Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-lodo-1H-pyrazolo[3,4-b]pyridine

Ping-Hsin Huang, ${ }^{\text {a }}$ * Yuh-Sheng Wen ${ }^{\mathbf{b}}$ and Jiun-Yi Shen ${ }^{\mathbf{c}}$

${ }^{\text {a }}$ Cardinal Tien College of Healthcare \& Management, Taipei, 231, Taiwan, ${ }^{\mathbf{b}}$ Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan, and ${ }^{\mathrm{c}}$ Department of Chemistry, National Taiwan University, Taipei, Taiwan
Correspondence e-mail: pshuang@ctcn.edu.tw

Received 6 March 2014; accepted 4 May 2014

Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.017 ; w R$ factor $=0.040 ;$ data-to-parameter ratio $=16.2$.

The title compound, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{IN}_{3}$, is essentially planar, with a dihedral angle of $0.82(3)^{\circ}$ between the planes of the pyridine and pyrazole rings. In the crystal, pairs of molecules are connected into inversion dimers through $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. $\mathrm{C}-\mathrm{I} \cdots \mathrm{N}$ halogen bonds link the dimers into zigzag chains parallel to the b-axis direction. The packing also features $\pi-\pi$ stacking interactions along (110) with interplanar distances of 3.292 (1) and 3.343 (1) \AA, and centroid-centroid distances of 3.308 (1) and 3.430 (1) \AA.

Related literature

For the production of antitumor agents, see: Huang et al. (2007); Ye et al. (2009). For a related structure, see: Huang et al. (2013).

Experimental

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{IN}_{3}$
$M_{r}=245.02$
Monoclinic, $C 2 / c$ $a=10.7999$ (13) A

$$
\begin{aligned}
& b=7.7939(9) \AA \\
& c=17.406(2) \AA \\
& \beta=101.748(2)^{\circ} \\
& V=1434.5(3) \AA^{3} \\
& Z=8
\end{aligned}
$$

Mo $K \alpha$ radiation
$\mu=4.38 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
$0.35 \times 0.32 \times 0.25 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 1996)
$T_{\text {min }}=0.309, T_{\text {max }}=0.407$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017 \quad 26$ restraints
$w R\left(F^{2}\right)=0.040$
H -atom parameters constrained
$S=1.13$
$\Delta \rho_{\text {max }}=0.40 \mathrm{e}^{-3}{ }^{-3}$
1470 reflections
91 parameters

5315 measured reflections 1470 independent reflections 1423 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.022$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.88	2.09	$2.926(3)$	159
$\mathrm{C} 6-\mathrm{I} 1 \cdots \mathrm{~N} 3^{\mathrm{i}}$	$2.076(2)$	$3.013(2)$	$5.056(3)$	$166.72(7)$

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.
Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

This work was partially supported by the Instrumentation Center of National Taiwan University, and by Cardinal Tien College of Healthcare \& Management.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZL2581).

References

Bruker (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Huang, S., Lin, R., Yu, Y., Lu, Y., Connolly, P. J., Chiu, G., Li, S., Emanuel, S. L. \& Middleton, S. A. (2007). Bioorg. Med. Chem. Lett. 17, 1243-1245.
Huang, P.-H., Wen, Y.-S. \& Shen, J.-Y. (2013). Acta Cryst. E69, 0674.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Ye, Q., Cao, J., Zhou, X., Lv, D., He, Q., Yang, B. \& Hu, Y. (2009). Bioorg. Med. Chem. Lett. 17, 4763-4772.

supporting information

Acta Cryst. (2014). E70, o650 [doi:10.1107/S1600536814010009]

3-lodo-1H-pyrazolo[3,4-b]pyridine

Ping-Hsin Huang, Yuh-Sheng Wen and Jiun-Yi Shen

S1. Comment

The title compound has been shown to be a precursor for the production of anticancer drugs (Huang et al., 2007; Ye et al., 2009). The molecular structure is shown in Figure 1. The dihedral angle between the pyridine and the pyrazole rings is 0.82 (3) ${ }^{\circ}$. (Huang et al., 2013) As shown in Fig.1, N—H $\cdots \mathrm{N} H$-bonds connect molecules into centrosymmetric dimers. The molecules connected the H-bonds are arranged in a parallel but non-coplanar fashion, with the planes of the two molcecules being about $0.67 \AA$ apart. C-I $\cdots \mathrm{N}$ halogen bonds create zig zag chains parallel to the b axis direction, Fig. 2. Packing is also facilitated through $\pi \cdots \pi$ stacking interactions along (110) with interplanar distances of 3.292 (1) and 3.343 (1) \AA, and centroid to centroid distances of 3.308 (1) and 3.430 (1) \AA (Fig 3.). Molecules in the crystal structure are thus connected through $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding interactions, through a $\mathrm{C}-\mathrm{I} \cdots \mathrm{N}$ halogen bond as well as $\pi \cdots \pi$ stacking interactions that help to stabilize the crystal structure.

S2. Experimental

The compound was synthesized by the following procedure (Ye et al., 2009). Iodine ($18.7 \mathrm{~g}, 73.6 \mathrm{mmol}$) was added to a solution of 1 H -pyrazolo[3,4-b]pyridine ($3.5 \mathrm{~g}, 29.4 \mathrm{mmol}$) in DMF (50 ml), followed by KOH ($6.6 \mathrm{~g}, 118.0 \mathrm{mmol}$). The mixture was stirred at room temperature for 2 h . After that, it was poured into brine and extracted with ethyl acetate and the organic extract was washed with brine and aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, dried and concentrated in vacuum. The residue was purified by recrystallization in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexane to give a white solid ($6.3 \mathrm{~g}, 87.5 \%$). Crystals suitable for X-ray diffraction were grown from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution layered with hexane at room temperature. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: $13.18(\mathrm{br}, 1 \mathrm{H}), 8.64(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.8,1.6 \mathrm{~Hz}), 7.89(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.4,1.6 \mathrm{~Hz}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H})$. Mass spectrum: $m / e 245\left(M^{+}\right)$, calcd. (245.02).

S3. Refinement

H atoms were located in difference map but were positioned with idealized geometry and refined isotropic with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, N)$.

Figure 1
The centrosymmetric dimer molecular structures of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii.

Figure 2
Packing diagram for title compound, viewed along the b axis. H atom have been omitted for clarity.

Figure 3
In the crystal, there are significant $\pi \cdots \pi$ stacking interactions between molecules.

3-lodo-1 H-pyrazolo[3,4-b]pyridine

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{IN}_{3}$
$M_{r}=245.02$
Monoclinic, C2/c
$a=10.7999(13) \AA$
$b=7.7939$ (9) \AA
$c=17.406$ (2) \AA
$\beta=101.748$ (2) ${ }^{\circ}$
$V=1434.5$ (3) \AA^{3}
$Z=8$
$F(000)=912$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1996)
$T_{\text {min }}=0.309, T_{\text {max }}=0.407$

$$
D_{\mathrm{x}}=2.269 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$D_{\mathrm{m}}=2.269 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by not measured
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4550 reflections
$\theta=2.4-27.5^{\circ}$
$\mu=4.38 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Block, colorless
$0.35 \times 0.32 \times 0.25 \mathrm{~mm}$

5315 measured reflections
1470 independent reflections
1423 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=26.4^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-14 \rightarrow 13$
$k=-10 \rightarrow 9$
$l=-22 \rightarrow 22$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017$
$w R\left(F^{2}\right)=0.040$
$S=1.13$
1470 reflections
91 parameters

26 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0156 P)^{2}+1.9173 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.40 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.46 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
I1	$0.23044(2)$	$1.04283(2)$	$0.29263(2)$	$0.02252(7)$
N1	$0.46725(18)$	$0.6969(3)$	$0.56007(11)$	$0.0202(4)$
N2	$0.44327(18)$	$0.6579(3)$	$0.42063(11)$	$0.0196(4)$
H2A	0.4869	0.5622	0.4219	0.023^{*}
N3	$0.38503(19)$	$0.7396(3)$	$0.35341(11)$	$0.0201(4)$
C1	$0.4368(2)$	$0.8083(3)$	$0.61183(13)$	$0.0226(5)$
H1	0.4641	0.7822	0.6660	0.027^{*}
C2	$0.3682(2)$	$0.9594(3)$	$0.59272(15)$	$0.0249(5)$
H2	0.3517	1.0325	0.6332	0.030^{*}
C3	$0.3242(2)$	$1.0027(3)$	$0.51533(15)$	$0.0223(5)$
H3	0.2758	1.1038	0.5010	0.027^{*}
C4	$0.3539(2)$	$0.8915(3)$	$0.45868(13)$	$0.0177(4)$
C5	$0.4249(2)$	$0.7441(3)$	$0.48502(13)$	$0.0178(4)$
C6	$0.3326(2)$	$0.8785(3)$	$0.37596(13)$	$0.0189(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.02567(11)$	$0.01896(10)$	$0.02189(10)$	$0.00157(6)$	$0.00242(7)$	$0.00504(6)$
N1	$0.0215(10)$	$0.0196(10)$	$0.0186(9)$	$-0.0028(8)$	$0.0020(8)$	$0.0012(8)$
N2	$0.0222(10)$	$0.0173(10)$	$0.0184(9)$	$0.0042(8)$	$0.0020(8)$	$0.0004(7)$
N3	$0.0229(10)$	$0.0192(10)$	$0.0174(9)$	$-0.0007(8)$	$0.0022(8)$	$0.0019(8)$
C1	$0.0264(13)$	$0.0240(12)$	$0.0174(10)$	$-0.0075(10)$	$0.0043(9)$	$-0.0015(9)$
C2	$0.0281(14)$	$0.0234(13)$	$0.0252(12)$	$-0.0062(10)$	$0.0105(10)$	$-0.0064(10)$
C3	$0.0241(13)$	$0.0159(11)$	$0.0287(12)$	$-0.0020(10)$	$0.0097(10)$	$-0.0022(9)$
C4	$0.0181(11)$	$0.0138(11)$	$0.0218(11)$	$-0.0036(9)$	$0.0051(9)$	$0.0011(9)$
C5	$0.0171(11)$	$0.0160(11)$	$0.0200(11)$	$-0.0037(9)$	$0.0031(8)$	$-0.0009(8)$
C6	$0.0187(11)$	$0.0168(11)$	$0.0205(11)$	$-0.0006(9)$	$0.0023(9)$	$0.0026(9)$

Geometric parameters (A, ${ }^{\circ}$)

I1-C6	2.076 (2)	C1-H1	0.9500
N1-C1	1.339 (3)	C2-C3	1.376 (4)
N1-C5	1.345 (3)	C2-H2	0.9500
N2-C5	1.356 (3)	C3-C4	1.398 (3)
N2-N3	1.368 (3)	C3-H3	0.9500
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	0.8800	C4-C5	1.405 (3)
N3-C6	1.318 (3)	C4-C6	1.415 (3)
C1-C2	1.396 (4)		
C1-N1-C5	113.2 (2)	C2-C3-H3	121.5
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{N} 3$	110.93 (18)	C4-C3-H3	121.5
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	124.5	C3-C4-C5	117.7 (2)
N3-N2-H2A	124.5	C3-C4-C6	138.5 (2)
$\mathrm{C} 6-\mathrm{N} 3-\mathrm{N} 2$	106.15 (18)	C5-C4-C6	103.79 (19)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	125.3 (2)	N1-C5-N2	126.1 (2)
N1-C1-H1	117.4	N1-C5-C4	126.6 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	117.4	N2-C5-C4	107.31 (19)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	120.1 (2)	N3-C6-C4	111.8 (2)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.0	N3-C6-I1	119.88 (16)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.0	C4-C6-I1	128.30 (17)
C2-C3-C4	117.1 (2)		

Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.88	2.09	$2.926(3)$	159
$\mathrm{C} 6-\mathrm{I} 1 \cdots \mathrm{~N} 3^{\mathrm{ii}}$	$2.08(1)$	$3.01(1)$	$5.056(3)$	$167(1)$

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+1 / 2, y+1 / 2,-z+1 / 2$.

