

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(tetraphenylphosphonium) tetrachloridocobaltate(II)

Zeghouan Ouahida, Nasreddine Hadjadj, Fatiha Guenifa, Lamia Bendjeddou* and Hocine Merazig

Unité de Recherche Chimie de l'Environnement et Moléculaire Structurale (CHEMS). Faculté des Sciences Exactes, Campus Chaabet Ersas, Université Constantine I. 25000 Constantine, Algeria

Correspondence e-mail: Lamia_bendjeddou@yahoo.fr

Received 7 May 2014; accepted 15 May 2014

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.030; wR factor = 0.084; data-to-parameter ratio = 15.1.

The title compound, $(C_{24}H_{20}P)_2[CoCl_4]$, was prepared under hydrothermal conditions. In the crystal, the tetraphenylphosphonium cations are linked by pairs of weak $C-H\cdots\pi$ interactions into supramolecular dimers; the Co^{II} cations lie on twofold rotation axes and the tetrahedral $[CoCl_4]^{2-}$ anions are linked with the tetraphenylphosphonium cations via weak C-H···Cl hydrogen bonds.

Related literature

For background and applications of compounds with supramolecular structures, see: Rowsell & Yaghi (2005); Dong et al. (2007); Wu & Lin (2007); Zhao et al. (2003); Neville et al. (2008); Huang et al. (2007). For applications of the tetraphenylphosphonium ion in supramolecular chemistry and numerous coordination polymers, see: Zacharie et al. (1985); Schlueter & Geiser (2007).

mm

3180 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.028$

Experimental

Crystal data

$(C_{24}H_{20}P)_2[CoCl_4]$	V = 4240.4 (3) Å ³
$M_r = 879.46$	Z = 4
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 10.9154 (4) Å	$\mu = 0.77 \text{ mm}^{-1}$
b = 19.2514 (6) Å	T = 293 K
c = 20.1826 (7) Å	$0.20 \times 0.10 \times 0.08$
$\beta = 91.008 \ (2)^{\circ}$	

Data collection

Bruker APEXII diffractometer 12226 measured reflections 3748 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	249 parameters
$vR(F^2) = 0.084$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 1.51 \text{ e } \text{\AA}^{-3}$
3748 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

Table 1

Selected bond lengths (Å).

Co1-Cl2	2.2791 (6)	Co1-Cl1	2.2873 (6)

Table 2

Hydrogen-bond geometry (Å, °).

Cg2 and Cg4 are the centroids of the C19-C24 and C7-C12 benzene rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C3-H3···Cl1	0.93	2.80	3.552 (3)	138
$C11 - H11 \cdot \cdot \cdot Cl1^{i}$	0.93	2.81	3.633 (2)	148
C23-H23···Cl2 ⁱⁱ	0.93	2.77	3.644 (2)	156
$C14 - H14 \cdots Cg4^{iii}$	0.93	2.88	3.650 (2)	141
$C21 - H21 \cdots Cg2^{iii}$	0.93	2.79	3.446 (2)	129
Symmetry codes:	(i) $x + \frac{1}{2}, -$	$-y + \frac{1}{2}, z - \frac{1}{2};$	(ii) $-x + 1, y,$	$-z + \frac{1}{2};$ (iii)

-x + 1, -y + 1, -z.

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012), Mercury (Macrae et al., 2006) and POVRay (Persistence of Vision Team, 2004).

This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université de Constantine 1, Algeria. Thanks are due to MESRS and ATRST (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Thématique de Recherche en Sciences et Technologie, Algérie) for financial support via the PNR program.

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5791).

References

- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Dong, Y.-B., Zhang, Q., Liu, L.-L., Ma, J.-P., Tang, B. & Huang, R.-Q. (2007). J. Am. Chem. Soc. 129, 1514–1515.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Huang, Y.-L., Huang, M.-Y., Chan, T.-H., Chang, B. C. & Lii, K. L. (2007). *Chem. Mater.* 19, 3232–3237.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Neville, S. M., Halder, G. J., Chapman, K. W., Duriska, M. B., Southon, P. D., Cashion, J. D., Letard, J. F., Moubaraki, B., Murray, K. S. & Kepert, C. J. (2008). J. Am. Chem. Soc. 130, 2869–2876.
- Persistence of Vision Team (2004). POV-RAY. Persistence of Vision Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org/.
- Rowsell, J. L. C. & Yaghi, O. M. (2005). Angew. Chem. Int. Ed. 44, 4670-4679.
- Schlueter, J. A. & Geiser, U. (2007). Acta Cryst. C63, m235-m237.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wu, C.-D. & Lin, W.-B. (2007). Angew. Chem. Int. Ed. 46, 1075-1078.
- Zacharie, B., Wuest, J. D., Olivier, M. J. & Beauchamp, A. L. (1985). Acta Cryst. C41, 369–371.
- Zhao, B., Cheng, P., Dai, Y., Cheng, C., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H. & Wang, G.-L. (2003). Angew. Chem. Int. Ed. 42, 934–936.

supporting information

Acta Cryst. (2014). E70, m229-m230 [doi:10.1107/S1600536814011210]

Bis(tetraphenylphosphonium) tetrachloridocobaltate(II)

Zeghouan Ouahida, Nasreddine Hadjadj, Fatiha Guenifa, Lamia Bendjeddou and Hocine Merazig

S1. Comment

Research on supramolecular compounds has become popular because of their potential applications in areas such as gas storage (Rowsell & Yaghi, 2005), selective absorption (Dong *et al.*, 2007), catalysis (Wu & Lin, 2007), magnetics (Zhao *et al.*, 2003; Neville *et al.*, 2008) and optics (Huang *et al.*, 2007). P-Ligands are important structural motifs in organic syntheses, coordination chemistry and also in various catalytically active compounds, the tetraphenylphosphonium ion have been widely used in supramolecular chemistry and numerous coordination polymers with versatile structures and potential properties have been reported (Zacharie *et al.*, 1985; Schlueter & Geiser, 2007). Thus, we report here the synthesis of title compound [L_2 .CoCl₄], were L is tetraphenylphosphonium and its crystal structure.

The asymmetric unit of (I) and atomic numbering are illustrated in Fig. 1. The (I) contains tetraphenylphosphonium cations linked by weak C—H^{...} π supramolecular interactions into dimmers. The Co^{II} ion lies on a twofold axis and has a distorted tetrahedral coordination. The [CoCl₄]⁻² anions are linked with the cation via weak C—H^{...}Cl hydrogen bonds (Fig. 2, 3).

The bond lengths for coordination Co^{II} sphere is ranging from 2.2791 (6) to 2.2873 (6) Å for Co—Cl distances (Table 1). The crystal packing in the title structure can be described by altering $CoCl_4$ tetrahedral of complex along the *a* axis at b = 1/4 and 3/4 (Fig. 2).

S2. Experimental

A mixture of $CoCl_2$ (2.50 g, 10 mmol), tetraphenylphosphonium chloride hydrate (3.92 g,10 mmol) was dissolved in a 20 ml EtOH/H₂O(ν/ν ,1:2). The mixture was then sealed in a 25 ml stainless steel reactor and heated to 433 K for 3 days. Then the reactant mixture was cooled to room temperature at the rate of 5 degrees per hour. Evaporation of the resulting solution for a few days afforded pink crystals of title compound.

S3. Refinement

The aromatic H atoms were placed at calculated positions with C—H = 0.93, and refined in riding mode with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The asymmetric unit of the title structure with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (*): -x, y, 1/2 - z].

Figure 2

Part of the layered packing in the crystal viewed down the b axis.

Figure 3

A view along the *c* axis of the crystal structure of the title compound, showing C—H…Cl hydrogen-bonds.

Bis(tetraphenylphosphonium) tetrachloridocobaltate(II)

Crystal data	
$(C_{24}H_{20}P)_{2}[CoCl_{4}]$ $M_{r} = 879.46$ Monoclinic, C2/c Hall symbol: -C 2yc a = 10.9154 (4) Å b = 19.2514 (6) Å c = 20.1826 (7) Å $\beta = 91.008$ (2)° V = 4240.4 (3) Å ³ Z = 4	F(000) = 1812 $D_x = 1.378 \text{ Mg m}^{-3}$ Mo Kα radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1536 reflections $\theta = 3.2-25.1^{\circ}$ $\mu = 0.77 \text{ mm}^{-1}$ T = 293 K Prism, pink $0.2 \times 0.1 \times 0.08 \text{ mm}$
Data collection Bruker APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator	3180 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.028$ $\theta_{\text{max}} = 25.1^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$ $h = -12 \rightarrow 12$
φ scans 12226 measured reflections 3748 independent reflections	$k = -22 \longrightarrow 22$ $l = -24 \longrightarrow 22$

Refinement

Refinement on F^2	0 restraints
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.030$	$w = 1/[\sigma^2(F_o^2) + (0.0401P)^2 + 6.1572P]$
$wR(F^2) = 0.084$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
3748 reflections	$\Delta \rho_{\rm max} = 1.51 \text{ e } \text{\AA}^{-3}$
249 parameters	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$
Special details	

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
P1	0.41273 (5)	0.36748 (3)	0.07765 (3)	0.0200 (2)
C1	0.3837 (2)	0.29974 (11)	0.13639 (11)	0.0233 (7)
C2	0.3155 (2)	0.31597 (12)	0.19182 (11)	0.0308 (7)
C3	0.2894 (3)	0.26481 (13)	0.23755 (13)	0.0376 (8)
C4	0.3336 (2)	0.19823 (12)	0.22924 (12)	0.0355 (8)
C5	0.4026 (2)	0.18228 (12)	0.17495 (12)	0.0335 (8)
C6	0.4272 (2)	0.23227 (11)	0.12800 (12)	0.0290 (7)
C7	0.5226 (2)	0.33873 (11)	0.01785 (11)	0.0238 (7)
C8	0.6408 (2)	0.36542 (13)	0.01635 (12)	0.0291 (7)
C9	0.7214 (2)	0.34138 (14)	-0.03052 (13)	0.0375 (8)
C10	0.6855 (2)	0.29065 (13)	-0.07487 (12)	0.0370 (8)
C11	0.5686 (3)	0.26452 (12)	-0.07432 (12)	0.0363 (8)
C12	0.4866 (2)	0.28862 (12)	-0.02847 (12)	0.0314 (7)
C13	0.27533 (19)	0.39129 (10)	0.03328 (10)	0.0199 (6)
C14	0.2858 (2)	0.42599 (12)	-0.02717 (11)	0.0272 (7)
C15	0.1824 (2)	0.44748 (12)	-0.06129 (11)	0.0297 (7)
C16	0.0676 (2)	0.43485 (12)	-0.03560 (11)	0.0269 (7)
C17	0.0570 (2)	0.40171 (12)	0.02446 (11)	0.0271 (7)
C18	0.1604 (2)	0.38005 (11)	0.05921 (11)	0.0232 (7)
C19	0.47179 (19)	0.44088 (11)	0.12202 (10)	0.0205 (6)
C20	0.4177 (2)	0.50598 (11)	0.11488 (11)	0.0226 (6)
C21	0.4699 (2)	0.56215 (12)	0.14713 (11)	0.0289 (7)
C22	0.5746 (2)	0.55408 (13)	0.18543 (11)	0.0304 (7)
C23	0.6265 (2)	0.48956 (14)	0.19401 (11)	0.0315 (8)
C24	0.5750 (2)	0.43278 (13)	0.16272 (11)	0.0280 (7)
Col	0.00000	0.45721 (2)	0.25000	0.0202 (1)
Cl1	0.10790 (5)	0.38813 (3)	0.32242 (3)	0.0338 (2)
Cl2	0.12506 (5)	0.52482 (3)	0.18779 (3)	0.0267 (2)
H2	0.28760	0.36110	0.19810	0.0370*

supporting information

Н3	0.24190	0.27530	0.27400	0.0450*
H4	0.31670	0.16410	0.26040	0.0430*
Н5	0.43290	0.13750	0.16980	0.0400*
H6	0.47250	0.22100	0.09090	0.0350*
H8	0.66550	0.39920	0.04670	0.0350*
H9	0.80030	0.35960	-0.03210	0.0450*
H10	0.74100	0.27400	-0.10550	0.0440*
H11	0.54480	0.23060	-0.10480	0.0440*
H12	0.40700	0.27140	-0.02840	0.0380*
H14	0.36280	0.43460	-0.04440	0.0330*
H15	0.18950	0.47050	-0.10160	0.0360*
H16	-0.00230	0.44880	-0.05900	0.0320*
H17	-0.02010	0.39380	0.04180	0.0330*
H18	0.15280	0.35800	0.09990	0.0280*
H20	0.34740	0.51150	0.08870	0.0270*
H21	0.43410	0.60580	0.14300	0.0350*
H22	0.61050	0.59260	0.20570	0.0360*
H23	0.69600	0.48430	0.22080	0.0380*
H24	0.60930	0.38900	0.16880	0.0340*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
P1	0.0206 (3)	0.0189 (3)	0.0205 (3)	0.0001 (2)	0.0001 (2)	-0.0013 (2)
C1	0.0266 (12)	0.0210 (11)	0.0222 (11)	-0.0004 (9)	-0.0037 (9)	0.0011 (9)
C2	0.0441 (14)	0.0228 (12)	0.0255 (12)	0.0057 (11)	0.0025 (11)	0.0007 (9)
C3	0.0528 (16)	0.0346 (14)	0.0256 (13)	0.0020 (12)	0.0065 (12)	0.0037 (11)
C4	0.0484 (15)	0.0275 (13)	0.0303 (13)	-0.0040 (11)	-0.0064 (12)	0.0096 (10)
C5	0.0454 (15)	0.0187 (11)	0.0361 (14)	0.0038 (11)	-0.0070 (12)	0.0010 (10)
C6	0.0324 (13)	0.0255 (12)	0.0291 (12)	0.0037 (10)	-0.0013 (10)	-0.0025 (10)
C7	0.0272 (12)	0.0207 (11)	0.0235 (11)	0.0042 (9)	0.0018 (9)	0.0013 (9)
C8	0.0240 (12)	0.0355 (13)	0.0279 (12)	0.0022 (10)	-0.0009 (10)	0.0005 (10)
C9	0.0236 (12)	0.0548 (16)	0.0343 (14)	0.0069 (12)	0.0030 (11)	0.0031 (12)
C10	0.0404 (15)	0.0422 (15)	0.0286 (13)	0.0170 (12)	0.0101 (11)	0.0036 (11)
C11	0.0554 (17)	0.0254 (12)	0.0284 (13)	0.0060 (12)	0.0080 (12)	-0.0034 (10)
C12	0.0372 (13)	0.0252 (12)	0.0319 (13)	-0.0035 (10)	0.0056 (11)	-0.0036 (10)
C13	0.0212 (11)	0.0186 (10)	0.0199 (11)	-0.0011 (9)	-0.0018 (9)	-0.0027 (8)
C14	0.0239 (12)	0.0340 (13)	0.0237 (12)	-0.0033 (10)	0.0031 (9)	0.0040 (10)
C15	0.0342 (13)	0.0345 (13)	0.0203 (11)	-0.0004 (11)	0.0002 (10)	0.0061 (10)
C16	0.0260 (12)	0.0286 (12)	0.0258 (12)	0.0038 (10)	-0.0048 (10)	-0.0033 (10)
C17	0.0216 (11)	0.0317 (12)	0.0282 (12)	-0.0009 (10)	0.0035 (9)	-0.0010 (10)
C18	0.0256 (12)	0.0248 (11)	0.0192 (11)	-0.0028 (9)	0.0024 (9)	0.0018 (9)
C19	0.0200 (11)	0.0219 (11)	0.0198 (11)	-0.0015 (9)	0.0036 (9)	-0.0025 (9)
C20	0.0238 (11)	0.0233 (11)	0.0208 (11)	-0.0014 (9)	0.0035 (9)	0.0007 (9)
C21	0.0395 (14)	0.0207 (11)	0.0268 (12)	-0.0033 (10)	0.0079 (11)	-0.0002 (9)
C22	0.0354 (13)	0.0335 (13)	0.0225 (12)	-0.0165 (11)	0.0072 (10)	-0.0080 (10)
C23	0.0228 (12)	0.0483 (15)	0.0235 (12)	-0.0042 (11)	-0.0001 (10)	-0.0070 (11)
C24	0.0253 (12)	0.0324 (13)	0.0262 (12)	0.0054 (10)	-0.0016 (10)	-0.0036 (10)

supporting information

Co1	0.0188 (2)	0.0189 (2)	0.0231 (2)	0.0000	0.0029 (2)	0.0000
Cl1	0.0315 (3)	0.0335 (3)	0.0367 (3)	0.0084 (3)	0.0074 (3)	0.0151 (3)
Cl2	0.0234 (3)	0.0296 (3)	0.0270 (3)	-0.0035 (2)	0.0015 (2)	0.0071 (2)

Geometric parameters (Å, °)

Co1—Cl2	2.2791 (6)	C19—C24	1.391 (3)
Co1—Cl1 ⁱ	2.2873 (6)	C19—C20	1.392 (3)
Co1—Cl1	2.2873 (6)	C20—C21	1.380 (3)
Co1—Cl2 ⁱ	2.2791 (6)	C21—C22	1.377 (3)
P1—C1	1.794 (2)	C22—C23	1.375 (4)
P1—C7	1.803 (2)	C23—C24	1.377 (3)
P1—C13	1.793 (2)	C2—H2	0.9301
P1—C19	1.787 (2)	С3—Н3	0.9296
C1—C6	1.394 (3)	C4—H4	0.9302
C1—C2	1.390 (3)	С5—Н5	0.9298
C2—C3	1.383 (3)	С6—Н6	0.9302
C3—C4	1.381 (3)	C8—H8	0.9301
C4—C5	1.375 (3)	С9—Н9	0.9310
C5—C6	1.380 (3)	C10—H10	0.9301
C7—C8	1.390 (3)	C11—H11	0.9310
C7—C12	1.395 (3)	C12—H12	0.9300
C8—C9	1.383 (3)	C14—H14	0.9301
C9—C10	1.377 (4)	C15—H15	0.9309
C10-C11	1.372 (4)	C16—H16	0.9299
C11—C12	1.379 (4)	C17—H17	0.9297
C13—C14	1.397 (3)	C18—H18	0.9295
C13—C18	1.385 (3)	C20—H20	0.9301
C14—C15	1.375 (3)	C21—H21	0.9299
C15—C16	1.386 (3)	С22—Н22	0.9302
C16—C17	1.376 (3)	С23—Н23	0.9293
C17—C18	1.383 (3)	C24—H24	0.9295
Cl1—Co1—Cl2	112.17 (2)	C22—C23—C24	119.7 (2)
Cl1—Co1—Cl1 ⁱ	108.90 (3)	C19—C24—C23	120.1 (2)
Cl1—Co1—Cl2 ⁱ	106.66 (2)	С3—С2—Н2	120.17
Cl1 ⁱ —Co1—Cl2	106.66 (2)	C1—C2—H2	120.06
Cl2—Co1—Cl2 ⁱ	110.35 (3)	С2—С3—Н3	119.85
Cl1 ⁱ —Co1—Cl2 ⁱ	112.17 (2)	С4—С3—Н3	119.91
C13—P1—C19	109.84 (10)	C3—C4—H4	119.98
C1—P1—C19	108.05 (10)	C5—C4—H4	119.92
C1—P1—C7	110.27 (10)	С6—С5—Н5	119.72
C1—P1—C13	111.10 (10)	С4—С5—Н5	119.80
C7—P1—C13	107.73 (10)	С1—С6—Н6	120.13
C7—P1—C19	109.86 (10)	С5—С6—Н6	120.17
P1-C1-C6	122.16 (17)	С7—С8—Н8	120.18
P1—C1—C2	118.14 (17)	С9—С8—Н8	120.26
C2—C1—C6	119.7 (2)	С10—С9—Н9	119.85

C1—C2—C3	119.8 (2)	С8—С9—Н9	119.83
C2—C3—C4	120.2 (2)	С9—С10—Н10	119.68
C3—C4—C5	120.1 (2)	C11—C10—H10	119.72
C4—C5—C6	120.5 (2)	C12—C11—H11	120.17
C1—C6—C5	119.7 (2)	C10-C11-H11	120.04
P1—C7—C8	121.99 (17)	С7—С12—Н12	119.84
P1—C7—C12	118.55 (17)	C11—C12—H12	119.90
C8—C7—C12	119.5 (2)	C13—C14—H14	120.00
C7—C8—C9	119.6 (2)	C15—C14—H14	119.88
C8—C9—C10	120.3 (2)	C16—C15—H15	120.01
C9—C10—C11	120.6 (2)	C14—C15—H15	120.04
C10-C11-C12	119.8 (2)	C15—C16—H16	119.90
C7—C12—C11	120.3 (2)	C17—C16—H16	120.01
C14—C13—C18	119.55 (19)	C16—C17—H17	119.87
P1-C13-C18	121.79 (16)	C18—C17—H17	119.73
P1-C13-C14	118.54 (16)	C17—C18—H18	120.08
C13—C14—C15	120.1 (2)	C13—C18—H18	120.05
C14—C15—C16	120.0 (2)	С19—С20—Н20	120.40
C15—C16—C17	120.1 (2)	С21—С20—Н20	120.54
C16—C17—C18	120.4 (2)	C20—C21—H21	119.77
C13—C18—C17	119.9 (2)	C22—C21—H21	119.71
P1-C19-C24	119.24 (17)	С23—С22—Н22	119.70
P1-C19-C20	120.76 (16)	C21—C22—H22	119.73
C20—C19—C24	120.0 (2)	С22—С23—Н23	120.14
C19—C20—C21	119.1 (2)	С24—С23—Н23	120.18
C20—C21—C22	120.5 (2)	C23—C24—H24	119.93
C21—C22—C23	120.6 (2)	C19—C24—H24	119.98

Symmetry code: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of the C19-C24 and C7-C12 benzene rings, respectively.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
C3—H3…Cl1	0.93	2.80	3.552 (3)	138	
C11—H11···Cl1 ⁱⁱ	0.93	2.81	3.633 (2)	148	
C23—H23…Cl2 ⁱⁱⁱ	0.93	2.77	3.644 (2)	156	
C14—H14···· $Cg4^{iv}$	0.93	2.88	3.650 (2)	141	
C21—H21····Cg2 ^{iv}	0.93	2.79	3.446 (2)	129	
C13—H13 C11 C11—H11···Cl1 ⁱⁱ C23—H23···Cl2 ⁱⁱⁱ C14—H14··· $Cg4^{iv}$ C21—H21··· $Cg2^{iv}$	0.93 0.93 0.93 0.93 0.93	2.80 2.81 2.77 2.88 2.79	3.632 (3) 3.633 (2) 3.644 (2) 3.650 (2) 3.446 (2)	148 156 141 129	

Symmetry codes: (ii) *x*+1/2, -*y*+1/2, *z*-1/2; (iii) -*x*+1, *y*, -*z*+1/2; (iv) -*x*+1, -*y*+1, -*z*.