Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Deacetoxy-1-oxocaesalmin

Juan Feng, Jian-Long Zhang, Rong-Rong Zhang, Li-Jun Ruan and Ren-Wang liang*

Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou 510632, People's Republic of China

Correspondence e-mail: trwjiang@jnu.edu.cn

Received 6 May 2014; accepted 13 May 2014

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.087; data-to-parameter ratio = 10.7.

The title compound, $C_{24}H_{30}O_7$, is a diterpenoid isolated from the seeds of *Caesalpinia minax*. It consists of two cyclohexane rings (A and B), one unsaturated six-membered ring (C) and one furan ring (D). The stereochemistry of the ring junctures is A/B trans and B/C trans. Rings A and B have normal chair conformations while C adopts a twisted half-chair conformation due to fusion to the furan ring which is planar [r.m.s. deviation = 0.0009(2) Å]. In the crystal, hydroxyl O- $H \cdots O_{carbonvl}$ hydrogen bonds link the molecules into a chain structure extending along the *a*-axis direction.

Related literature

For previous isolation of 1-deacetoxy-1-oxocaesalmin, see: Kalauni et al. (2005). For the antiviral activity of similar diterpenoids, see: Jiang et al. (2001). For the antimalarial activity of similar diterpenoids, see: Kalauni et al. (2006). For the antitumor activity of similar diterpenoids, see: Ma et al. (2013). For the stereochemistry of caesalmin C, see: Jiang et al. (2001).

V = 2235.14 (8) Å³

Cu Ka radiation

 $0.38 \times 0.27 \times 0.22 \text{ mm}$

4463 measured reflections

3080 independent reflections

2845 reflections with $I > 2\sigma(I)$

 $\mu = 0.77 \text{ mm}^{-1}$

T = 173 K

 $R_{\rm int} = 0.020$

Z = 4

Experimental

Crystal data

C24H30O7 $M_r = 430.48$ Orthorhombic, $P2_12_12_1$ a = 6.7744 (1) Å b = 17.2209 (4) Å c = 19.1592 (5) Å

Data collection

Oxford Diffraction Gemini-S ultra Sapphire CCD diffractometer Absorption correction: multi-scan (CrvsAlis PRO; Agilent, 2011) $T_{\rm min} = 0.83, T_{\rm max} = 1.00$

Refinement

D-

02-

$R[F^2 > 2\sigma(F^2)] = 0.034$	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
$wR(F^2) = 0.087$	$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$
S = 1.05	Absolute structure: Flack, 1983:
3080 reflections	1031 Friedel pairs
287 parameters	Absolute structure parameter:
H-atom parameters constrained	-0.1(2)

Table 1 Hydrogen-bond geometry (Å, °).

$H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$-H2 \cdot \cdot \cdot O1^{i}$	0.82	2.04	2.804 (2)	156

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$.

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the 111 Project (No. B13038) of the Ministry of Education of the People's Republic of China.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2299).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Jiang, R. W., Ma, S. C., But, P. P. H. & Mak, T. C. W. (2001). J. Nat. Prod. 64, 1266-1272

Kalauni S.K. Awale S. Tezuka Y. Banskota A.H. Linn T.Z. Asih P.B.S. Syafrunddin, D. & Kadota, S. (2006). Biol. Pharm. Bull. 29, 1050-1052.

Kalauni, S. K., Awale, S., Tezuka, Y., Banskota, A. H., Linn, T. Z. & Kadota, S. (2005). Chem. Pharm. Bull. 53, 1300-1304.

Ma, G., Yuan, J., Wu, H., Cao, L., Zhang, X., Xu, L., Wei, H. & Wu, L. (2013). J. Nat. Prod. 76, 1025-1031.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2014). E70, o662 [doi:10.1107/S1600536814011040]

1-Deacetoxy-1-oxocaesalmin

Juan Feng, Jian-Long Zhang, Rong-Rong Zhang, Li-Jun Ruan and Ren-Wang Jiang

S1. Comment

1-Deacetoxy-1-oxocaesalmin is a natural diterpenoid which has been isolated from the seeds of *Caesalpinia crista* (Kalauni *et al.*, 2005). Though the biological activity of this compound was not reported, similar diterpenoids were reported to have antiviral (Jiang *et al.*, 2001), antimalarial (Kalauni *et al.*, 2006) and antitumor (Ma *et al.*, 2013) activities. *Caesalpinia minax* is a prickly scandent shrub distributing widely in the tropics and subtropics. The seeds of this plant have been used in Chinese folk medicine for the treatment of prostatitis. In order to characterize the active components, we performed a phytochemical study on the seeds of this plant. The title compound was isolated from the ethyl acetate fraction of the 95% ethanol extract followed by recrystallization from the methanol solution at room temperature. Isolation of this compound, $C_{24}H_{30}O_7$, from *Caesalpinia minax* and *Caesalpinia crista* of the same genus indicated that it can be served as a chemotaxonomic marker for this genus.

The title compound (Fig. 1) contains two cyclohexane rings (A and B), one unsaturated six-membered ring (C) and one furan ring (D). The stereochemistry of the ring juncture is A/B trans and B/C trans. The cyclohexane rings A and B have normal chair conformations. The unsaturated six-membered ring (C) adopts a twisted half-chair conformation due to fusion to the furan ring D which is planar.

The absolute configuration determined for caesalmin C (Jiang *et al.*, 2001), a similar diterpenoid, was invoked, giving the assignments of the chiral centres in the molecule as shown in Fig. 1.

An intermolecular hydroxyl O2—H···O1ⁱ (carbonyl) hydrogen bond (Table 1) links the molecules into a onedimensional chain structure extending along a (Fig. 2).

S2. Experimental

The dry ground seeds of *Caesalpinia minax* (5.0 kg) were refluxed with 95% EtOH. After evaporation of the solvent, the crude extract was suspended in distilled water and extracted with hexane (800 ml), ethyl acetate (800 ml) and butanol (600 ml), successively. The ethyl acetate fraction (65 g) was subjected to column chromatography over silica gel, and eluted with a cyclohexane-ethyl acetate gradient (10:1 to 0:1) to afford the title compound, which was further recrystallized from methanol at room temperature to give colorless crystals (18 mg).

S3. Refinement

The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C—H = 0.96 Å (CH₃) and $U_{iso}(H) = 1.5U_{eq}(C)$; 0.97 Å (CH₂) and $U_{iso}(H) = 1.2U_{eq}(C)$; 0.98 Å (CH) and $U_{iso}(H) = 1.2U_{eq}(C)$; 0.93 Å (aryl H) and $U_{iso}(H) = 1.2U_{eq}(C)$; O—H = 0.82 Å and $U_{iso}(H) = 1.5U_{eq}(O)$. The absolute configuration can be unambiguously assigned with reference to the known configuration of the closely related compound caesalmin C (Jiang *et al.*, 2001). [C5(*R*),C6(*S*), C7(*R*),C8(*R*),C9(*S*),C10(*R*] were assigned for the six chiral centres in the title compound using the arbitrarily named atoms employed. The Flack parameter (Flack, 1983) was refined to -0.1 (2)

for 1031 Friedel pairs.

Figure 1

The molecular structure of the title compound showing 30% probability displacement ellipsoids.

Figure 2

The one-dimensional chain structure in the title compound showing the intermolecular O—H…O hydrogen bonds which are represented by dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted.

1-Deacetoxy-1-oxocaesalmin

Crystal data	
$C_{24}H_{30}O_7$	F(000) = 920
$M_r = 430.48$	$D_{\rm x} = 1.279 {\rm Mg} {\rm m}^{-3}$
Orthorhombic, $P2_12_12_1$	Cu K α radiation, $\lambda = 1.54184$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 2218 reflections
a = 6.7744 (1) Å	$\theta = 4.6 - 62.6^{\circ}$
b = 17.2209 (4) Å	$\mu=0.77~\mathrm{mm^{-1}}$
c = 19.1592 (5) Å	T = 173 K
V = 2235.14 (8) Å ³	Block, colorless
Z = 4	$0.38 \times 0.27 \times 0.22 \text{ mm}$
Data collection	
Oxford Diffraction Gemini-S ultra Sapphire	4463 measured reflections
CCD	3080 independent reflections
diffractometer	2845 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.020$
Graphite monochromator	$\theta_{\rm max} = 62.7^{\circ}, \theta_{\rm min} = 4.6^{\circ}$
ω scan	$h = -4 \rightarrow 7$
Absorption correction: multi-scan	$k = -19 \longrightarrow 19$
(CrysAlis PRO; Agilent, 2011)	$l = -21 \rightarrow 13$
$T_{\min} = 0.83, \ T_{\max} = 1.00$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wR(F^2) = 0.087$	$w = 1/[\sigma^2(F_o^2) + (0.0442P)^2 + 0.203P]$
S = 1.05	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3080 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
287 parameters	$\Delta ho_{ m max} = 0.14 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	Extinction correction: SHELXL97,
direct methods	$Fc^{*}=kFc[1+0.001xFc^{2}\lambda^{3}/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0052 (4)
map	Absolute structure: Flack, 1983: 1031 Friedel pairs
	Absolute structure parameter: $-0.1(2)$

Tosofute

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å	2)
--	----

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.6154 (2)	0.74496 (9)	0.53183 (8)	0.0547 (5)	
O2	1.00500 (18)	0.62367 (8)	0.54535 (7)	0.0354 (3)	
H2	1.0035	0.6603	0.5180	0.053*	
O3	1.0530 (2)	0.45663 (8)	0.55179 (7)	0.0420 (4)	
O4	0.8847 (3)	0.34413 (10)	0.55089 (12)	0.0795 (6)	
O5	0.9459 (2)	0.45522 (8)	0.69152 (7)	0.0443 (4)	
O6	1.2768 (3)	0.46401 (12)	0.69992 (11)	0.0765 (6)	
07	0.3966 (3)	0.73518 (10)	0.77457 (10)	0.0655 (5)	
C1′	1.2248 (5)	0.34629 (16)	0.51680 (16)	0.0804 (9)	
H1′1	1.2095	0.2916	0.5087	0.121*	
H1′2	1.3250	0.3545	0.5515	0.121*	
H1′3	1.2627	0.3714	0.4741	0.121*	
C2′	1.0337 (4)	0.37944 (13)	0.54191 (13)	0.0546 (6)	
C1″	1.1107 (5)	0.35621 (16)	0.75089 (14)	0.0767 (9)	
H1′4	1.2374	0.3313	0.7524	0.115*	
H1′5	1.0176	0.3228	0.7279	0.115*	
H1′6	1.0666	0.3665	0.7976	0.115*	
C2″	1.1270 (4)	0.43059 (14)	0.71173 (12)	0.0519 (6)	
C1	0.6091 (3)	0.67845 (13)	0.51015 (11)	0.0431 (5)	
C2	0.5798 (4)	0.66072 (14)	0.43471 (11)	0.0518 (6)	
H2A	0.5468	0.7076	0.4092	0.062*	
H2B	0.4736	0.6236	0.4287	0.062*	

C3	0.7740 (3)	0.62687 (14)	0.40805 (11)	0.0460 (5)
H3A	0.8746	0.6669	0.4107	0.055*
H3B	0.7578	0.6134	0.3592	0.055*
C4	0.8484 (3)	0.55493 (12)	0.44730 (10)	0.0395 (5)
C5	0.8484 (3)	0.57154 (11)	0.52880 (10)	0.0330 (4)
C6	0.8845 (3)	0.50065 (11)	0.57584 (11)	0.0352 (5)
H6	0.7671	0.4674	0.5758	0.042*
C7	0.9308 (3)	0.52595 (11)	0.65015 (10)	0.0355 (5)
H7	1.0560	0.5544	0.6514	0.043*
C8	0.7674 (3)	0.57465 (12)	0.68305 (11)	0.0367 (5)
H8	0.6597	0.5390	0.6949	0.044*
C9	0.6799 (3)	0.63698 (12)	0.63335 (10)	0.0369 (5)
H9	0.7733	0.6804	0.6320	0.044*
C10	0.6501 (3)	0.60885 (11)	0.55740 (11)	0.0356 (5)
C11	0.4861 (3)	0.66772 (15)	0.66522 (12)	0.0518 (6)
H11A	0.4424	0.7135	0.6401	0.062*
H11B	0.3839	0.6284	0.6618	0.062*
C12	0.5223 (4)	0.68734 (13)	0.73927 (12)	0.0486 (6)
C13	0.6726 (4)	0.66413 (12)	0.77927 (12)	0.0495 (6)
C14	0.8301 (3)	0.61460 (12)	0.75107 (11)	0.0426 (5)
C15	0.6410 (5)	0.70010 (16)	0.84602 (14)	0.0683 (8)
H15	0.7208	0.6954	0.8853	0.082*
C16	0.4758 (5)	0.74136 (17)	0.84077 (15)	0.0755 (9)
H16	0.4211	0.7705	0.8768	0.091*
C17	1.0046 (4)	0.60919 (15)	0.78090 (12)	0.0564 (6)
H17A	1.0315	0.6373	0.8212	0.068*
H17B	1.1010	0.5773	0.7616	0.068*
C18	0.7257 (4)	0.48423 (14)	0.42442 (13)	0.0557 (6)
H18A	0.5886	0.4983	0.4227	0.084*
H18B	0.7438	0.4427	0.4573	0.084*
H18C	0.7680	0.4676	0.3790	0.084*
C19	1.0596 (3)	0.54143 (16)	0.41966 (12)	0.0532 (6)
H19A	1.0580	0.5410	0.3696	0.080*
H19B	1.1079	0.4925	0.4365	0.080*
H19C	1.1443	0.5824	0.4358	0.080*
C20	0.4714 (3)	0.55316 (14)	0.55402 (12)	0.0469 (6)
H20A	0.3513	0.5828	0.5540	0.070*
H20B	0.4731	0.5194	0.5939	0.070*
H20C	0.4786	0.5227	0.5121	0.070*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0695 (11)	0.0417 (9)	0.0530 (9)	0.0148 (8)	0.0001 (9)	0.0065 (8)
02	0.0329 (7)	0.0355 (7)	0.0378 (7)	-0.0067 (6)	-0.0040 (6)	0.0067 (6)
03	0.0434 (8)	0.0341 (7)	0.0486 (8)	0.0060 (6)	0.0001 (7)	-0.0012 (7)
04	0.0966 (15)	0.0402 (10)	0.1016 (15)	-0.0114 (11)	0.0139 (13)	-0.0059 (10)
O5	0.0491 (8)	0.0377 (8)	0.0461 (8)	0.0054 (7)	0.0038 (7)	0.0120 (7)
05	0.0491 (8)	0.0377 (8)	0.0461 (8)	0.0054 (7)	0.0038 (7)	0.0120 (7)

O6	0.0493 (10)	0.0942 (15)	0.0858 (14)	0.0124 (10)	-0.0027 (10)	0.0337 (13)
O7	0.0731 (12)	0.0582 (10)	0.0650 (11)	0.0128 (9)	0.0214 (10)	-0.0058 (9)
C1′	0.097 (2)	0.0611 (18)	0.083 (2)	0.0382 (17)	-0.0011 (18)	-0.0062 (16)
C2′	0.0810 (18)	0.0343 (12)	0.0484 (13)	0.0089 (13)	-0.0038 (13)	0.0009 (11)
C1″	0.097 (2)	0.0647 (18)	0.0682 (17)	0.0341 (17)	0.0125 (17)	0.0269 (14)
C2''	0.0611 (15)	0.0550 (14)	0.0397 (12)	0.0224 (13)	0.0053 (12)	0.0086 (11)
C1	0.0332 (10)	0.0490 (13)	0.0469 (12)	0.0080 (10)	-0.0011 (10)	0.0077 (11)
C2	0.0526 (13)	0.0573 (14)	0.0456 (13)	0.0102 (12)	-0.0103 (11)	0.0094 (11)
C3	0.0488 (13)	0.0519 (13)	0.0373 (11)	0.0008 (11)	-0.0069 (10)	0.0029 (11)
C4	0.0391 (11)	0.0425 (12)	0.0368 (11)	0.0004 (10)	-0.0038 (9)	-0.0005 (10)
C5	0.0293 (10)	0.0306 (10)	0.0390 (11)	-0.0033 (8)	-0.0031 (8)	0.0011 (9)
C6	0.0320 (10)	0.0317 (10)	0.0418 (11)	-0.0012 (9)	0.0007 (9)	0.0019 (9)
C7	0.0383 (11)	0.0312 (10)	0.0372 (11)	-0.0021 (9)	0.0001 (9)	0.0091 (9)
C8	0.0369 (10)	0.0322 (10)	0.0409 (11)	-0.0016 (9)	0.0028 (9)	0.0053 (9)
C9	0.0370 (11)	0.0338 (11)	0.0400 (11)	0.0015 (9)	0.0010 (9)	0.0028 (9)
C10	0.0305 (10)	0.0366 (11)	0.0396 (11)	0.0010 (9)	-0.0018 (9)	0.0046 (9)
C11	0.0468 (13)	0.0568 (14)	0.0517 (13)	0.0116 (11)	0.0076 (11)	0.0038 (12)
C12	0.0574 (13)	0.0378 (12)	0.0508 (13)	0.0029 (11)	0.0158 (12)	-0.0007 (10)
C13	0.0698 (16)	0.0348 (11)	0.0438 (12)	-0.0012 (12)	0.0095 (12)	0.0010 (10)
C14	0.0543 (13)	0.0367 (11)	0.0368 (11)	-0.0029 (10)	0.0026 (10)	0.0056 (9)
C15	0.104 (2)	0.0528 (15)	0.0483 (14)	0.0038 (17)	0.0083 (16)	-0.0071 (12)
C16	0.108 (2)	0.0606 (17)	0.0575 (17)	0.0113 (18)	0.0218 (18)	-0.0094 (14)
C17	0.0662 (16)	0.0608 (15)	0.0423 (12)	-0.0050 (13)	-0.0025 (12)	-0.0024 (12)
C18	0.0631 (15)	0.0510 (14)	0.0529 (14)	-0.0068 (12)	-0.0073 (13)	-0.0088 (12)
C19	0.0477 (13)	0.0703 (16)	0.0417 (12)	0.0091 (13)	0.0033 (11)	-0.0005 (12)
C20	0.0297 (10)	0.0550 (14)	0.0559 (14)	-0.0018 (10)	-0.0022 (10)	0.0013 (12)

Geometric parameters (Å, °)

01—C1	1.219 (3)	C6—C7	1.522 (3)
O2—C5	1.426 (2)	С6—Н6	0.9800
O2—H2	0.8200	C7—C8	1.525 (3)
O3—C2′	1.349 (3)	С7—Н7	0.9800
O3—C6	1.445 (2)	C8—C14	1.534 (3)
O4—C2′	1.191 (3)	C8—C9	1.552 (3)
O5—C2″	1.355 (3)	C8—H8	0.9800
O5—C7	1.457 (2)	C9—C11	1.542 (3)
O6—C2″	1.188 (3)	C9—C10	1.547 (3)
O7—C12	1.364 (3)	С9—Н9	0.9800
O7—C16	1.381 (4)	C10—C20	1.546 (3)
C1′—C2′	1.494 (4)	C11—C12	1.479 (3)
C1'—H1'1	0.9600	C11—H11A	0.9700
C1'—H1'2	0.9600	C11—H11B	0.9700
C1'—H1'3	0.9600	C12—C13	1.336 (3)
C1‴—C2″	1.489 (3)	C13—C15	1.437 (3)
C1''—H1'4	0.9600	C13—C14	1.469 (3)
C1''—H1'5	0.9600	C14—C17	1.316 (3)
C1''—H1'6	0.9600	C15—C16	1.329 (4)

C1—C2	1.491 (3)	C15—H15	0.9300
C1—C10	1.527 (3)	C16—H16	0.9300
C2—C3	1.527 (3)	C17—H17A	0.9300
C2—H2A	0.9700	C17—H17B	0.9300
C2—H2B	0.9700	C18—H18A	0.9600
C3—C4	1.534 (3)	C18—H18B	0.9600
С3—НЗА	0.9700	C18—H18C	0.9600
С3—Н3В	0.9700	C19—H19A	0.9600
C4—C18	1.538 (3)	C19—H19B	0.9600
C4—C19	1.543 (3)	C19—H19C	0.9600
C4—C5	1.587 (3)	C20—H20A	0.9600
C_{5}	1.537 (3)	C20—H20B	0.9600
C_{5} C_{10}	1.537(3)	C20—H20C	0.9600
05-010	1.567 (5)	020-11200	0.9000
С5—О2—Н2	109.5	C7—C8—C14	113.38 (17)
C2′—O3—C6	119.02 (18)	C7—C8—C9	113.82 (16)
C2''	118.75 (17)	C14—C8—C9	108.46 (16)
C12—O7—C16	105.0 (2)	С7—С8—Н8	106.9
C2′—C1′—H1′1	109.5	C14—C8—H8	106.9
C2′—C1′—H1′2	109.5	С9—С8—Н8	106.9
H1′1—C1′—H1′2	109.5	C11—C9—C10	111.64 (17)
C2′—C1′—H1′3	109.5	C11—C9—C8	108.64 (17)
H1′1—C1′—H1′3	109.5	C10—C9—C8	114.23 (16)
H1′2—C1′—H1′3	109.5	С11—С9—Н9	107.3
O4—C2′—O3	124.4 (2)	С10—С9—Н9	107.3
O4—C2′—C1′	125.8 (2)	С8—С9—Н9	107.3
O3—C2′—C1′	109.7 (2)	C1—C10—C20	108.65 (16)
C2''-C1''-H1'4	109.5	C1—C10—C9	109.61 (16)
C2''-C1''-H1'5	109.5	C20—C10—C9	109.63 (16)
H1'4—C1''—H1'5	109.5	C1 - C10 - C5	105.48 (16)
C2''-C1''-H1'6	109.5	C20-C10-C5	113.41 (16)
H1′4—C1″—H1′6	109.5	C9—C10—C5	109.94 (15)
H1′5—C1″—H1′6	109.5	C12-C11-C9	108.5 (2)
06—C2′′—O5	124.6 (2)	C12—C11—H11A	110.0
06-C2''-C1''	1252(2)	C9—C11—H11A	110.0
05-C2''-C1''	110.3(2)	C12-C11-H11B	110.0
01 - C1 - C2	121.8(2)	C9-C11-H11B	110.0
01 - C1 - C10	121.0(2) 121.94(19)	H11A_C11_H11B	108.4
C_{2} C_{1} C_{10}	115 99 (19)	$C_{13} - C_{12} - O_{7}$	111.8(2)
C1 - C2 - C3	106 73 (18)	C13 - C12 - C11	127.5(2)
C1 - C2 - H2A	110.4	07-C12-C11	127.3(2) 120.7(2)
$C_3 = C_2 = H_2 A$	110.4	C_{12} C_{13} C_{15}	120.7(2) 105.6(2)
C1 - C2 - H2R	110.4	C12 - C13 - C13	121 1 (2)
C3-C2-H2B	110.4	C_{15} C_{13} C_{14}	1333(2)
$H_2 A = C_2 = H_2 B$	108.6	C17 - C14 - C13	122.2 (2)
$C_2 C_3 C_4$	115 30 (18)	C17 - C14 - C8	122.3(2) 1250(2)
$C_2 = C_3 = H_3 \Delta$	108 4	C13 - C14 - C8	123.9(2) 111.82(10)
$C_2 = C_3 = H_3 \Lambda$	108.4	$C_{15} = C_{17} = C_{0}$	106 8 (3)
$\Box = \Box J = \Pi J \Lambda$	100.7	010 - 013 - 013	100.0 (5)

С2—С3—Н3В	108.4	С16—С15—Н15	126.6
С4—С3—Н3В	108.4	C13—C15—H15	126.6
НЗА—СЗ—НЗВ	107.5	C15—C16—O7	110.8 (2)
C3—C4—C18	108.77 (17)	C15—C16—H16	124.6
C3—C4—C19	104.95 (18)	O7—C16—H16	124.6
C18—C4—C19	106.51 (19)	C14—C17—H17A	120.0
C3—C4—C5	109.67 (16)	C14—C17—H17B	120.0
C18—C4—C5	115.01 (18)	H17A—C17—H17B	120.0
C19—C4—C5	111.41 (16)	C4—C18—H18A	109.5
O2—C5—C6	104.55 (15)	C4—C18—H18B	109.5
O2—C5—C10	107.36 (14)	H18A—C18—H18B	109.5
C6—C5—C10	104.72 (15)	C4—C18—H18C	109.5
O2—C5—C4	109.38 (15)	H18A—C18—H18C	109.5
C6—C5—C4	115.69 (16)	H18B—C18—H18C	109.5
C10—C5—C4	114.39 (16)	C4—C19—H19A	109.5
O3—C6—C7	106.61 (16)	C4—C19—H19B	109.5
O3—C6—C5	110.82 (15)	H19A—C19—H19B	109.5
C7—C6—C5	110.73 (16)	C4—C19—H19C	109.5
O3—C6—H6	109.5	H19A—C19—H19C	109.5
C7—C6—H6	109.5	H19B—C19—H19C	109.5
С5—С6—Н6	109.5	C10—C20—H20A	109.5
O5—C7—C6	106.51 (15)	C10—C20—H20B	109.5
05	106.62 (15)	H20A—C20—H20B	109.5
C6-C7-C8	113.25 (17)	С10—С20—Н20С	109.5
O5—C7—H7	110.1	H20A—C20—H20C	109.5
С6—С7—Н7	110.1	H20B—C20—H20C	109.5
С8—С7—Н7	110.1		
C6—O3—C2′—O4	0.9 (4)	C2-C1-C10-C20	-61.1 (2)
C6—O3—C2′—C1′	179.70 (19)	O1—C1—C10—C9	4.7 (3)
C7—O5—C2′′—O6	2.4 (3)	C2-C1-C10-C9	179.16 (18)
C7—O5—C2"—C1"	-177.83 (18)	O1—C1—C10—C5	-113.6 (2)
O1—C1—C2—C3	111.0 (2)	C2-C1-C10-C5	60.8 (2)
C10—C1—C2—C3	-63.5 (2)	C11—C9—C10—C1	69.0 (2)
C1—C2—C3—C4	56.6 (2)	C8—C9—C10—C1	-167.21 (17)
C2—C3—C4—C18	76.1 (2)	C11—C9—C10—C20	-50.1 (2)
C2—C3—C4—C19	-170.24 (18)	C8—C9—C10—C20	73.6 (2)
C2—C3—C4—C5	-50.5 (2)	C11—C9—C10—C5	-175.44 (17)
C3—C4—C5—O2	-72.5 (2)	C8—C9—C10—C5	-51.7 (2)
C18—C4—C5—O2	164.53 (17)	O2—C5—C10—C1	70.52 (18)
C19—C4—C5—O2	43.2 (2)	C6—C5—C10—C1	-178.73 (16)
C3—C4—C5—C6	169.76 (16)	C4—C5—C10—C1	-51.0(2)
C18—C4—C5—C6	46.8 (2)	O2—C5—C10—C20	-170.70 (15)
C19—C4—C5—C6	-74.5 (2)	C6—C5—C10—C20	-60.0 (2)
C3—C4—C5—C10	47.9 (2)	C4—C5—C10—C20	67.7 (2)
C18—C4—C5—C10	-75.0 (2)	O2—C5—C10—C9	-47.6 (2)
C19—C4—C5—C10	163.66 (18)	C6—C5—C10—C9	63.17 (19)
C2′—O3—C6—C7	110.59 (19)	C4—C5—C10—C9	-169.14 (16)
			()

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-128.84 (19) -72.25 (18) 174.99 (14) 48.1 (2) 45.8 (2) -66.91 (19) 166.20 (16) 105.7 (2) -133.07 (19) -64.06 (18) 175.31 (15) 179.06 (15) 58.4 (2) 75.5 (2) -167.69 (16)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	175.38 (18) $48.5 (2)$ $-0.1 (3)$ $-179.3 (2)$ $-17.5 (3)$ $161.5 (2)$ $0.0 (3)$ $179.0 (2)$ $-177.6 (2)$ $1.4 (4)$ $159.7 (2)$ $-17.1 (4)$ $-17.9 (3)$ $165.3 (2)$ $-0.5 (3)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	175.31 (15) 179.06 (15) 58.4 (2) 75.5 (2) -167.69 (16) -159.89 (16) -43.1 (2) 166.11 (18) -66.7 (2) 40.8 (2) 167.97 (16) 124.5 (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	159.7 (2) -17.1 (4) -17.9 (3) 165.3 (2) -0.5 (3) -127.9 (2) 177.05 (17) 49.6 (2) 0.2 (3) 177.4 (3) -0.3 (3) 0.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O2—H2···O1 ⁱ	0.82	2.04	2.804 (2)	156

Symmetry code: (i) x+1/2, -y+3/2, -z+1.