate was evaporated and the residual orange oil dissolved in 50 ml of diethyl ether. This solution was maintained at 278 K for at least one week, whereupon a white crystalline material deposited. The solid was filtered off, then recrystallized in ethanol to give colourless rod-like crystals of the title compound: Yield 7.87 g (8%); m.p. $401-405 \mathrm{~K} ; R_{\mathrm{F}} 0.54$ (toluene/light petroleum, $10 / 1 \mathrm{v} / \mathrm{v}$). Analysis for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{Br}_{4} \mathrm{~N}_{2}$ ($M_{r}=451.78 \mathrm{~g} / \mathrm{mol}$); Calculated (\%): C 21.27; H 1.79; N 6.20 . Found (\%): C 21.41; H 1.72; N 6.10. Spectroscopic data: ${ }^{1} \mathrm{H}-$ RMN $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=4.69\left(s, 8 \mathrm{H}, \mathrm{Pz}-\mathrm{CH}_{2}-\mathrm{S}\right)$ p.p.m.; ${ }^{13} \mathrm{C}-\mathrm{RMN}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=150.41,28.75$ p.p.m. MS (EI, $70 \mathrm{eV}), \mathrm{m} / \mathrm{z}(\%): 452$ ($\left.\left[M^{+}\right], 11.9\right), 371$ (100), 292 (13.2), 211 (20.7), 131 (32.7), 92 (20.4), 65 (18.8); IR (KBr disc, cm^{-1}): $3030 w, 2977 w, 1438 s, 1405 s, 1220 s, 1096 m, 923 w, 787 s$, $731 \mathrm{~m}, 629 \mathrm{~m}, 596 \mathrm{w}, 543 \mathrm{~m}, 445 \mathrm{~m}$.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The C -bound H atoms were included in calculated positions and treated as riding atoms: $\mathrm{C}-\mathrm{H}=0.97 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Acknowledgements

This work was supported by the Swiss National Science Foundation and the University of Neuchâtel.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Assoumatine, T. (1999). PhD thesis, University of Neuchâtel, Switzerland.
Assoumatine, T., Gasser, G. \& Stoeckli-Evans, H. (2007). Acta Cryst. C63, o219-o222.
Ferigo, M., Bonhote, P., Marty, W. \& Stoeckli-Evans, H. (1994). J. Chem. Soc. Dalton Trans. pp. 1549-1554.
Gasser, G. \& Stoeckli-Evans, H. (2007). Private communication (refcode ADUXAZ). CCDC, Cambridge, England.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Pacifico, J. \& Stoeckli-Evans, H. (2004). Acta Cryst. C60, o152-o155.
Parsons, S. \& Flack, H. (2004). Acta Cryst. A60, s61.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stoe \& Cie (2004). IPDSI Bedienungshandbuch. Stoe \& Cie GmbH, Darmstadt, Germany.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, 51-53 [doi:10.1107/S1600536814011337]

Crystal structure of a tetrakis-substituted pyrazine compound: 2,3,5,6-tetrakis(bromomethyl)pyrazine

Tokouré Assoumatine and Helen Stoeckli-Evans

Computing details

Data collection: EXPOSE in IPDS-I (Stoe \& Cie, 2004); cell refinement: CELL in IPDS-I (Stoe \& Cie, 2004); data reduction: INTEGRATE in IPDS-I (Stoe \& Cie, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

2,3,5,6-Tetrakis(bromomethyl)pyrazine

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{Br}_{4} \mathrm{~N}_{2}$

$M_{r}=451.80$
Tetragonal, $P 4_{1} 2_{1} 2$
Hall symbol: P 4abw 2nw
$a=9.6858$ (4) \AA
$c=26.5116(17) \AA$
$V=2487.2(3) \AA^{3}$
$Z=8$
$F(000)=1680$

Data collection

Stoe IPDS 1
diffractometer
Radiation source: fine-focus sealed tube
Plane graphite monochromator
φ rotation scans
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
$T_{\min }=0.430, T_{\max }=1.000$
$D_{\mathrm{x}}=2.413 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5000 reflections
$\theta=2.2-26.0^{\circ}$
$\mu=12.91 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Rod, colourless
$0.50 \times 0.40 \times 0.30 \mathrm{~mm}$

19463 measured reflections
2417 independent reflections
1276 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.113$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-11 \rightarrow 11$
$k=-11 \rightarrow 11$
$l=-32 \rightarrow 32$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.096$
$S=0.84$
2417 reflections
127 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0401 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.69 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.54 \mathrm{e} \AA^{-3}$

Absolute structure: Flack x determined using 419 quotients $\left[\left(\mathrm{I}^{+}\right)-\left(\mathrm{I}^{-}\right)\right] /\left[\left(\mathrm{I}^{+}\right)+\left(\mathrm{I}^{-}\right)\right]$(Parsons \& Flack, 2004)
Absolute structure parameter: 0.04 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Br1	$1.2259(2)$	$0.2336(2)$	$0.31902(9)$	$0.0928(7)$
Br2	$0.97546(18)$	$0.47643(17)$	$0.18421(6)$	$0.0654(5)$
N1	$0.8843(11)$	$0.1271(10)$	$0.3022(5)$	$0.043(3)$
C1	$1.0492(15)$	$0.3062(16)$	$0.3026(6)$	$0.058(4)$
H1A	1.0016	0.3313	0.3335	0.069^{*}
H1B	1.0608	0.3893	0.2827	0.069^{*}
C2	$0.9639(14)$	$0.2070(12)$	$0.2742(5)$	$0.045(3)$
C3	$0.9590(13)$	$0.2017(12)$	$0.2214(4)$	$0.038(3)$
C4	$1.0501(16)$	$0.2865(14)$	$0.1876(5)$	$0.053(4)$
H4A	1.0525	0.2463	0.1541	0.063^{*}
H4B	1.1435	0.2883	0.2008	0.063^{*}
Br3	$0.02090(19)$	$-0.23131(16)$	$0.06101(6)$	$0.0663(5)$
Br4	$0.2379(2)$	$0.4746(2)$	$0.07000(7)$	$0.0854(6)$
N2	$0.1293(10)$	$0.1274(11)$	$0.0529(5)$	$0.042(4)$
C5	$0.3130(15)$	$0.2938(15)$	$0.0568(6)$	$0.060(4)$
H5A	0.3995	0.3030	0.0387	0.072^{*}
H5B	0.3317	0.2476	0.0885	0.072^{*}
C6	$0.2145(13)$	$0.2082(13)$	$0.0262(4)$	$0.041(3)$
C7	$0.0442(13)$	$0.0470(13)$	$0.0261(4)$	$0.039(3)$
C8	$-0.0509(16)$	$-0.0420(17)$	$0.0578(5)$	$0.056(4)$
H8A	-0.1426	-0.0425	0.0432	0.068^{*}
H8B	-0.0575	-0.0041	0.0916	0.068^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br 1	$0.0587(12)$	$0.0884(15)$	$0.1313(15)$	$0.0040(9)$	$-0.0371(11)$	$-0.0122(14)$
Br 2	$0.0729(11)$	$0.0512(9)$	$0.0719(10)$	$0.0017(7)$	$0.0043(10)$	$0.0119(9)$
N 1	$0.046(9)$	$0.046(9)$	$0.037(7)$	$0.002(5)$	$-0.002(5)$	$0.002(5)$
C 1	$0.056(9)$	$0.059(9)$	$0.058(9)$	$-0.009(8)$	$-0.009(8)$	$-0.011(8)$
C 2	$0.051(8)$	$0.035(7)$	$0.050(7)$	$0.004(6)$	$-0.003(7)$	$-0.008(6)$
C 3	$0.034(7)$	$0.037(7)$	$0.043(7)$	$0.003(6)$	$0.001(6)$	$-0.003(6)$
C 4	$0.053(9)$	$0.047(8)$	$0.059(8)$	$0.004(6)$	$0.007(8)$	$0.002(7)$
Br 3	$0.0813(12)$	$0.0468(9)$	$0.0710(9)$	$-0.0060(8)$	$-0.0011(10)$	$0.0101(8)$
Br 4	$0.0862(13)$	$0.0616(11)$	$0.1086(15)$	$-0.0065(9)$	$0.0033(12)$	$-0.0330(11)$

N 2	$0.046(9)$	$0.050(9)$	$0.030(6)$	$-0.006(5)$	$-0.007(5)$	$0.003(5)$
C5	$0.053(9)$	$0.073(10)$	$0.054(9)$	$-0.009(8)$	$-0.015(8)$	$-0.006(8)$
C6	$0.047(8)$	$0.043(7)$	$0.033(6)$	$0.007(6)$	$-0.002(6)$	$-0.002(6)$
C7	$0.036(7)$	$0.040(7)$	$0.042(6)$	$-0.003(6)$	$0.000(6)$	$0.005(6)$
C8	$0.060(9)$	$0.062(9)$	$0.047(7)$	$0.001(8)$	$0.000(8)$	$0.007(8)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Br1-C1	1.901 (15)	Br3-C8	1.963 (17)
$\mathrm{Br} 2-\mathrm{C} 4$	1.978 (14)	Br4-C5	1.928 (15)
N1-C2	1.319 (17)	N2-C7	1.337 (15)
N1-C3 ${ }^{\text {i }}$	1.334 (15)	N2-C6	1.339 (16)
$\mathrm{C} 1-\mathrm{C} 2$	1.474 (18)	C5-C6	1.502 (17)
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9700	C5-H5A	0.9700
C1-H1B	0.9700	C5-H5B	0.9700
C2-C3	1.402 (15)	$\mathrm{C} 6-\mathrm{C} 6{ }^{\text {ii }}$	1.39 (2)
$\mathrm{C} 3-\mathrm{N} 1^{\mathrm{i}}$	1.334 (15)	$\mathrm{C} 7-\mathrm{C} 7{ }^{\text {ii }}$	1.39 (2)
C3-C4	1.504 (17)	C7-C8	1.516 (17)
C4-H4A	0.9700	C8-H8A	0.9700
C4—H4B	0.9700	С8-H8B	0.9700
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3{ }^{\text {i }}$	117.9 (13)	C7-N2-C6	116.1 (12)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 1$	112.4 (10)	C6-C5-Br4	111.1 (9)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.1	C6-C5-H5A	109.4
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.1	$\mathrm{Br} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	109.4
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.1	C6-C5-H5B	109.4
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.1	$\mathrm{Br} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	109.4
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	107.9	H5A-C5-H5B	108.0
N1-C2-C3	121.3 (11)	N2-C6- $\mathrm{C}^{\text {ii }}$	121.7 (7)
N1-C2-C1	115.0 (12)	N2-C6-C5	115.4 (11)
C3-C2-C1	123.6 (12)	C6 ${ }^{\text {iii }}$ - 6 - C 5	122.9 (8)
N1- ${ }^{\text {i }}$ - $3-\mathrm{C} 2$	120.8 (11)	N2-C7-C7 ${ }^{\text {ii }}$	121.9 (7)
$\mathrm{N} 1^{\text {i }}-\mathrm{C} 3-\mathrm{C} 4$	115.3 (12)	N2-C7-C8	114.3 (11)
C2-C3-C4	123.8 (11)	$\mathrm{C} 7 \mathrm{ii}-\mathrm{C} 7-\mathrm{C} 8$	123.7 (7)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 2$	108.7 (9)	C7-C8- Br 3	109.9 (10)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.9	C7-C8-H8A	109.7
$\mathrm{Br} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.9	$\mathrm{Br} 3-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	109.7
C3-C4-H4B	109.9	C7-C8-H8B	109.7
$\mathrm{Br} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.9	$\mathrm{Br} 3-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	109.7
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	108.3	H8A-C8-H8B	108.2
C3i-N1-C2-C3	-0.2 (16)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 2$	-78.6 (15)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	175.9 (12)	C7-N2-C6- $\mathrm{C}^{\text {ii }}$	4 (2)
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	91.3 (13)	C7-N2-C6-C5	-177.8 (12)
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-92.6 (15)	$\mathrm{Br} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 2$	-93.3 (12)
N1-C2-C3-N1 ${ }^{\text {i }}$	0.3 (19)	$\mathrm{Br} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C}^{\text {ii }}$	84.8 (17)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1^{\mathrm{i}}$	-175.5 (12)	C6-N2-C7-C7 ${ }^{\text {ii }}$	2 (2)
N1-C2-C3-C4	-177.9 (12)	C6-N2-C7-C8	-179.7 (12)

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$6(2)$	$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{Br} 3$	$-101.0(12)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 2$	$103.1(11)$	$\mathrm{C} 7{ }^{\mathrm{i}}-\mathrm{C} 7-\mathrm{C} 8-\mathrm{Br} 3$	$77.4(18)$

Symmetry codes: (i) $-y+1,-x+1,-z+1 / 2$; (ii) $y, x,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 A \cdots \mathrm{Br} 2^{\mathrm{iii}}$	0.97	3.02	$3.863(14)$	146
$\mathrm{C} 1 — \mathrm{H} 1 B \cdots \mathrm{Br} 2$	0.97	2.86	$3.617(16)$	135
$\mathrm{C} 5 — \mathrm{H} 5 A \cdots \mathrm{Br} 4^{\mathrm{ii}}$	0.97	3.04	$3.748(16)$	131
$\mathrm{C} 5 — \mathrm{H} 5 B \cdots \mathrm{Br}^{\text {iv }}$	0.97	3.03	$3.864(14)$	145
$\mathrm{C} 8 — \mathrm{H} 8 A \cdots \mathrm{Br}^{\mathrm{ii}}$	0.97	2.96	$3.654(15)$	130

Symmetry codes: (ii) $y, x,-z$; (iii) $-y+3 / 2, x-1 / 2, z+1 / 4$; (iv) $-x+1 / 2, y+1 / 2,-z+1 / 4$.

