

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[(Z)-1,1-Dioxo-2-(2,4,5-trifluorobenzyl)-3,4-dihydro-2*H*-1,2-benzothiazin-4ylidene]acetic acid

Shagufta Parveen, Saghir Hussain, Shaojuan Zhu, Xin Hao and Changjin Zhu*

School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, People's Republic of China Correspondence e-mail: zcj@bit.edu.cn

Received 1 April 2014; accepted 18 April 2014

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.003 Å; R factor = 0.049; wR factor = 0.130; data-to-parameter ratio = 17.3.

In the title compound, $C_{17}H_{12}F_3NO_4S$, the heterocyclic thiazine ring adopts a half-chair conformation and the dihedral angle between the benzene rings is 43.28 (9)°. The α,β -unsaturated C=C group is inclined at an angle of 21.0 (3)° to the benzene ring of the benzothiazine moiety. In the crystal, inversion dimers linked by pairs of carboxylic acid O-H···O hydrogen bonds generate $R_2^2(8)$ loops. Each of the F atoms accepts a C_a -H···F (a = aromatic) hydrogen bond from an adjacent molecule, resulting in (001) sheets.

Related literature

For pharmaceuticals properties of 1,2-benzothiazines, see: Lombardino *et al.* (1971); Turck *et al.* (1996); Zia-ur-Rehman *et al.* (2005). For the biological properties and synthetic details of the title compound, see: Parveen *et al.* (2014). For related structures, see: Ahmad *et al.* (2008); Zia-ur-Rehman *et al.* (2008); Yang *et al.* (2012). For graph-set analysis, see: Etter *et al.* (1990).

Experimental

Crystal data	
$C_{17}H_{12}F_{3}NO_{4}S$	a = 6.6085 (12) Å
$M_r = 383.34$	b = 12.649 (3) Å
Monoclinic, $P2_1/n$	c = 18.757 (4) Å

 $\beta = 99.601 \ (2)^{\circ}$ $V = 1545.9 \ (5) \ \text{Å}^3$ Z = 4Mo $K\alpha$ radiation

Data collection

Rigaku AFC10/Saturn/24+ CCD-
detector diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
$T_{\min} = 0.910, \ T_{\max} = 0.970$

_ _ .

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ H atoms treated by a mixture of
independent and constrained
refinement $wR(F^2) = 0.130$ refinementS = 1.00refinement4123 reflections $\Delta \rho_{max} = 0.30 \text{ e Å}^{-3}$ 239 parameters $\Delta \rho_{min} = -0.46 \text{ e Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H3O\cdots O4^{i}$ $C12-H12\cdots F3^{ii}$ $C15-H15\cdots F1^{iii}$ $C5-H5\cdots F2^{iv}$	0.95 (3) 0.95 0.95 0.95	1.71 (3) 2.50 2.48 2.49	2.6454 (19) 3.448 (2) 3.430 (2) 3.269 (2)	170 (3) 178 179 140

Symmetry codes: (i) -x, -y, -z; (ii) x + 1, y, z; (iii) x - 1, y, z; (iv) x, y - 1, z.

Data collection: *CrystalClear* (Rigaku, 2008); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *CrystalStructure* (Rigaku, 2008).

This work was supported by the National Natural Science Foundation of China (grant No. 21272025), the Research Fund for the Doctoral Program of Higher Education of China (grant No. 20111101110042) and the Science and Technology Commission of Beijing (China) (grant No. Z131100004013003).

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2294).

References

Ahmad, M., Latif Siddiqui, H., Zia-ur-Rehman, M., Tizzard, G. J. & Ahmad, S. (2008). Acta Cryst. E64, o1392.

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Lombardino, J. G., Wiseman, E. H. & Mclamore, W. (1971). J. Med. Chem. 14, 1171–1175.

Parveen, S., Hussain, S., Zhu, S., Qin, X., Hao, X., Zhang, S., Lu, J. & Zhu, C. (2014). Roy. Soc. Chem. Adv. doi:10.1039/C4RA01016G.

Rigaku (2008). CrystalClear and CrystalStructure. Rigaku Inc., Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

- Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol. 36, 79-84.
- Yang, Y., Yu, Y. & Zhu, C. (2012). Acta Cryst. E68, o1364.
- Zia-ur-Rehman, M., Anwar, J. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771–1775.

Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Akbar, N. & Latif Siddiqui, H. (2008). Acta Cryst. E64, o1508.

 $\mu = 0.27 \text{ mm}^{-1}$

 $0.31 \times 0.21 \times 0.07 \text{ mm}$

13553 measured reflections 4123 independent reflections

3594 reflections with $I > 2\sigma(I)$

T = 153 K

 $R_{\rm int} = 0.033$

supporting information

Acta Cryst. (2014). E70, o627 [doi:10.1107/S1600536814008903]

2-[(Z)-1,1-Dioxo-2-(2,4,5-trifluorobenzyl)-3,4-dihydro-2*H*-1,2-benzothiazin-4-ylidene]acetic acid

Shagufta Parveen, Saghir Hussain, Shaojuan Zhu, Xin Hao and Changjin Zhu

S1. Comment

Benzothiazine derivatives have been found to posses versatile biological activities such as anti-inflammatory, antioxidant and anti-bacterial (Lombardino *et al.*, 1971; Zia-ur-Rehman *et al.*, 2005). Derivatives of 1,2-benzothiazine-1,1-dioxide also reported as aldose reductase inhibitors (Parveen *et al.*, 2014). We report here the structure of the title compound, $C_{17}H_{12}F_3NO_4S$, as an extension of this study. In this compound, (Fig. 1) the heterocyclic thiazine ring adopts a half chair conformation and the dihedral angle between the two benzene rings is 43.28 (9)°. The α,β -unsaturated C=C is inclined at an angle of 21.0 (3)° (torsion angle C5—C6—C7—C16) to the mean plane of the benzene ring (C1–C6). In the crystal, the molecules form centrosymmetric cyclic dimers through duplex intermolecular carboxylic acid O—H…O hydrogen bonds [graph set $R^2_2(8)$ (Etter *et al.*, 1990)] (Table 1) while all of the fluorine atoms on the benzyl ring are involved in intermolecular aromatic C—H…F hydrogen-bonding interactions, giving a two-dimensional network structure lying parallel to (001) (Fig. 3).

S2. Experimental

A mixture of *Z*-2-[2-(2,4,5-trifluorobenzyl)-1,1-dioxido-2*H*-1,2-benzothiazin- 4(3*H*)-ylidene]acetic acid methyl ester (0.5 mmol), 1,4-dioxane (5 mL) and 10*M* hydrochloric acid (8 mL) was refluxed at 80°C for 12 h. The precipitate formed was then filtered and washed with cold water. The crude product was purified by flash chromatography. Crystals suitable for X-ray crystallography were obtained by slow evaporation of a solution of the title compound in ethanol (yield = 70%).

S3. Refinement

The H atom bonded to O1 was located from a difference-Fourier map and refined freely. The remaining H atoms were positioned geometrically, with C—H = 0.95 and 0.99 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A view of the O—H…O and C—H…F hydrogen-bonding interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding are omitted for clarity.

2-[(Z)-1,1-Dioxo-2-(2,4,5-trifluorobenzyl)-3,4-dihydro-2H-1,2-benzothiazin-4-ylidene]acetic acid

Crystal data	
$C_{17}H_{12}F_{3}NO_{4}S$	F(000) = 784
$M_r = 383.34$	$D_{\rm x} = 1.647 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 6.6085 (12) Å	Cell parameters from 5016 reflections
b = 12.649 (3) Å	$\theta = 2.2 - 29.1^{\circ}$
c = 18.757 (4) Å	$\mu = 0.27 \text{ mm}^{-1}$
$\beta = 99.601 \ (2)^{\circ}$	T = 153 K
$V = 1545.9 (5) Å^3$	Prism, colorless
Z = 4	$0.31 \times 0.21 \times 0.07 \text{ mm}$

Data collection

Rigaku AFC10/Saturn724+ CCD-detector diffractometer Radiation source: Rotating Anode Graphite monochromator Detector resolution: 28.5714 pixels mm ⁻¹ φ and ω scans Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2008) $T_{\min} = 0.910, T_{\max} = 0.970$	13553 measured reflections 4123 independent reflections 3594 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 29.1^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -7 \rightarrow 9$ $k = -17 \rightarrow 17$ $l = -24 \rightarrow 25$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.130$ S = 1.00 4123 reflections 239 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0691P)^2 + 0.960P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.30$ e Å ⁻³ $\Lambda \rho_{min} = -0.46$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.77960 (7)	0.24006 (4)	0.22711 (2)	0.01907 (13)	
F1	1.19907 (18)	0.38684 (10)	0.09496 (7)	0.0309 (3)	
F2	0.9333 (2)	0.73151 (9)	0.06966 (8)	0.0356 (3)	
F3	0.5560 (2)	0.65732 (11)	0.07640 (9)	0.0451 (4)	
01	0.6212 (2)	0.21803 (12)	0.26843 (8)	0.0274 (3)	
O2	0.9255 (2)	0.32226 (11)	0.24924 (8)	0.0278 (3)	
O3	0.2021 (2)	-0.09741 (11)	0.02713 (8)	0.0225 (3)	
O4	0.1809 (2)	0.07828 (11)	0.04036 (8)	0.0236 (3)	
N1	0.6674 (2)	0.26344 (12)	0.14388 (8)	0.0179 (3)	
C1	0.9094 (3)	0.12210 (15)	0.21459 (9)	0.0184 (4)	
C2	1.1103 (3)	0.10765 (16)	0.24959 (10)	0.0231 (4)	
H2	1.1782	0.1613	0.2800	0.028*	
C3	1.2102 (3)	0.01352 (17)	0.23936 (11)	0.0237 (4)	
H3	1.3476	0.0024	0.2626	0.028*	
C4	1.1085 (3)	-0.06389 (15)	0.19517 (11)	0.0221 (4)	

H4	1.1748	-0.1295	0.1901	0.027*
C5	0.9114 (3)	-0.04731 (15)	0.15816 (10)	0.0195 (4)
Н5	0.8469	-0.1005	0.1265	0.023*
C6	0.8059 (3)	0.04668 (14)	0.16672 (9)	0.0156 (3)
C7	0.5982 (3)	0.06696 (14)	0.12487 (9)	0.0161 (3)
C8	0.5169 (3)	0.18039 (14)	0.11740 (11)	0.0193 (4)
H8A	0.4635	0.1941	0.0657	0.023*
H8B	0.4000	0.1863	0.1440	0.023*
C9	0.8116 (3)	0.29315 (15)	0.09448 (11)	0.0208 (4)
H9A	0.7563	0.2682	0.0450	0.025*
H9B	0.9449	0.2576	0.1103	0.025*
C10	0.8449 (3)	0.41109 (14)	0.09298 (10)	0.0182 (4)
C11	1.0366 (3)	0.45337 (15)	0.09093 (10)	0.0195 (4)
C12	1.0725 (3)	0.56021 (16)	0.08396 (10)	0.0230 (4)
H12	1.2068	0.5864	0.0829	0.028*
C13	0.9075 (3)	0.62708 (15)	0.07861 (10)	0.0236 (4)
C14	0.7142 (3)	0.58847 (16)	0.08163 (12)	0.0262 (4)
C15	0.6818 (3)	0.48208 (16)	0.08880 (12)	0.0252 (4)
H15	0.5477	0.4567	0.0909	0.030*
C16	0.4816 (3)	-0.01466 (14)	0.09595 (10)	0.0186 (4)
H16	0.5364	-0.0838	0.1045	0.022*
C17	0.2763 (3)	-0.00501 (15)	0.05225 (10)	0.0184 (4)
H3O	0.064 (4)	-0.083 (2)	0.0060 (15)	0.043 (8)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0204 (2)	0.0161 (2)	0.0201 (2)	-0.00048 (17)	0.00145 (17)	-0.00322 (16)
F1	0.0183 (6)	0.0291 (7)	0.0454 (8)	0.0025 (5)	0.0058 (5)	0.0017 (6)
F2	0.0519 (9)	0.0149 (6)	0.0427 (8)	-0.0093 (6)	0.0157 (6)	0.0012 (5)
F3	0.0326 (7)	0.0217 (7)	0.0823 (12)	0.0090 (6)	0.0130 (7)	0.0066 (7)
01	0.0321 (8)	0.0254 (7)	0.0268 (7)	0.0035 (6)	0.0113 (6)	0.0000 (6)
O2	0.0283 (8)	0.0197 (7)	0.0324 (8)	-0.0045 (6)	-0.0040 (6)	-0.0075 (6)
03	0.0186 (7)	0.0180 (6)	0.0294 (7)	-0.0040(5)	-0.0005 (5)	-0.0066 (5)
O4	0.0183 (6)	0.0183 (6)	0.0315 (7)	-0.0028 (5)	-0.0034 (5)	0.0009 (5)
N1	0.0173 (7)	0.0143 (7)	0.0214 (7)	-0.0022 (6)	0.0010 (6)	-0.0003 (6)
C1	0.0204 (9)	0.0176 (8)	0.0167 (8)	-0.0008 (7)	0.0020 (7)	-0.0003 (6)
C2	0.0211 (9)	0.0265 (10)	0.0193 (9)	-0.0010 (8)	-0.0037 (7)	-0.0014 (7)
C3	0.0166 (9)	0.0307 (10)	0.0227 (9)	0.0035 (8)	-0.0002 (7)	0.0041 (8)
C4	0.0218 (9)	0.0185 (9)	0.0264 (9)	0.0049 (7)	0.0053 (7)	0.0044 (7)
C5	0.0194 (9)	0.0162 (8)	0.0231 (9)	-0.0016 (7)	0.0039 (7)	0.0005 (7)
C6	0.0157 (8)	0.0141 (8)	0.0173 (8)	-0.0017 (6)	0.0033 (6)	0.0014 (6)
C7	0.0158 (8)	0.0162 (8)	0.0165 (8)	-0.0013 (6)	0.0034 (6)	0.0012 (6)
C8	0.0141 (8)	0.0139 (8)	0.0283 (9)	-0.0026 (7)	-0.0016 (7)	-0.0003 (7)
C9	0.0232 (9)	0.0146 (8)	0.0257 (9)	-0.0012 (7)	0.0074 (7)	-0.0007 (7)
C10	0.0193 (9)	0.0158 (8)	0.0191 (8)	-0.0016 (7)	0.0020 (7)	0.0007 (6)
C11	0.0175 (9)	0.0219 (9)	0.0188 (8)	0.0007 (7)	0.0019 (7)	-0.0014 (7)
C12	0.0231 (9)	0.0262 (10)	0.0195 (9)	-0.0088 (8)	0.0035 (7)	-0.0021 (7)

supporting information

C13	0.0352 (11)	0.0140 (8)	0.0218 (9)	-0.0066 (8)	0.0056 (8)	-0.0008 (7)
C14	0.0244 (10)	0.0178 (9)	0.0365 (11)	0.0035 (8)	0.0056 (8)	0.0022 (8)
C15	0.0179 (9)	0.0194 (9)	0.0387 (11)	-0.0026 (7)	0.0059 (8)	0.0009 (8)
C16	0.0185 (9)	0.0151 (8)	0.0220 (9)	-0.0002 (7)	0.0030 (7)	-0.0009 (7)
C17	0.0172 (8)	0.0185 (8)	0.0194 (8)	-0.0038 (7)	0.0028 (7)	-0.0011 (7)

Geometric parameters (Å, °)

S1—01	1.4302 (15)	C5—C6	1.401 (2)	
S1—O2	1.4316 (14)	С5—Н5	0.9500	
S1—N1	1.6395 (16)	C6—C7	1.485 (2)	
S1—C1	1.7562 (19)	C7—C16	1.347 (2)	
F1—C11	1.356 (2)	С7—С8	1.530 (2)	
F2—C13	1.346 (2)	C8—H8A	0.9900	
F3—C14	1.352 (2)	C8—H8B	0.9900	
O3—C17	1.323 (2)	C9—C10	1.509 (2)	
O3—H3O	0.95 (3)	С9—Н9А	0.9900	
O4—C17	1.229 (2)	С9—Н9В	0.9900	
N1	1.475 (2)	C10-C11	1.381 (3)	
N1-C9	1.484 (2)	C10—C15	1.395 (3)	
C1—C2	1.392 (3)	C11—C12	1.382 (3)	
C1—C6	1.407 (2)	C12—C13	1.371 (3)	
С2—С3	1.390 (3)	C12—H12	0.9500	
С2—Н2	0.9500	C13—C14	1.377 (3)	
C3—C4	1.383 (3)	C14—C15	1.373 (3)	
С3—Н3	0.9500	C15—H15	0.9500	
C4—C5	1.386 (3)	C16—C17	1.468 (3)	
C4—H4	0.9500	C16—H16	0.9500	
O1—S1—O2	120.19 (9)	N1—C8—H8B	108.4	
01—S1—N1	107.19 (9)	C7—C8—H8B	108.4	
O2—S1—N1	108.70 (9)	H8A—C8—H8B	107.5	
01—S1—C1	108.97 (9)	N1C9C10	111.90 (15)	
O2—S1—C1	109.60 (9)	N1—C9—H9A	109.2	
N1—S1—C1	100.32 (8)	С10—С9—Н9А	109.2	
С17—О3—НЗО	104.8 (17)	N1—C9—H9B	109.2	
C8—N1—C9	115.93 (15)	С10—С9—Н9В	109.2	
C8—N1—S1	111.38 (12)	H9A—C9—H9B	107.9	
C9—N1—S1	113.89 (12)	C11—C10—C15	116.92 (17)	
C2—C1—C6	122.42 (17)	C11—C10—C9	121.38 (17)	
C2—C1—S1	119.82 (14)	C15—C10—C9	121.57 (17)	
C6—C1—S1	117.72 (14)	F1-C11-C10	118.64 (17)	
C3—C2—C1	119.01 (18)	F1-C11-C12	117.72 (17)	
С3—С2—Н2	120.5	C10-C11-C12	123.64 (18)	
С1—С2—Н2	120.5	C13—C12—C11	117.60 (18)	
C4—C3—C2	119.67 (17)	C13—C12—H12	121.2	
С4—С3—Н3	120.2	C11—C12—H12	121.2	
С2—С3—Н3	120.2	F2—C13—C12	119.94 (19)	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$))))))) 7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)))))))))))))))))))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)))))))))) ,) ,) , , , , , ,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$))))) 7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)))) 7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$))) 7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$))) 7))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$))) 7))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)) 7))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)) 7))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$) 7) I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$) 7))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$) 7))
O2-S1-N1-C8 $179.16 (13)$ $C16-C7-C8-N1$ $-173.12 (18)$ $O2-S1-N1-C8$ $64.22 (14)$ $C6-C7-C8-N1$ $9.0 (2)$ $O1-S1-N1-C9$ $177.10 (12)$ $C8-N1-C9-C10$ $138.74 (16)$ $O2-S1-N1-C9$ $45.76 (15)$ $S1-N1-C9-C10$ $-90.06 (17)$ $O2-S1-N1-C9$ $-69.18 (14)$ $N1-C9-C10-C11$ $140.18 (18)$ $O1-S1-C1-C2$ $-110.27 (17)$ $N1-C9-C10-C15$ $-44.1 (2)$ $O2-S1-C1-C2$ $23.12 (19)$ $C15-C10-C11-F1$ $179.92 (17)$ $N1-S1-C1-C2$ $137.38 (16)$ $C9-C10-C11-F1$ $-4.2 (3)$ $O1-S1-C1-C6$ $71.95 (16)$ $C15-C10-C11-C12$ $-1.0 (3)$ $O2-S1-C1-C6$ $-154 67 (14)$ $C9-C10-C11-C12$ $174 89 (18)$) 7))
C1—S1—N1—C8 $64.22 (14)$ C6—C7—C8—N1 $9.0 (2)$ O1—S1—N1—C9177.10 (12)C8—N1—C9—C10138.74 (16)O2—S1—N1—C945.76 (15)S1—N1—C9—C10-90.06 (17)C1—S1—N1—C9-69.18 (14)N1—C9—C10—C11140.18 (18)O1—S1—C1—C2-110.27 (17)N1—C9—C10—C15-44.1 (2)O2—S1—C1—C223.12 (19)C15—C10—C11—F1179.92 (17)N1—S1—C1—C2137.38 (16)C9—C10—C11—F1-4.2 (3)O1—S1—C1—C671.95 (16)C15—C10—C11—C12-1.0 (3)O2—S1—C1—C6-154 67 (14)C9—C10—C11—C12174.89 (18))
O1-S1-N1-C9 $177.10 (12)$ $C8-V1-C9-C10$ $138.74 (16)$ $O2-S1-N1-C9$ $45.76 (15)$ $S1-N1-C9-C10$ $-90.06 (17)$ $O1-S1-N1-C9$ $45.76 (15)$ $S1-N1-C9-C10$ $-90.06 (17)$ $O1-S1-C1-C2$ $-69.18 (14)$ $N1-C9-C10-C11$ $140.18 (18)$ $O1-S1-C1-C2$ $-110.27 (17)$ $N1-C9-C10-C15$ $-44.1 (2)$ $O2-S1-C1-C2$ $23.12 (19)$ $C15-C10-C11-F1$ $179.92 (17)$ $N1-S1-C1-C2$ $137.38 (16)$ $C9-C10-C11-F1$ $-4.2 (3)$ $O1-S1-C1-C6$ $71.95 (16)$ $C15-C10-C11-C12$ $-1.0 (3)$ $O2-S1-C1-C6$ $-154 67 (14)$ $C9-C10-C11-C12$ $174 89 (18)$)
O2-S1-N1-C9 $45.76 (15)$ $S1-N1-C9-C10$ $-90.06 (17)$ $O2-S1-N1-C9$ $-69.18 (14)$ $N1-C9-C10-C11$ $140.18 (18)$ $O1-S1-C1-C2$ $-110.27 (17)$ $N1-C9-C10-C15$ $-44.1 (2)$ $O2-S1-C1-C2$ $23.12 (19)$ $C15-C10-C11-F1$ $179.92 (17)$ $N1-S1-C1-C2$ $137.38 (16)$ $C9-C10-C11-F1$ $-4.2 (3)$ $O1-S1-C1-C6$ $71.95 (16)$ $C15-C10-C11-C12$ $-1.0 (3)$ $O2-S1-C1-C6$ $-154 67 (14)$ $C9-C10-C11-C12$ $174 89 (18)$)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,
C1 - S1 - C1 - C2 $-110.27 (17)$ $N1 - C9 - C10 - C15$ $-44.1 (2)$ $O2 - S1 - C1 - C2$ $23.12 (19)$ $C15 - C10 - C11 - F1$ $179.92 (17)$ $N1 - S1 - C1 - C2$ $137.38 (16)$ $C9 - C10 - C11 - F1$ $-4.2 (3)$ $O1 - S1 - C1 - C6$ $71.95 (16)$ $C15 - C10 - C11 - C12$ $-1.0 (3)$ $O2 - S1 - C1 - C6$ $-154 67 (14)$ $C9 - C10 - C11 - C12$ $174 89 (18)$	1
O1-S1-C1-C2 $110.27 (17)$ $R1-C9-C10-C13$ $44.1 (2)$ $O2-S1-C1-C2$ $23.12 (19)$ $C15-C10-C11-F1$ $179.92 (17)$ $N1-S1-C1-C2$ $137.38 (16)$ $C9-C10-C11-F1$ $-4.2 (3)$ $O1-S1-C1-C6$ $71.95 (16)$ $C15-C10-C11-C12$ $-1.0 (3)$ $O2-S1-C1-C6$ $-154 67 (14)$ $C9-C10-C11-C12$ $174 89 (18)$	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	、
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,
02-S1-C1-C6 $-154 67 (14)$ $C9-C10-C11-C12$ $174 89 (18)$	
$U/=S_1=U_1=U_0$ = $(340/14)$ $U_2=U_1U=U_1/$ $(489/18)$	`
	1
NI = SI = CI = C6 $-40.41(16)$ $FI = CII = CI2 = CI3$ $1/8.8/(16)$	1
C6 - C1 - C2 - C3 - 2.7 (3) C10 - C11 - C12 - C13 - 0.2 (3)	-
S1-C1-C2-C3 179.63 (15) $C11-C12-C13-F2$ -178.12 (1	/)
C1-C2-C3-C4 -0.3 (3) $C11-C12-C13-C14$ 1.3 (3)	
C2-C3-C4-C5 3.0 (3) $F2-C13-C14-F3$ -0.8 (3)	
C3-C4-C5-C6 -2.7 (3) $C12-C13-C14-F3$ 179.76 (19)
C4—C5—C6—C1 -0.3 (3) F2—C13—C14—C15 178.26 (19)
C4—C5—C6—C7 177.32 (17) $C12$ —C13—C14—C15 -1.1 (3)	
C2-C1-C6-C5 3.0 (3) F3-C14-C15-C10 178.94 (19)
S1-C1-C6-C5 -179.31 (13) $C13-C14-C15-C10$ -0.1 (3)	
C2—C1—C6—C7 –174.62 (17) C11—C10—C15—C14 1.2 (3)	
S1—C1—C6—C7 3.1 (2) C9—C10—C15—C14 -174.72 (1	
C5—C6—C7—C16 21.0 (3) C6—C7—C16—C17 -178.59 (1	9)
C1—C6—C7—C16 –161.52 (18) C8—C7—C16—C17 3.5 (3)	9) 5)
C5—C6—C7—C8 –161.05 (17) C7—C16—C17—O4 –4.6 (3)	9) 5)
	9) 5)
C1—C6—C7—C8 16.4 (3) C7—C16—C17—O3 176.17 (17	9) 6)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
03—H3 <i>O</i> ····O4 ⁱ	0.95 (3)	1.71 (3)	2.6454 (19)	170 (3)
C12—H12…F3 ⁱⁱ	0.95	2.50	3.448 (2)	178
C15—H15…F1 ⁱⁱⁱ	0.95	2.48	3.430 (2)	179
C5—H5…F2 ^{iv}	0.95	2.49	3.269 (2)	140

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) –*x*, –*y*, –*z*; (ii) *x*+1, *y*, *z*; (iii) *x*-1, *y*, *z*; (iv) *x*, *y*-1, *z*.