metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[Bis(quinolin-2-ylcarbonyl)amido- $\kappa^3 N, N', N''$]bromido(N, N-dimethyl-formamide- κO)copper(II)

Md. Serajul Haque Faizi and Pratik Sen*

Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India Correspondence e-mail: psen@iitk.ac.in

. .

Received 8 April 2014; accepted 5 May 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.034; wR factor = 0.081; data-to-parameter ratio = 12.5.

In the mononuclear title complex, $[CuBr(C_{20}H_{12}N_3O_2)-(C_3H_7NO)]$, synthesized from the quinoline-derived reduced Schiff base 4-(quinolin-2-ylmethyl)aminophenol, the coordination geometry around Cu²⁺ is distorted square-pyramidal, comprising a bromide anion at the apex [Cu-Br =2.4671 (5) Å]. The base of the pyramid is built up from one dimethylformamide O-atom donor [Cu-O = 2.078 (2) Å] and three N-atom donors from the monoanionic, tridentate bis(quinolin-2-ylcarbonyl)diimide ligand $[Cu-N_{diimide} =$ 1.941 (3) Å, and $Cu-N_{quinolyl} = 2.060 (3)$ and 2.049 (3) Å]. An intramolecular $C-H\cdots O$ occurs. In the crystal, weak methyl and aromatic $C-H\cdots Br$ and formyl $C-H\cdots O_{carbonyl}$ hydrogen-bonding interactions generate an overall layered structure lying parallel to (001).

Related literature

For applications of the title complex and related structures, see: Castro *et al.* (1990, 1991, 1999); Vangdal *et al.* (2002); Sahu *et al.* (2010); Carlucci *et al.* (2011); Calatayud *et al.* (2000); Lebon *et al.* (1998).

Experimental

Crystal data $[CuBr(C_{20}H_{12}N_3O_2)(C_3H_7NO)]$ $M_r = 542.87$

Monoclinic, $P2_1/n$ *a* = 9.2137 (6) Å b = 23.5220 (16) Å c = 10.4842 (7) Å $\beta = 110.284 (1)^{\circ}$ $V = 2131.3 (2) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{min} = 0.592, T_{max} = 0.681$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	H atoms treated by a mixture of
$wR(F^2) = 0.081$	independent and constrained
S = 1.06	refinement
3753 reflections	$\Delta \rho_{\rm max} = 0.81 \ {\rm e} \ {\rm \AA}^{-3}$
301 parameters	$\Delta \rho_{\rm min} = -0.45 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C23 - H23A \cdots Br1^{i} C15 - H15 \cdots Br1^{ii} C20 - H20 \cdots O1 C22 - H22 \cdots O3^{iii}$	0.98 (5) 0.93 0.93 0.93	2.87 (4) 2.82 2.42 2.33	3.663 (5) 3.655 (4) 3.059 (4) 3.060 (4)	138 (3) 151 126 135

Symmetry codes: (i) x, y, z + 1; (ii) x - 1, y, z; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenberg & Putz, 2006); software used to prepare material for publication: *DIAMOND*.

The authors are grateful to the project of the Science and Engineering Research Board, Government of India (project No. SR/S11/PC-08/2011)

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2296).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Brandenberg, K. & Putz, H. (2006). *DIAMOND*. Crystal Impact, Bonn, Germany.
- Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Calatayud, M. L., Castro, I., Sletten, J., Lloret, F. & Julve, M. (2000). Inorg. Chim. Acta, 300–302, 846–854.
- Carlucci, L., Ciani, G., Maggini, S., Proserpio, D. M., Sessoli, R. & Totti, F. (2011). Inorg. Chim. Acta, 363, 538–548.
- Castro, I., Calatayud, M. L., Sletten, J., Lloret, F., Cano, J., Julve, M., Seitz, G. & Mann, K. (1999). *Inorg. Chem.* 38, 4680–4687.
- Castro, I., Faus, J. & Julve, M. (1990). J. Chem. Soc. Dalton Trans. pp. 891–897.
- Castro, I., Faus, J., Julve, M., Journaux, Y. & Sletten, J. (1991). J. Chem. Soc. Dalton Trans. pp. 2533–2538.
- Lebon, F., Rosny, E. D., Reboud-Ravaux, M. & Durant, F. (1998). Eur. J. Med. Chem. 33, 733–737.
- Sahu, R., Padhi, S. K., Jena, H. S. & Manivannan, V. (2010). Inorg. Chim. Acta, 363, 1448–1454.

Mo $K\alpha$ radiation

 $0.26 \times 0.20 \times 0.14 \text{ mm}$

13799 measured reflections

3753 independent reflections

3223 reflections with $I > 2\sigma(I)$

 $\mu = 2.93 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.033$

Sheldrick, G. M. (2004). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst*. A**64**, 112–122.

Vangdal, B., Carranza, J., Lloret, F., Julve, M. & Sletten, J. (2002). J. Chem. Soc. Dalton Trans. pp. 566–574.

supporting information

Acta Cryst. (2014). E70, m206-m207 [doi:10.1107/S1600536814010058]

[Bis(quinolin-2-ylcarbonyl)amido- $\kappa^3 N, N', N''$]bromido(N, N-dimethylformamide- κO)copper(II)

Md. Serajul Haque Faizi and Pratik Sen

S1. Comment

The new ligand bis(2-quinolylcarbonyl)diimide monoanion (BQCD), formed from the quinoliny derived reduced Schiff base 4-(quinolin-2-ylmethyl)aminophenol (R-QMAP), is an important compound widely used in biological applications such as an HIV-1 protease inhibitor and in coordination chemistry (Castro et al., 1990; Castro et al., 1991; Lebon et al., 1998; Castro et al., 1999; Calatayud et al., 2000; Vangdal et al., 2002; Carlucci et al., 2011). In the synthesis of a compound from the reaction of CuBr with BQCD in ethanol with subsequent recrystallization from dimethylformamide generated the title Cu^{II} complex [Cu(C₂₀H₁₂N₃O₂)(C₃H₇NO)Br] which contains the monoanionic bis(2-quinolylcarbonyl) diimide ligand (BQCD), one bromido anion and an O-bonded dimethylformamide solvent molecule. The ligand, a bis(2-quinolylcarbonyl)diimide monoanion (BQCD) was formed from a reduced Schiff base 4-(quinolin-2-ylmethyl)aminophenol (ⁱR-QMAP), by the breaking of the aminophenol and subsequent oxidation of the $-CH_2$ - group to a carbonyl group in the presence of dioxygen and copper(I) bromide. This oxidation of the $-CH_2$ - group to a carbonyl group in the presence of dioxygen and metal salts has previously been reported (Sahu et al., 2010).

In the title mononuclear complex (Fig. 1), the Cu^{II} center is penta-coordinated with a distorted square pyramidal coordination geometry comprising an axial Br anion [Cu—Br = 2.4671 (5) Å] and in the meridional site, a dimethyl-formamide oxygen atom donor [Cu—O = 2.078 (2) Å] and three N-atom donors from the monoanionic bis(2-quinolyl-carbonyl)diimide (BQCD) ligand, viz. two quinolyl nitrogens [Cu—N = 2.060 (3) and 2.049 (3) Å] and one diimide nitrogen [Cu—N = 1.941 (3) Å]. The observed Cu—N bond lengths and bond angles in the title compound are considered normal for this type of Cu^{II} complex, e.g. Cu—N(quinolyl) = 2.035 (5) Å] and [Cu—N(diimide) = 1.966 (5) Å] (Sahu et al., 2010).

In the crystal, a weak intermolecular methyl C23—H···Br1ⁱ interaction (Table 1) generates a chain structure extending along the c axial direction (Fig. 2), and is further extended into a two-dimensional sheet structure lying parallel to (001) through aromatic C15—H···Brⁱⁱ and formyl C22—H···O3ⁱⁱⁱ hydrogen bonds (Fig. 3). Also present in the structure is an intramolecular aromatic C20—H···O1_{formyl} hydrogen bond.

S2. Experimental

A mixture of reduced Schiff base 4-(quinolin-2-ylmethyl)aminophenol (ⁱR-QMAP) (0.10 g, 0.40 mmol), copper(I) bromide (0.060 g, 0.40 mmol), ethanol (5 mL) were stirred vigorously for 30 min, the precipitate was filtered off and dissolved in dimethylformamide and kept for crystallization. Crystals suitable for X-ray analysis were obtained within a week by slow evaporation of the DMF solvent.

S3. Refinement

The H-atoms of the methyl group involved in the chain formation (C23) were located in a difference-Fourier and were fully refined. All other H-atoms were positioned geometrically and refined using a riding model with C—H = 0.93-0.96 Å and $U_{iso}(H) = 1.2U_{eq}(\text{aromatic C})$ or $1.5U_{eq}(\text{methyl C})$.

Figure 1

The molecular conformation and atom-numbering scheme for the title complex with non-H atoms drawn as 30% probability displacement ellipsoids.

Figure 2

The one-dimensional chain structure in the title complex extending along c, with weak C—H···Br hydrogen bonds shown as dashed lines.

Figure 3

The two-dimensional structure viewed along the *c*-axial direction.

$[Bis(quinolin-2-ylcarbonyl)amido-\kappa^3N,N',N''] bromido(N,N-dimethylformamide-\kappa O) copper(II)$

Crystal data

[CuBr(C₂₀H₁₂N₃O₂)(C₃H₇NO)] $M_r = 542.87$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 9.2137 (6) Å b = 23.5220 (16) Å c = 10.4842 (7) Å $\beta = 110.284$ (1)° V = 2131.3 (2) Å³ Z = 4

Data collection

Bruker SMART APEX CCD	13799 measured reflections
diffractometer	3753 independent reflections
Radiation source: fine-focus sealed tube	3223 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.033$
ω and φ scans	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.2^\circ$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(SADABS; Sheldrick, 2004)	$k = -27 \longrightarrow 27$
$T_{\rm min} = 0.592, \ T_{\rm max} = 0.681$	$l = -12 \rightarrow 10$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.081$ S = 1.063753 reflections 301 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1092 $D_x = 1.692 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7192 reflections $\theta = 2.2-28.3^{\circ}$ $\mu = 2.93 \text{ mm}^{-1}$ T = 100 KNeedle, red $0.26 \times 0.20 \times 0.14 \text{ mm}$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0432P)^2 + 2.2471P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.81$ e Å⁻³ $\Delta\rho_{min} = -0.45$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	1.2311 (4)	0.17727 (13)	0.9003 (3)	0.0186 (7)	
C2	1.2627 (4)	0.11829 (14)	0.9138 (3)	0.0225 (8)	
H2	1.1818	0.0922	0.8872	0.027*	
C3	1.4112 (4)	0.09975 (15)	0.9655 (3)	0.0276 (8)	
Н3	1.4309	0.0609	0.9747	0.033*	
C4	1.5355 (4)	0.13798 (16)	1.0051 (4)	0.0305 (9)	
H4	1.6365	0.1244	1.0397	0.037*	
C5	1.5086 (4)	0.19471 (16)	0.9931 (4)	0.0294 (9)	
Н5	1.5916	0.2199	1.0191	0.035*	
C6	1.3571 (4)	0.21600 (14)	0.9420 (3)	0.0245 (8)	
C7	1.3227 (5)	0.27458 (15)	0.9297 (4)	0.0298 (9)	
H7	1.4024	0.3011	0.9549	0.036*	
C8	1.1742 (4)	0.29206 (14)	0.8811 (4)	0.0277 (8)	
H8	1.1511	0.3307	0.8747	0.033*	
C9	1.0551 (4)	0.25196 (13)	0.8405 (3)	0.0219 (8)	
C10	0.8890 (4)	0.27133 (14)	0.7873 (3)	0.0238 (8)	
N4	0.7906 (3)	0.22593 (11)	0.7571 (3)	0.0210 (6)	
C12	0.6353 (4)	0.23086 (14)	0.7065 (3)	0.0249 (8)	
C13	0.5577 (4)	0.17340 (14)	0.6804 (3)	0.0207 (7)	
C14	0.3975 (4)	0.17069 (15)	0.6286 (3)	0.0255 (8)	
H14	0.3388	0.2038	0.6070	0.031*	
C15	0.3275 (4)	0.11898 (16)	0.6097 (3)	0.0292 (8)	
H15	0.2202	0.1164	0.5748	0.035*	
C16	0.4180 (4)	0.06968 (15)	0.6433 (3)	0.0235 (8)	
C17	0.3511 (4)	0.01469 (16)	0.6265 (4)	0.0307 (9)	
H17	0.2441	0.0106	0.5903	0.037*	
C18	0.4423 (4)	-0.03185 (15)	0.6630 (4)	0.0304 (9)	
H18	0.3975	-0.0678	0.6510	0.036*	
C19	0.6035 (4)	-0.02662 (14)	0.7185 (3)	0.0269 (8)	
H19	0.6643	-0.0590	0.7454	0.032*	
C20	0.6726 (4)	0.02559 (14)	0.7337 (3)	0.0219 (7)	
H20	0.7799	0.0285	0.7688	0.026*	
C21	0.5808 (4)	0.07501 (14)	0.6959 (3)	0.0195 (7)	
C22	0.9923 (4)	0.10622 (13)	1.0635 (3)	0.0191 (7)	
H22	1.0592	0.1372	1.0867	0.023*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

1.0494 (6)	0.09139 (18)	1.3042 (4)	0.0348 (10)
0.8692 (5)	0.02789 (15)	1.1333 (4)	0.0341 (9)
0.8694	0.0116	1.2173	0.051*
0.9036	0.0000	1.0833	0.051*
0.7663	0.0399	1.0806	0.051*
1.0803 (3)	0.19603 (11)	0.8492 (3)	0.0183 (6)
0.6487 (3)	0.12808 (11)	0.7128 (3)	0.0180 (6)
0.9720 (3)	0.07624 (11)	1.1617 (3)	0.0219 (6)
0.9264 (3)	0.09523 (9)	0.9413 (2)	0.0223 (5)
0.8575 (3)	0.32184 (9)	0.7751 (3)	0.0337 (6)
0.5551 (3)	0.27363 (10)	0.6817 (3)	0.0399 (7)
0.87800 (5)	0.150012 (15)	0.77633 (4)	0.01711 (12)
0.93628 (4)	0.090477 (13)	0.60641 (3)	0.01868 (11)
0.972 (5)	0.1009 (16)	1.346 (4)	0.033 (11)*
1.114 (5)	0.0610 (18)	1.354 (4)	0.038 (11)*
1.111 (4)	0.1234(17)	1.315 (4)	0.030 (11)*
	$1.0494 (6) \\ 0.8692 (5) \\ 0.8694 \\ 0.9036 \\ 0.7663 \\ 1.0803 (3) \\ 0.6487 (3) \\ 0.9720 (3) \\ 0.9264 (3) \\ 0.8575 (3) \\ 0.5551 (3) \\ 0.87800 (5) \\ 0.93628 (4) \\ 0.972 (5) \\ 1.114 (5) \\ 1.111 (4)$	1.0494(6) $0.09139(18)$ $0.8692(5)$ $0.02789(15)$ 0.8694 0.0116 0.9036 0.0000 0.7663 0.0399 $1.0803(3)$ $0.19603(11)$ $0.6487(3)$ $0.12808(11)$ $0.9720(3)$ $0.07624(11)$ $0.9264(3)$ $0.09523(9)$ $0.8575(3)$ $0.27363(10)$ $0.87800(5)$ $0.150012(15)$ $0.93628(4)$ $0.090477(13)$ $0.972(5)$ $0.1009(16)$ $1.114(5)$ $0.0610(18)$ $1.111(4)$ $0.1234(17)$	1.0494(6) $0.09139(18)$ $1.3042(4)$ $0.8692(5)$ $0.02789(15)$ $1.1333(4)$ 0.8694 0.0116 1.2173 0.9036 0.0000 1.0833 0.7663 0.0399 1.0806 $1.0803(3)$ $0.19603(11)$ $0.8492(3)$ $0.6487(3)$ $0.12808(11)$ $0.7128(3)$ $0.9720(3)$ $0.07624(11)$ $1.1617(3)$ $0.9264(3)$ $0.09523(9)$ $0.9413(2)$ $0.8575(3)$ $0.27363(10)$ $0.6817(3)$ $0.5551(3)$ $0.150012(15)$ $0.77633(4)$ $0.93628(4)$ $0.090477(13)$ $0.60641(3)$ $0.972(5)$ $0.1009(16)$ $1.346(4)$ $1.114(5)$ $0.0610(18)$ $1.354(4)$

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0256 (18)	0.0192 (17)	0.0137 (16)	-0.0035 (14)	0.0102 (14)	-0.0026 (13)
C2	0.032 (2)	0.0153 (17)	0.0189 (17)	-0.0025 (14)	0.0067 (15)	0.0008 (13)
C3	0.033 (2)	0.0251 (19)	0.0238 (18)	0.0015 (16)	0.0085 (16)	0.0017 (15)
C4	0.028 (2)	0.034 (2)	0.0267 (19)	-0.0001 (17)	0.0058 (16)	0.0017 (16)
C5	0.030 (2)	0.034 (2)	0.0247 (19)	-0.0120 (17)	0.0100 (16)	-0.0072 (16)
C6	0.036 (2)	0.0228 (18)	0.0163 (17)	-0.0076 (16)	0.0110 (16)	-0.0064 (14)
C7	0.040 (2)	0.0210 (19)	0.030 (2)	-0.0163 (17)	0.0143 (18)	-0.0087 (15)
C8	0.045 (2)	0.0115 (16)	0.031 (2)	-0.0079 (16)	0.0188 (18)	-0.0034 (14)
C9	0.038 (2)	0.0120 (16)	0.0193 (17)	-0.0020 (14)	0.0138 (16)	-0.0019 (13)
C10	0.042 (2)	0.0134 (17)	0.0223 (18)	0.0008 (15)	0.0191 (17)	-0.0008 (13)
N4	0.0318 (17)	0.0102 (13)	0.0229 (15)	0.0016 (12)	0.0120 (13)	0.0002 (11)
C12	0.033 (2)	0.0202 (18)	0.0254 (19)	0.0062 (16)	0.0154 (16)	0.0062 (14)
C13	0.0279 (19)	0.0181 (17)	0.0183 (16)	0.0049 (15)	0.0107 (15)	0.0050 (13)
C14	0.0264 (19)	0.0274 (19)	0.0229 (18)	0.0069 (16)	0.0090 (15)	0.0060 (15)
C15	0.0232 (19)	0.041 (2)	0.0225 (18)	-0.0011 (17)	0.0068 (16)	0.0034 (16)
C16	0.0286 (19)	0.0279 (19)	0.0141 (16)	-0.0057 (15)	0.0073 (15)	-0.0014 (14)
C17	0.029 (2)	0.037 (2)	0.0237 (18)	-0.0135 (17)	0.0067 (16)	-0.0029 (16)
C18	0.040 (2)	0.0223 (19)	0.0288 (19)	-0.0165 (17)	0.0123 (18)	-0.0041 (15)
C19	0.040 (2)	0.0159 (17)	0.0259 (18)	-0.0040 (15)	0.0120 (17)	-0.0017 (14)
C20	0.0268 (18)	0.0182 (17)	0.0219 (17)	-0.0022 (14)	0.0100 (15)	-0.0020 (13)
C21	0.0280 (19)	0.0188 (17)	0.0133 (16)	-0.0031 (14)	0.0093 (14)	-0.0027 (13)
C22	0.0299 (19)	0.0083 (15)	0.0213 (18)	0.0001 (14)	0.0115 (15)	-0.0014 (13)
C23	0.061 (3)	0.028 (2)	0.0172 (18)	0.000 (2)	0.015 (2)	-0.0017 (16)
C24	0.039 (2)	0.026 (2)	0.036 (2)	-0.0036 (17)	0.0112 (18)	0.0131 (17)
N1	0.0292 (16)	0.0115 (14)	0.0165 (13)	-0.0043 (11)	0.0107 (12)	-0.0022 (10)
N2	0.0246 (15)	0.0150 (14)	0.0163 (14)	-0.0011 (11)	0.0095 (12)	0.0005 (11)
N3	0.0347 (17)	0.0133 (14)	0.0193 (14)	-0.0003 (12)	0.0114 (13)	0.0018 (11)
O1	0.0359 (14)	0.0137 (11)	0.0151 (12)	-0.0038 (10)	0.0061 (11)	0.0021 (9)

supporting information

02	0.0499 (17)	0.0094 (13)	0.0490 (17)	0.0040 (11)	0.0262 (14)	0.0010 (11)
O3	0.0388 (16)	0.0192 (14)	0.0627 (19)	0.0107 (12)	0.0188 (14)	0.0121 (13)
Cu1	0.0243 (2)	0.0083 (2)	0.0190 (2)	-0.00018 (15)	0.00791 (17)	0.00038 (15)
Br1	0.02579 (19)	0.01385 (17)	0.01721 (17)	0.00011 (13)	0.00847 (14)	-0.00126 (12)

Geometric parameters (Å, °)

Br1—Cu1	2.4671 (5)	C13—C14	1.386 (5)	
Cu1—O1	2.078 (2)	C14—C15	1.359 (5)	
Cu1—N1	2.060 (3)	C15—C16	1.400 (5)	
Cu1—N2	2.049 (3)	C16—C17	1.417 (5)	
Cu1—N4	1.941 (3)	C16—C21	1.413 (5)	
O1—C22	1.240 (4)	C17—C18	1.352 (5)	
O2—C10	1.219 (4)	C18—C19	1.400 (5)	
O3—C12	1.222 (4)	C19—C20	1.367 (5)	
N1—C1	1.377 (5)	C20—C21	1.411 (5)	
N1—C9	1.334 (4)	С2—Н2	0.9300	
N2-C13	1.326 (4)	С3—Н3	0.9300	
N2-C21	1.380 (4)	C4—H4	0.9300	
N3—C22	1.314 (4)	С5—Н5	0.9300	
N3—C23	1.459 (5)	С7—Н7	0.9300	
N3—C24	1.444 (5)	C8—H8	0.9300	
N4—C10	1.365 (4)	C14—H14	0.9300	
N4—C12	1.348 (5)	C15—H15	0.9300	
C1—C2	1.415 (5)	C17—H17	0.9300	
C1—C6	1.420 (5)	C18—H18	0.9300	
C2—C3	1.357 (5)	C19—H19	0.9300	
C3—C4	1.401 (5)	C20—H20	0.9300	
C4—C5	1.355 (5)	C22—H22	0.9300	
C5—C6	1.403 (5)	C23—H23A	0.98 (5)	
С6—С7	1.410 (5)	C23—H23B	0.96 (4)	
С7—С8	1.348 (6)	C23—H23C	0.93 (4)	
С8—С9	1.397 (5)	C24—H24A	0.9600	
C9—C10	1.506 (5)	C24—H24B	0.9600	
C12—C13	1.509 (5)	C24—H24C	0.9600	
$D_{r1} = C_{r1} = O_1$	102 21 (6)	C15 C16 C17	122.0 (2)	
Dr1 - Cu1 - O1 Dr1 - Cu1 - N1	102.21(0)	C15 - C16 - C17	122.0(3)	
DII - CuI - NI Dr1 - Cu1 - N2	99.83 (8)	C13 - C16 - C21	110.9 (3)	
Dr1 - Cu1 - N2 Dr1 - Cu1 - N4	94.01(8)	C1/-C10-C21	119.1 (3)	
DI = CuI = N4	129.35(9)	C10-C17-C18	120.2 (4)	
OI = CuI = NI	90.41 (11)	C1/-C18-C19	120.8 (3)	
O1 - Cu1 - N2	90.80 (11)	C18 - C19 - C20	120.8 (3)	
OI - CuI - N4	128.23(11)	C19 - C20 - C21	119.9 (3)	
N1 - Cu1 - N2	162.09 (11)	$N_2 = C_2 I = C_{10}$	120.2 (3)	
N1 - Cu1 - N4	δ1.U3 (12) 81.C0 (11)	$N_2 = C_2 I = C_2 U$	120.0(3)	
$N_2 = U_1 = N_4$	δ1.00 (11) 128 2 (2)	C10-C21-C20	119.2(3)	
CuI - OI - C22	128.2 (2)	OI = C22 = N3	123.1 (3)	
Cui—NI—CI	129.6 (2)	C1 - C2 - H2	120.00	

Cu1—N1—C9	112.3 (2)	С3—С2—Н2	120.00
C1—N1—C9	118.1 (3)	С2—С3—Н3	119.00
Cu1—N2—C13	111.7 (2)	С4—С3—Н3	119.00
Cu1—N2—C21	129.8 (2)	C3—C4—H4	120.00
C13—N2—C21	118.4 (3)	С5—С4—Н4	120.00
C22—N3—C23	121.3 (3)	С4—С5—Н5	120.00
C22—N3—C24	121.5 (3)	С6—С5—Н5	120.00
C23—N3—C24	117.2 (3)	С6—С7—Н7	120.00
Cu1—N4—C10	118.5 (2)	С8—С7—Н7	120.00
Cu1—N4—C12	117.8 (2)	C7—C8—H8	120.00
C10—N4—C12	123.6 (3)	С9—С8—Н8	120.00
N1-C1-C2	119.9 (3)	C13—C14—H14	120.00
N1-C1-C6	121.4 (3)	C15—C14—H14	120.00
$C_2 - C_1 - C_6$	118.7 (3)	C14—C15—H15	120.00
C1-C2-C3	119.9 (3)	C16—C15—H15	120.00
$C_{2} - C_{3} - C_{4}$	121 3 (3)	C16—C17—H17	120.00
C_{3} C_{4} C_{5}	1200(4)	C18—C17—H17	120.00
C4-C5-C6	120.9 (4)	C17 - C18 - H18	120.00
C1 - C6 - C5	119 2 (3)	C19 - C18 - H18	120.00
C1 - C6 - C7	117.2(3)	C18 - C19 - H19	120.00
C_{5} C_{6} C_{7}	123 1 (4)	C_{20} C_{19} H_{19}	120.00
C6-C7-C8	120.0(4)	C19 - C20 - H20	120.00
C7 - C8 - C9	119.8 (3)	C_{21} C_{20} H_{20}	120.00
N1 - C9 - C8	1231(3)	$01 - C^{22} - H^{22}$	118.00
N1 - C9 - C10	123.1(3) 1170(3)	N3_C22_H22	118.00
C_{8} C_{9} C_{10}	117.0(3) 119.9(3)	N3_C23_H23A	110.00
02-C10-N4	119.9 (3)	N3_C23_H23B	110(2) 111(2)
02 - C10 - C9	120.0(3)	N3 C23 H23C	111(2) 113(2)
N4 C10 C9	120.5(3) 110.9(3)	H23A C23 H23B	113(2) 110(3)
03 C12 N4	110.9(3) 120.5(3)	$H_{23}^{-} C_{23}^{-} H_{23}^{-} H_{23}^{-} C_{23}^{-} H_{23}^{-} H_{23}^{-$	110(3)
03 - C12 - C13	129.5(3) 1100(3)	$H_{23R} = C_{23} = H_{23C}$	100(3) 108(4)
N4 C12 C13	119.0(3) 111.5(3)	$M_{23} = C_{23} = M_{23} C_{23}$	108 (4)
$N_{2} = C_{12} = C_{13}$	111.3(3) 117.1(3)	$N_{3} = C_{24} = H_{24}R$	109.00
$N_2 = C_{13} = C_{14}$	117.1(3) 122.8(2)	N3 - C24 - H24C	100.00
$N_2 = C_{13} = C_{14}$	123.0(3)	N_{3} C_{24} $H_{24}C$	109.00
C12 - C13 - C14	119.0(3)	H24A - C24 - H24B	109.00
C13 - C14 - C13	119.0(3)	H24A - C24 - H24C	109.00
C14—C15—C16	119.0 (3)	H24B—C24—H24C	110.00
C6 - C1 - C2 - C3	-0.1(5)	C_{12} C_{13} C_{14} C_{15}	-1777(3)
$N_1 - C_1 - C_2 - C_3$	-1793(3)	N_{2} C_{13} C_{14} C_{15}	04(5)
$C_2 - C_1 - C_6 - C_5$	10(5)	C_{12} C_{13} N_{2} C_{21}	177.2(3)
$C_2 = C_1 = C_0 = C_3$	-1701(3)	$C_{12} = C_{13} = N_2 = C_{21}$	-50(4)
$N_1 = C_1 = C_6 = C_5$	-179.8(3)	C12 - C13 - N2 - Cu1	-0.9(5)
N1 = C1 = C6 = C7	0.1.(5)	$C_{14} = C_{13} = N_2 = C_{21}$	(3)
$C_{2} = C_{1} = C_{1} = C_{1}$	1787(3)	$C_{14} = C_{13} = N_2 = C_{01}$	1, 1, 0 (3) 0.1 (5)
$C_2 = C_1 = N_1 = C_2$	-20(5)	C_{13} C_{14} C_{15} C_{16} C_{17}	170.6(2)
$C_2 = C_1 = N_1 = C_0$	2.9(3)	$C_{14} = C_{15} = C_{16} = C_{17}$	-0.1(5)
$C_{0} = C_{1} = 1 = 1 = 0.9$	0.4(3)	$C_{14} = C_{13} = C_{10} = C_{21}$	-1785(2)
Co-CI-NI-Cul	1//.9(2)	U13 - U10 - U1 / - U18	-1/8.5(3)

C1—C2—C3—C4	-0.6 (5)	C21—C16—C17—C18	1.2 (5)
C2—C3—C4—C5	0.4 (6)	C15—C16—C21—C20	178.0 (3)
C3—C4—C5—C6	0.5 (6)	C15—C16—C21—N2	-0.4 (5)
C4—C5—C6—C1	-1.3 (5)	C17—C16—C21—C20	-1.6 (5)
C4—C5—C6—C7	178.9 (4)	C17—C16—C21—N2	179.9 (3)
C1—C6—C7—C8	0.8 (5)	C16—C17—C18—C19	0.5 (6)
C5—C6—C7—C8	-179.3 (4)	C17—C18—C19—C20	-1.8 (6)
C6—C7—C8—C9	-1.3 (6)	C18—C19—C20—C21	1.4 (5)
C7—C8—C9—C10	179.5 (3)	C19—C20—C21—C16	0.4 (5)
C7—C8—C9—N1	1.0 (6)	C19—C20—C21—N2	178.8 (3)
C8—C9—C10—N4	-178.3 (3)	C16—C21—N2—C13	0.9 (5)
C8—C9—C10—O2	2.4 (5)	C16—C21—N2—Cu1	-176.5 (2)
N1-C9-C10-N4	0.4 (4)	C20-C21-N2-C13	-177.5 (3)
N1-C9-C10-O2	-179.0 (3)	C20-C21-N2-Cu1	5.1 (5)
C8—C9—N1—C1	-0.1 (5)	O1—C22—N3—C23	-178.7 (3)
C8—C9—N1—Cu1	-178.7 (3)	O1—C22—N3—C24	-0.4 (5)
C10—C9—N1—C1	-178.6 (3)	N3—C22—O1—Cu1	155.7 (2)
C10—C9—N1—Cu1	2.7 (4)	C1—N1—Cu1—N4	178.0 (3)
C9—C10—N4—C12	-179.4 (3)	C1—N1—Cu1—N2	163.4 (3)
C9—C10—N4—Cu1	-3.6 (4)	C1—N1—Cu1—O1	50.2 (3)
O2-C10-N4-C12	-0.0 (6)	C1—N1—Cu1—Br1	-53.4 (3)
O2—C10—N4—Cu1	175.7 (3)	C9—N1—Cu1—N4	-3.6 (2)
C10—N4—C12—C13	178.7 (3)	C9—N1—Cu1—N2	-18.2 (5)
C10—N4—C12—O3	-1.9 (6)	C9—N1—Cu1—O1	-131.4 (2)
Cu1—N4—C12—C13	3.0 (4)	C9—N1—Cu1—Br1	125.0 (2)
Cu1—N4—C12—O3	-177.6 (3)	C13—N2—Cu1—N4	5.1 (2)
C10—N4—Cu1—N1	4.1 (2)	C13—N2—Cu1—N1	19.6 (5)
C10—N4—Cu1—N2	179.6 (3)	C13—N2—Cu1—O1	133.6 (2)
C10—N4—Cu1—O1	95.2 (3)	C13—N2—Cu1—Br1	-124.1 (2)
C10—N4—Cu1—Br1	-91.4 (2)	C21—N2—Cu1—N4	-177.4 (3)
C12—N4—Cu1—N1	-180.0 (3)	C21—N2—Cu1—N1	-162.8 (3)
C12—N4—Cu1—N2	-4.5 (2)	C21—N2—Cu1—O1	-48.8 (3)
C12—N4—Cu1—O1	-88.8 (3)	C21—N2—Cu1—Br1	53.5 (3)
C12—N4—Cu1—Br1	84.6 (3)	C22—O1—Cu1—N4	-45.9 (3)
N4—C12—C13—C14	179.8 (3)	C22—O1—Cu1—N1	37.8 (3)
N4—C12—C13—N2	1.6 (4)	C22—O1—Cu1—N2	-125.8 (3)
O3—C12—C13—C14	0.3 (5)	C22—O1—Cu1—Br1	139.3 (3)
O3—C12—C13—N2	-177.9 (3)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
0.98 (5)	2.87 (4)	3.663 (5)	138 (3)
0.93	2.82	3.655 (4)	151
0.93	2.42	3.059 (4)	126
0.93	2.33	3.060 (4)	135
	<i>D</i> —H 0.98 (5) 0.93 0.93 0.93	D—H H···A 0.98 (5) 2.87 (4) 0.93 2.82 0.93 2.42 0.93 2.33	D—HH···AD···A0.98 (5)2.87 (4)3.663 (5)0.932.823.655 (4)0.932.423.059 (4)0.932.333.060 (4)

Symmetry codes: (i) *x*, *y*, *z*+1; (ii) *x*-1, *y*, *z*; (iii) *x*+1/2, -*y*+1/2, *z*+1/2.