organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-{Phenyl[4-(6-phenyl-2,2'-bipyridin-4yl)phenyl]amino}benzaldehyde

Yu-yang Zhang,^{a,b} Jian-Ting Pan^{a,b} and Jian-Yan Huang^{a,b}*

^aDepartment of Chemistry, Anhui University, Hefei 230039, People's Republic of China, and ^bKey Laboratory of Functional Inorganic Materials Chemistry, Hefei 230039, People's Republic of China Correspondence e-mail: huangjianyan@ahu.edu.cn

Received 16 May 2014; accepted 8 June 2014

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.097; data-to-parameter ratio = 13.0.

The title molecule, $C_{35}H_{25}N_3O$, is a triphenylamine derivative with the 4-position substituted by an aldehyde group, and the 4'-position substituted by a 6-phenyl-2,2'-bipyridine group. The whole molecule is non-planar and the dihedral angle between the core benzene and pyridine rings is 36.96 (5)°. The dihedral angle between the phenyl and benzaldehyde groups bonded to the amine N atom is 70.86 (5)°.

Related literature

For the application of the title compound and related molecules in OLED devices, see: Neve *et al.* (2002); Lu *et al.* (2004); Ye *et al.* (2010). For a related molecule and its application in synthesis, see: Shen *et al.* (2012).

Experimental

Crystal data

C ₃₅ H ₂₅ N ₃ O	V = 2617.8 (3) Å ³
$M_r = 503.58$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 14.4204 (9) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 10.0329 (6) Å	T = 296 K
c = 18.4597 (11) Å	$0.30 \times 0.20 \times 0.20$ mm
$\beta = 101.423 \ (1)^{\circ}$	
Data collection	
Bruker APEXII CCD	4580 independent reflections
diffractometer	3379 reflections with $I > 2\sigma(I)$
13094 measured reflections	$R_{\rm int} = 0.024$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.039$	352 parameters
$wR(F^2) = 0.097$	H-atom parameters constrained
S = 0.99	$\Delta \rho_{\rm max} = 0.12 \text{ e} \text{ Å}^{-3}$
4580 reflections	$\Delta \rho_{\rm min} = -0.15 \text{ e} \text{ Å}^{-3}$

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We gratefully acknowledge the NSFC (21101001) and the 211 Project of Anhui University for supporting this study.

Supporting information for this paper is available from the IUCr electronic archives (Reference: BH2499).

References

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Lu, W., Chan, M. C. W., Zhu, N. Y., Che, C. M., Li, C. N. & Hui, Z. (2004). J. Am. Chem. Soc. 126, 7639–7651.
- Neve, F., Crispini, A., Di Pietro, C. & Campagna, S. (2002). *Organometallics*, **21**, 3511–3518.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shen, W.-B., Zhang, Z.-W., Wang, L.-W. & Wu, J.-Y. (2012). Acta Cryst. E68, 01358.

Ye, S. H., Liu, Y. Q., Lu, K., Wu, W. P., Du, C. Y., Liu, Y., Liu, H. T., Wu, T. & Yu, G. (2010). Adv. Funct. Mater. 20, 3125–3135.

o840

supporting information

Acta Cryst. (2014). E70, o840 [doi:10.1107/S1600536814013361]

4-{Phenyl[4-(6-phenyl-2,2'-bipyridin-4-yl)phenyl]amino}benzaldehyde

Yu-yang Zhang, Jian-Ting Pan and Jian-Yan Huang

S1. Comment

The title compound (Fig. 1) includes a triphenylamine group and a C^NN (H $C^NN = 6$ -aryl-2,2'-bipyridine) moiety. The triphenylamine group has an extended conjugated system, and is usually used in organic light-emitting diodes (OLED), due to its high holes mobility (Ye *et al.*, 2010). The C^NN moiety is a better donor than terpyridine and has a better π -acceptor ability than the C^NC moiety (H $C^NCH = 2$, 6-diphenylpyridine) (Lu *et al.*, 2004). The title compound can be used as an intermediate for 6-aryl-2,2'-bipyridine metal complexes (Shen *et al.*, 2012) and may find applications in light-emitting devices and dye-sensitized devices (Neve *et al.*, 2002).

The bond lengths around the amine N atom, N1—C5, N1—C8 and N1—C14, differ from each other, which are 1.4079 (19), 1.4285 (18) and 1.4256 (18) Å, respectively. The bond distance of C23—C31 is almost equal to the bond distance of C24—C25, but the dihedral angles of the phenyl group and pyridine moiety is slightly different from that of pyridine moiety and the terminal pyridine ring, which are 10.45 and 14.49°, respectively. The central core of rings is also twisted, with the torsion angle C17—C19—C20—C21 being 142.01°.

S2. Experimental

4-(Diphenylamino)benzaldehyde (1.00 g), acetophenone (0.88 g), and NaOH (0.22 g) were dissolved in 10 ml of ethanol and the mixture was refluxed for about 12 h. The precipitate was filtered, purified by recrystallization from ethanol, yielding 1.21 g of yellow solid, (*E*)-3-[4-(diphenylamino)phenyl]-1-phenylprop-2-en-1-one (D1). Yield: 88%. D1 (1.00 g), 1-(pyridin-2-yl)ethanone (0.32 g), and NaOH (0.13 g) were crushed together with a pestle and mortar at room temperature for 1 h. The mixture was purified by recrystallization from ethanol, affording 1.2 g of solid, 3-[4-(diphenyl-amino)phenyl]-1-phenyl-5-(pyridin-2-yl)pentane-1,5-dione (D2). Yield: 91%. D2 (1.00 g) and ammonium acetate (4.66 g) were dissolved in 20 ml of ethanol and refluxed for 24 h. The precipitate was filtered, purified by recrystallization from a mixture of dichloromethane and ethanol, to give 0.85 g of a yellow solid, *N*,*N*-diphenyl-4-(6-phenyl-2,2'-bipyridin-4-yl)aniline (D3). Yield: 89%. The title compound was obtained through the Vilsmeier-Haack reaction of D3 (0.85 g). The precipitate was purified by flash chromatography on silica gel using petroleum/ethyl acetate (8:1) as eluent, affording 0.62 g of a yellow solid. Yield: 69%. ¹H NMR (400 MHz, CDCl₃) 7.13 (d, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 3H), 7.29 (t, 2H), 7.37 (m, 3H), 7.46 (t, 1H), 7.53 (t, 2H), 7.73 (t, 2H), 7.79 (d, *J* = 8.0 Hz, 2H), 7.87 (t, 1H), 7.97 (s, 1H), 8.21 (d, *J* = 7.6 Hz, 2H), 8.63 (s, 1H), 8.70 (t, 2H), 9.85 pm (s, 1H). ¹³C NMR (100 MHz) 117.18, 118.04, 120.38, 121.54, 123.90, 125.47, 125.83, 126.49, 127.09, 128.54, 128.79, 129.16, 129.18, 129.92, 131.38, 134.79, 136.94, 139.44, 146.00, 147.12, 149.08, 149.33, 152.96, 156.28, 156.34, 157.23, 190.54 ppm.

S3. Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and $U_{iso}(H) = 1.2 U_{eq}(\text{carrier C})$.

Figure 1

The molecular structure of the title compound.

4-{Phenyl[4-(6-phenyl-2,2'-bipyridin-4-yl)phenyl]amino}benzaldehyde

Crystal data	
C ₃₅ H ₂₅ N ₃ O $M_r = 503.58$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 14.4204 (9) Å b = 10.0329 (6) Å c = 18.4597 (11) Å $\beta = 101.423$ (1)° V = 2617.8 (3) Å ³ Z = 4	F(000) = 1056 $D_x = 1.278 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3436 reflections $\theta = 2.3-27.3^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 296 K Needle, yellow $0.30 \times 0.20 \times 0.20 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans 13094 measured reflections 4580 independent reflections	3379 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.024$ $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$ $h = -16 \rightarrow 17$ $k = -11 \rightarrow 11$ $l = -19 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.097$	neighbouring sites
S = 0.99	H-atom parameters constrained
4580 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0368P)^2 + 0.5245P]$
352 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
0 constraints	$\Delta ho_{ m max} = 0.12 \ m e \ m \AA^{-3}$
Primary atom site location: structure-invariant	$\Delta ho_{\min} = -0.15 \text{ e} \text{\AA}^{-3}$
direct methods	

	x	y	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.37069 (18)	0.99664 (19)	0.85338 (11)	0.0791 (6)
H1	0.4274	1.0401	0.8523	0.095*
C2	0.37390 (13)	0.88662 (15)	0.90600 (9)	0.0578 (4)
C3	0.45768 (13)	0.85771 (16)	0.95466 (10)	0.0594 (4)
H3	0.5119	0.9061	0.9519	0.071*
C4	0.46236 (11)	0.75857 (15)	1.00714 (9)	0.0535 (4)
H4	0.5189	0.7428	1.0402	0.064*
C5	0.38289 (11)	0.68211 (14)	1.01074 (8)	0.0464 (4)
C6	0.29420 (12)	0.81128 (16)	0.91074 (9)	0.0574 (4)
H6	0.2372	0.8295	0.8788	0.069*
C7	0.29833 (11)	0.71064 (16)	0.96165 (9)	0.0525 (4)
H7	0.2444	0.6610	0.9635	0.063*
C8	0.45874 (11)	0.58033 (15)	1.12868 (8)	0.0480 (4)
C9	0.46558 (13)	0.68847 (18)	1.17592 (10)	0.0677 (5)
H9	0.4232	0.7590	1.1654	0.081*
C10	0.53571 (16)	0.6910 (2)	1.23866 (11)	0.0862 (6)
H10	0.5412	0.7646	1.2699	0.103*
C11	0.59739 (15)	0.5868 (2)	1.25570 (11)	0.0813 (6)
H11	0.6440	0.5892	1.2984	0.098*
C12	0.59008 (12)	0.4788 (2)	1.20945 (10)	0.0659 (5)
H12	0.6318	0.4077	1.2208	0.079*
C13	0.52092 (11)	0.47552 (16)	1.14605 (9)	0.0532 (4)
H13	0.5162	0.4020	1.1148	0.064*
C14	0.33521 (10)	0.45819 (14)	1.04475 (8)	0.0444 (4)
C15	0.32065 (10)	0.40549 (14)	0.97396 (8)	0.0455 (4)
H15	0.3448	0.4494	0.9373	0.055*
C16	0.30076 (11)	0.38972 (15)	1.09888 (8)	0.0498 (4)
H16	0.3111	0.4228	1.1469	0.060*
C17	0.25108 (11)	0.27239 (15)	1.08197 (8)	0.0496 (4)
H17	0.2285	0.2275	1.1190	0.059*
C18	0.27064 (10)	0.28839 (14)	0.95742 (8)	0.0448 (4)
H18	0.2612	0.2548	0.9096	0.054*
C19	0.23406 (10)	0.21983 (14)	1.01084 (8)	0.0428 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C20	0.17668 (10)	0.09761 (14)	0.99163 (8)	0.0440 (4)
C21	0.11550 (10)	0.08717 (15)	0.92369 (8)	0.0463 (4)
H21	0.1127	0.1554	0.8892	0.056*
C22	0.17932 (11)	-0.00827 (15)	1.04009 (9)	0.0482 (4)
H22	0.2190	-0.0054	1.0864	0.058*
C23	0.12231 (10)	-0.11869 (15)	1.01913 (9)	0.0471 (4)
C24	0.05842 (10)	-0.02439 (15)	0.90672 (8)	0.0458 (4)
C25	-0.01267 (10)	-0.03392 (16)	0.83667 (9)	0.0491 (4)
C26	-0.03301 (12)	0.07457 (17)	0.79072 (9)	0.0605 (5)
H26	0.0004	0.1535	0.8024	0.073*
C27	-0.10196 (14)	0.0679 (2)	0.72791 (10)	0.0768 (6)
H27	-0.1148	0.1421	0.6974	0.092*
C28	-0.15196 (14)	-0.0471 (2)	0.70983 (11)	0.0812 (6)
H28	-0.1993	-0.0507	0.6676	0.097*
C29	-0.13200 (14)	-0.1569 (2)	0.75411 (11)	0.0803 (6)
H29	-0.1651	-0.2358	0.7416	0.096*
C30	-0.06295 (12)	-0.15054 (19)	0.81716 (10)	0.0655 (5)
H30	-0.0498	-0.2255	0.8471	0.079*
C31	0.12354 (12)	-0.23332 (15)	1.07047 (9)	0.0525 (4)
C32	0.05216 (13)	-0.32814 (17)	1.05889 (11)	0.0671 (5)
H32	0.0041	-0.3243	1.0171	0.081*
C33	0.05354 (17)	-0.42849 (19)	1.11039 (14)	0.0840 (6)
H33	0.0061	-0.4927	1.1040	0.101*
C34	0.12583 (18)	-0.4321 (2)	1.17110 (13)	0.0866 (7)
H34	0.1278	-0.4980	1.2068	0.104*
C35	0.19494 (16)	-0.3370 (2)	1.17810(11)	0.0779 (6)
H35	0.2443	-0.3413	1.2190	0.093*
N1	0.38793 (9)	0.57802 (12)	1.06252 (7)	0.0509 (3)
N2	0.06237 (9)	-0.12729 (12)	0.95393 (7)	0.0495 (3)
N3	0.19577 (11)	-0.23785 (14)	1.12957 (8)	0.0671 (4)
01	0.30133 (13)	1.03588 (14)	0.81138 (8)	0.1031 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.1167 (18)	0.0504 (12)	0.0663 (13)	-0.0151 (11)	0.0088 (12)	-0.0004 (9)
C2	0.0786 (12)	0.0372 (9)	0.0575 (10)	-0.0051 (8)	0.0130 (9)	-0.0056 (8)
C3	0.0693 (11)	0.0409 (9)	0.0693 (11)	-0.0146 (8)	0.0165 (9)	-0.0076 (8)
C4	0.0525 (9)	0.0423 (9)	0.0634 (10)	-0.0052 (7)	0.0057 (8)	-0.0071 (8)
C5	0.0516 (9)	0.0341 (8)	0.0534 (9)	-0.0024 (7)	0.0100 (7)	-0.0070 (7)
C6	0.0640 (11)	0.0464 (10)	0.0584 (10)	0.0044 (8)	0.0040 (8)	-0.0031 (8)
C7	0.0514 (9)	0.0439 (9)	0.0613 (10)	-0.0018 (7)	0.0090 (8)	-0.0019 (8)
C8	0.0517 (9)	0.0446 (9)	0.0463 (9)	-0.0109 (7)	0.0064 (7)	-0.0059 (7)
C9	0.0750 (12)	0.0563 (11)	0.0679 (12)	-0.0007 (9)	0.0044 (10)	-0.0186 (9)
C10	0.0982 (16)	0.0834 (15)	0.0690 (13)	-0.0116 (13)	-0.0029 (12)	-0.0342 (11)
C11	0.0761 (14)	0.0958 (16)	0.0616 (12)	-0.0156 (12)	-0.0117 (10)	-0.0108 (12)
C12	0.0583 (11)	0.0707 (12)	0.0644 (11)	-0.0019 (9)	0.0018 (9)	0.0059 (10)
C13	0.0587 (10)	0.0493 (9)	0.0509 (9)	-0.0054 (8)	0.0094 (8)	-0.0040 (7)

C14	0.0439 (8)	0.0382 (8)	0.0483 (9)	-0.0039 (6)	0.0027 (7)	-0.0028 (7)
C15	0.0477 (9)	0.0428 (9)	0.0448 (9)	-0.0048 (7)	0.0067 (7)	0.0019 (7)
C16	0.0557 (10)	0.0498 (9)	0.0427 (9)	-0.0058 (8)	0.0065 (7)	-0.0052 (7)
C17	0.0529 (9)	0.0497 (9)	0.0456 (9)	-0.0076 (7)	0.0087 (7)	0.0014 (7)
C18	0.0485 (9)	0.0431 (9)	0.0399 (8)	-0.0037 (7)	0.0016 (7)	-0.0024 (7)
C19	0.0402 (8)	0.0389 (8)	0.0461 (8)	-0.0013 (6)	0.0011 (6)	0.0017 (7)
C20	0.0406 (8)	0.0402 (8)	0.0503 (9)	-0.0017 (6)	0.0070 (7)	-0.0021 (7)
C21	0.0452 (9)	0.0412 (8)	0.0507 (9)	-0.0041 (7)	0.0052 (7)	0.0012 (7)
C22	0.0485 (9)	0.0434 (9)	0.0504 (9)	-0.0012 (7)	0.0043 (7)	0.0009 (7)
C23	0.0468 (9)	0.0398 (9)	0.0563 (10)	0.0013 (7)	0.0141 (8)	-0.0008 (7)
C24	0.0395 (8)	0.0447 (9)	0.0530 (9)	-0.0002 (7)	0.0088 (7)	-0.0062 (7)
C25	0.0396 (8)	0.0544 (10)	0.0531 (9)	-0.0021 (7)	0.0087 (7)	-0.0129 (8)
C26	0.0576 (10)	0.0561 (11)	0.0597 (11)	-0.0005 (8)	-0.0078 (8)	-0.0100 (9)
C27	0.0779 (13)	0.0788 (14)	0.0638 (12)	0.0131 (11)	-0.0100 (10)	-0.0118 (10)
C28	0.0628 (12)	0.1089 (18)	0.0632 (13)	-0.0024 (12)	-0.0087 (10)	-0.0298 (13)
C29	0.0735 (13)	0.0929 (16)	0.0706 (13)	-0.0309 (12)	0.0050 (11)	-0.0278 (12)
C30	0.0649 (11)	0.0687 (12)	0.0622 (11)	-0.0189 (9)	0.0105 (9)	-0.0156 (9)
C31	0.0577 (10)	0.0404 (9)	0.0624 (10)	0.0032 (7)	0.0196 (9)	0.0016 (8)
C32	0.0744 (12)	0.0468 (10)	0.0840 (13)	-0.0080 (9)	0.0253 (10)	0.0021 (9)
C33	0.0977 (16)	0.0487 (12)	0.1151 (18)	-0.0098 (11)	0.0440 (15)	0.0100 (12)
C34	0.1124 (18)	0.0597 (13)	0.0973 (17)	0.0124 (13)	0.0443 (15)	0.0286 (12)
C35	0.0916 (15)	0.0655 (13)	0.0790 (14)	0.0144 (11)	0.0229 (11)	0.0226 (11)
N1	0.0563 (8)	0.0399 (7)	0.0519 (8)	-0.0098 (6)	-0.0004 (6)	-0.0030 (6)
N2	0.0468 (7)	0.0425 (7)	0.0593 (8)	-0.0037 (6)	0.0106 (6)	-0.0037 (6)
N3	0.0734 (10)	0.0582 (9)	0.0706 (10)	0.0078 (7)	0.0166 (8)	0.0156 (8)
01	0.1452 (15)	0.0692 (10)	0.0818 (10)	-0.0054 (9)	-0.0088 (10)	0.0165 (8)

Geometric parameters (Å, °)

C1-01	1.204 (2)	C18—C19	1.389 (2)
C1—C2	1.465 (2)	C18—H18	0.9300
C1—H1	0.9300	C19—C20	1.4826 (19)
C2—C3	1.386 (2)	C20—C22	1.384 (2)
C2—C6	1.393 (2)	C20—C21	1.3870 (19)
C3—C4	1.381 (2)	C21—C24	1.388 (2)
С3—Н3	0.9300	C21—H21	0.9300
C4—C5	1.391 (2)	C22—C23	1.388 (2)
C4—H4	0.9300	C22—H22	0.9300
С5—С7	1.397 (2)	C23—N2	1.3384 (19)
C5—N1	1.4079 (19)	C23—C31	1.488 (2)
С6—С7	1.373 (2)	C24—N2	1.3449 (19)
С6—Н6	0.9300	C24—C25	1.486 (2)
С7—Н7	0.9300	C25—C26	1.375 (2)
C8—C13	1.378 (2)	C25—C30	1.386 (2)
С8—С9	1.383 (2)	C26—C27	1.371 (2)
C8—N1	1.4285 (18)	C26—H26	0.9300
C9—C10	1.379 (3)	C27—C28	1.367 (3)
С9—Н9	0.9300	С27—Н27	0.9300

C10-C11	1.368 (3)	C28—C29	1.368 (3)
C10—H10	0.9300	C28—H28	0.9300
C11—C12	1.370 (3)	C29—C30	1.375 (2)
C11—H11	0.9300	С29—Н29	0.9300
C12—C13	1.379 (2)	C30—H30	0.9300
C12—H12	0.9300	C_{31} N3	1.352(2)
C12_H12	0.9300	C_{31} C_{32}	1.332(2) 1 387(2)
C14 C15	1.387(2)	C_{32} C_{33}	1.307(2) 1.382(3)
C14 - C15	1.387(2)	$C_{32} = C_{33}$	0.0300
C14 $N1$	1.303(2) 1.4256(19)	C_{32} C_{34}	0.9300
C14 NI	1.4230 (18)	$C_{33} = C_{34}$	1.371 (3)
	1.381 (2)	C33—H33	0.9300
	0.9300	C34—C35	1.368 (3)
C16—C17	1.381 (2)	С34—Н34	0.9300
C16—H16	0.9300	C35—N3	1.340 (2)
C17—C19	1.391 (2)	С35—Н35	0.9300
С17—Н17	0.9300		
O1—C1—C2	125.9 (2)	C18—C19—C20	120.80 (13)
01—C1—H1	117.0	C17—C19—C20	121.68 (13)
C2—C1—H1	117.0	C22—C20—C21	117.23 (14)
C3—C2—C6	118.04 (16)	C22—C20—C19	122.51 (13)
C3—C2—C1	119.76 (17)	C21—C20—C19	120.25 (13)
C6—C2—C1	122.17 (18)	C20—C21—C24	120.50 (14)
C2—C3—C4	121.38 (16)	C20—C21—H21	119.7
С2—С3—Н3	119.3	C24—C21—H21	119.7
С4—С3—Н3	119.3	C20—C22—C23	119.56 (14)
C3—C4—C5	120.28 (15)	С20—С22—Н22	120.2
C3—C4—H4	119.9	C23—C22—H22	120.2
C5—C4—H4	119.9	N2-C23-C22	122.92 (14)
C4-C5-C7	118 52 (15)	$N_2 - C_{23} - C_{31}$	11655(14)
C4-C5-N1	120.60(14)	C^{22} C^{23} C^{31}	120.50(14)
C_{7} C_{5} N1	120.88(14)	$N_2 - C_2 - C_2 $	120.30(14) 121.71(14)
C7 C6 C2	120.00 (14)	$N_2 = C_2 - C_2 T$	121.71(14) 116.61(13)
$C_{7} = C_{6} = C_{2}$	121.19 (10)	$C_{21} = C_{24} = C_{25}$	110.01(13)
C^{2}	119.4	$C_{21} = C_{24} = C_{23}$	121.04(14)
$C_2 = C_0 = H_0$	119.4	$C_{20} = C_{23} = C_{30}$	110.11(10)
C_{0}	120.57 (15)	$C_{20} = C_{23} = C_{24}$	120.79 (14)
	119.7	$C_{30} = C_{25} = C_{24}$	121.05 (16)
C_{2}	119.7	$C_{25} = C_{26} = C_{27}$	120.87 (17)
013-08-09	119.34 (15)	С25—С26—Н26	119.6
C13—C8—N1	120.57 (14)	C27—C26—H26	119.6
C9—C8—N1	120.09 (15)	C26—C27—C28	120.4 (2)
C10—C9—C8	119.52 (18)	С26—С27—Н27	119.8
С10—С9—Н9	120.2	С28—С27—Н27	119.8
С8—С9—Н9	120.2	C29—C28—C27	119.71 (18)
C11—C10—C9	120.97 (18)	C29—C28—H28	120.1
C11-C10-H10	119.5	C27—C28—H28	120.1
С9—С10—Н10	119.5	C28—C29—C30	119.99 (19)
C10-C11-C12	119.63 (18)	С28—С29—Н29	120.0

C10-C11-H11	120.2	С30—С29—Н29	120.0
C12—C11—H11	120.2	C29—C30—C25	120.86 (19)
C11—C12—C13	120.07 (18)	С29—С30—Н30	119.6
C11—C12—H12	120.0	С25—С30—Н30	119.6
C13—C12—H12	120.0	N3—C31—C32	122.08 (16)
C8—C13—C12	120.46 (16)	N3—C31—C23	116.75 (14)
С8—С13—Н13	119.8	C32—C31—C23	121.14 (16)
C12—C13—H13	119.8	C33—C32—C31	118.99 (19)
C15—C14—C16	118.84 (13)	С33—С32—Н32	120.5
C15—C14—N1	120.85 (13)	С31—С32—Н32	120.5
C16—C14—N1	120.26 (13)	C34—C33—C32	119.1 (2)
C14—C15—C18	120.52 (14)	С34—С33—Н33	120.4
C14—C15—H15	119.7	С32—С33—Н33	120.4
C18—C15—H15	119.7	C35—C34—C33	118.71 (19)
C17—C16—C14	120.29 (14)	С35—С34—Н34	120.6
C17—C16—H16	119.9	С33—С34—Н34	120.6
C14—C16—H16	119.9	N3—C35—C34	123.9 (2)
C16—C17—C19	121.53 (14)	N3—C35—H35	118.1
C16—C17—H17	119.2	С34—С35—Н35	118.1
C19—C17—H17	119.2	C5—N1—C14	121.05 (12)
C15—C18—C19	121.30 (14)	C5—N1—C8	120.03 (12)
C15—C18—H18	119.4	C14—N1—C8	117.96 (12)
C19—C18—H18	119.4	C23—N2—C24	118.04 (13)
C18—C19—C17	117.49 (13)	C35—N3—C31	117.20 (17)