metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(cyclohexylammonium) tetrachloridodiphenylstannate(IV)

Modou Sarr,^a* Carina Merkens,^b Aminata Diassé-Sarr,^a Libasse Diop^a and Ulli Englert^b

^aLaboratoire de Chimie Minerale et Analytique, Département de Chimie, Faculté des Sciences et Techniques Université Cheikh Anta Diop, Dakar, Senegal, and ^bInstitut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany

Correspondence e-mail: modousarr41@gmail.com

Received 20 April 2014; accepted 14 May 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.008 Å; R factor = 0.043; wR factor = 0.100; data-to-parameter ratio = 18.4.

The title compound, $(C_6H_{14}N)_2[Sn(C_6H_5)_2Cl_4]$, contains cyclohexylammonium cations in general positions and a stannate(IV) anion that is located on a twofold rotation axis. The Sn^{IV} atom in the complex anion is surrounded by four Cl⁻ ligands and two *trans*-phenyl groups in a distorted octahedral configuration. The anions are connected with the cations through N-H···Cl hydrogen bonds. Every cation is involved in three N-H···Cl bonds to the chloride ligands of three different anions, and each chloride ligand is linked to two cations. This arrangement leads to a layered structure parallel to (010).

Related literature

For applications of organotin(IV) compounds, see: Evans & Karpel (1985); Kapoor *et al.* (2005). For compounds containing the $[Sn(C_6H_5)_2Cl_4]^{2-}$ anion in a *cis* or *trans*-conformation, see: Garcia-Seijo *et al.* (2001); Fernandez *et al.* (2002); Venkatraman *et al.* (2004); Diop *et al.* (2011). For crystal structures of related tin(IV) compounds, see: Sarr *et al.* (2013*a*,*b*).

V = 5424 (3) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.21 \times 0.05 \text{ mm}$

15474 measured reflections

2772 independent reflections

2563 reflections with $I > 2\sigma(I)$

Absolute structure: Flack (1983),

Absolute structure parameter:

 $\mu = 1.35 \text{ mm}^-$

T = 100 K

 $R_{\rm int}=0.069$

0.23(5)

 $\Delta \rho_{\rm max} = 1.92 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$

1281 Friedel pairs

Z = 8

Experimental

Crystal data $(C_6H_{14}N)_2[Sn(C_6H_5)_2Cl_4]$ $M_r = 615.05$ Orthorhombic, *Fdd2* a = 13.558 (4) Å b = 49.646 (14) Åc = 8.058 (2) Å

Data collection

Bruker D8 goniometer with APEX area detector Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\rm min} = 0.687, T_{\rm max} = 0.935$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.100$ S = 1.062772 reflections 151 parameters 4 restraints

H atoms treated by a mixture of independent and constrained refinement

Table 1 Hydrogen-bond geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.91 (3)	2.35 (4)	3.244 (8)	166 (10)
0.91(3) 0.90(3)	2.36 (6) 2.60 (7)	3.172 (9) 3.328 (9)	148 (8) 139 (9)
	D-H 0.91 (3) 0.91 (3) 0.90 (3)	$\begin{array}{c cccc} D-H & H\cdots A \\ \hline 0.91 (3) & 2.35 (4) \\ 0.91 (3) & 2.36 (6) \\ 0.90 (3) & 2.60 (7) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) $x + \frac{1}{2}$, y, $z - \frac{1}{2}$; (ii) -x, -y, z - 1; (iii) -x, -y, z.

Data collection: *SMART* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL2013*.

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5023).

References

- Bruker (2009). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconson, USA.
- Diop, T., Diop, L., Molloy, K. C. K. & Kocioc-Köhn, G. (2011). Acta Cryst. E67, m203–m204.
- Evans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology. J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier.
- Fernandez, D., Garcia-Seijo, M. I., Kegl, T., Petocz, G., Kollar, L. & Garcia-Fermandez, M. E. (2002). *Inorg. Chem.* 41, 4435–4443.
 Flack, H. D. (1983). *Acta Cryst.* A39, 876–881.
- Garcia-Seijo, M. I., Castineiras, A., Mahieu, B., Janosi, J., Berente, Z., Kollar,
- L. & Fernandez, G. (2001). Polyhedron, 20, 855-868.

- Kapoor, R. N., Guillory, P., Schulte, L., Cervantes-Lee, F., Haiduc, I., Parkanyi, L. & Pannell, K. H. (2005). Appl. Organomet. Chem. 19, 510–517.
- Sarr, M., Diasse-Sarr, A., Diallo, W., Plasseraud, L. & Cattey, H. (2013a). Acta Cryst. E69, m473–m474.
- Sarr, M., Diallo, W., Diasse-Sarr, A., Plasseraud, L. & Cattey, H. (2013b). Acta Cryst. E69, m581–m582.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Venkatraman, R., Ray, P. C. & Fronczek, F. R. (2004). Acta Cryst. E60, m1035– m1037.

supporting information

Acta Cryst. (2014). E70, m220-m221 [doi:10.1107/S160053681401109X]

Bis(cyclohexylammonium) tetrachloridodiphenylstannate(IV)

Modou Sarr, Carina Merkens, Aminata Diassé-Sarr, Libasse Diop and Ulli Englert

S1. Comment

Our interest for organotin(IV) compounds (Sarr *et al.*, 2013*a*,*b*) is related to applications found in various fields like in medicine, industry or agriculture (Evans & Karpel, 1985; Kapoor *et al.*, 2005).

The crystal structure of the title compound, $2(C_6H_{14}N)^+[Sn(C_6H_5)_2Cl_4]^{2-}$, consists of cyclohexylammonium cations and a $[SnPh_2Cl_4]^{2-}$ anion that is located on a twofold rotation axis. The Sn^{IV} atom is bonded to two *trans*-phenyl groups and four chloride ligands in a distorted octahedral geometry (Fig. 1). For reasons of symmetry, the Sn—C bond lengths are equal and amount to 2.142 (5) Å. The two independent Sn—Cl bond lengths have very similar values [2.5685 (16) and 2.5842 (17) Å] and may be compared to the values of 2.5722 (6) and 2.5796 (6) Å reported for bis(trimethylammonium) tetrachloridodiphenylstannate(IV) (Diop *et al.*, 2011). The C—Sn—C angle (179.6 (4) °) is linear within experimental error. The angles in the equatorial plane of the pseudo-octahedron deviate slightly from 90° [C11—Sn1—Cl1ⁱ = 91.12 (8)°; C11—Sn1—Cl2 = 89.41 (5)°, i = -x, -y, z]. The tetrachloridodiphenylstannate(IV anion, [SnPh₂Cl₄]²⁻, in its *cis* or *trans* configurations has been reported previously by several authors with different counter cations (Garcia-Seijo *et al.*, 2001; Fernandez *et al.*, 2002; Venkatraman *et al.*, 2004; Diop *et al.*, 2011).

Each cation in the title compound is linked to Cl atoms of three different anions through classical N—H···Cl hydrogen bonds (Fig. 2, Table 1), leading to a layered arrangement parallel to (010).

S2. Experimental

Equimolar amounts of cyclohexylamin and oxalic were dissolved in water; crystals formed by slow evaporation. Their elemental analyses, calculated/ % (found/ %), C: 53.31 (53.05); %H: 9.91(10.28); %N: 8.88(8.40), suggest the composition $(CyNH_3)_2(C_2O_4)_3/2H_2O$. Crystals suitable for the X-ray determination of the title compound were obtained by mixing methanolic solutions of $(CyNH_3)_2(C_2O_4)_3/2H_2O$ and $SnPh_2Cl_2$ in a 1:1 ratio and subsequent slow solvent evaporation.

S3. Refinement

Hydrogen atoms bonded to carbon were treated as riding with C–H = 0.95 Å for aryl-CH and C–H = 0.99 Å for CH₂ groups. Isotropic displacement parameters for these hydrogen atoms were constrained to $U_{iso}(H) = 1.2U_{eq}(C)$. Hydrogen atoms bonded to nitrogen were located in a difference Fourier map; N—H distances were restrained to 0.91 (3) Å. Isotropic displacement parameters for these hydrogen atoms were constrained to $U_{iso}(H) = 1.5U_{eq}(N)$. Refinement showed that the crystal under investigation was an inversion twin; the major domain is associated with a volume fraction of 0.77 (5).

Figure 1

The molecular entities of the title compound with partial atom labelling. [Symmetry code: (i) -*x*, -*y*, *z*.]

Figure 2

A view of N—H…Cl hydrogen bonds in the crystal structure of the title compound. H atoms non-participating in hydrogen bonding and the phenyl groups have been omitted for clarity.

Bis(cyclohexylammonium) tetrachloridodiphenylstannate(IV)

Crystal data	
$(C_6H_{14}N)_2[Sn(C_6H_5)_2Cl_4]$	F(000) = 2512
$M_r = 615.05$	$D_{\rm x} = 1.506 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Fdd2	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: F 2 -2d	Cell parameters from 5810 reflections
a = 13.558 (4) Å	$\theta = 3.0-26.2^{\circ}$
b = 49.646 (14) Å	$\mu = 1.35 \text{ mm}^{-1}$
c = 8.058 (2) Å	T = 100 K
$V = 5424 (3) \text{ Å}^3$	Plate, colorless
Z = 8	$0.30 \times 0.21 \times 0.05 \text{ mm}$

Data collection

Bruker D8 goniometer with APEX area detector diffractometer Radiation source: Incoatec microsource Multilayer optics monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009) $T_{\min} = 0.687, T_{\max} = 0.935$ <i>Refinement</i>	15474 measured reflections 2772 independent reflections 2563 reflections with $I > 2\sigma(I)$ $R_{int} = 0.069$ $\theta_{max} = 26.5^\circ, \ \theta_{min} = 3.0^\circ$ $h = -16 \rightarrow 16$ $k = -62 \rightarrow 62$ $l = -10 \rightarrow 10$
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of independent
$wR(F^2) = 0.100$	and constrained refinement
S = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.020P)^2]$
2772 reflections	where $P = (F_o^2 + 2F_c^2)/3$
151 parameters	$(\Delta/\sigma)_{max} = 0.004$
4 restraints	$\Delta\rho_{max} = 1.92$ e Å ⁻³
Primary atom site location: structure-invariant	$\Delta\rho_{min} = -0.67$ e Å ⁻³
direct methods	Absolute structure: Flack (1983), 1281 Friedel
Secondary atom site location: difference Fourier	pairs
map	Absolute structure parameter: 0.23 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sn1	-0.0000	-0.0000	0.72474 (9)	0.02578 (15)	
C11	-0.11741 (11)	0.01834 (3)	0.94793 (18)	0.0329 (4)	
Cl2	-0.11954 (10)	0.01707 (3)	0.4982 (2)	0.0308 (4)	
C1	0.0727 (4)	0.03830 (10)	0.7238 (8)	0.0285 (11)	
C2	0.0212 (3)	0.06170 (10)	0.7321 (11)	0.0277 (12)	
H2	-0.0484	0.0609	0.7439	0.033*	
C3	0.0659 (4)	0.08670 (11)	0.7241 (9)	0.0362 (13)	
Н3	0.0275	0.1027	0.7226	0.043*	
C4	0.1690 (4)	0.08788 (11)	0.7183 (9)	0.0357 (13)	
H4	0.2016	0.1048	0.7182	0.043*	
C5	0.2215 (5)	0.06497 (13)	0.7128 (10)	0.0372 (14)	
Н5	0.2914	0.0659	0.7060	0.045*	
C6	0.1752 (4)	0.03965 (11)	0.7170 (9)	0.0297 (12)	
H6	0.2134	0.0236	0.7152	0.036*	
N1	0.1784 (4)	0.02720 (11)	0.2043 (9)	0.0375 (13)	

H1A	0.233 (4)	0.0271 (15)	0.138 (8)	0.056*	
H1B	0.142 (5)	0.0132 (10)	0.164 (8)	0.056*	
H1C	0.181 (6)	0.0222 (15)	0.311 (4)	0.056*	
C7	0.1431 (4)	0.05466 (11)	0.1699 (7)	0.0317 (14)	
H7	0.1271	0.0557	0.0490	0.038*	
C8	0.0488 (4)	0.06018 (12)	0.2660 (7)	0.0326 (15)	
H8A	-0.0029	0.0472	0.2316	0.039*	
H8B	0.0610	0.0577	0.3862	0.039*	
C9	0.0141 (4)	0.08851 (11)	0.2336 (16)	0.0401 (14)	
H9A	-0.0452	0.0921	0.3018	0.048*	
H9B	-0.0050	0.0902	0.1155	0.048*	
C10	0.0917 (5)	0.10933 (13)	0.2730 (9)	0.0489 (19)	
H10A	0.1054	0.1093	0.3937	0.059*	
H10B	0.0674	0.1274	0.2419	0.059*	
C11	0.1854 (5)	0.10318 (12)	0.1787 (8)	0.0417 (17)	
H11A	0.1735	0.1060	0.0588	0.050*	
H11B	0.2374	0.1160	0.2138	0.050*	
C12	0.2216 (5)	0.07509 (12)	0.2055 (10)	0.0343 (14)	
H12A	0.2438	0.0731	0.3219	0.041*	
H12B	0.2790	0.0717	0.1325	0.041*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.0195 (2)	0.0327 (3)	0.0251 (2)	-0.0025 (2)	-0.000	-0.000
Cl1	0.0289 (7)	0.0418 (8)	0.0281 (11)	-0.0032 (6)	0.0082 (7)	-0.0044 (7)
Cl2	0.0236 (6)	0.0372 (7)	0.0316 (11)	-0.0016 (5)	-0.0062 (7)	0.0032 (7)
C1	0.040 (3)	0.031 (3)	0.014 (2)	-0.002 (2)	-0.006 (3)	0.001 (3)
C2	0.020 (3)	0.042 (3)	0.021 (3)	0.000(2)	0.009 (4)	-0.002 (3)
C3	0.048 (4)	0.033 (3)	0.028 (3)	0.002 (2)	0.002 (4)	-0.006 (3)
C4	0.045 (3)	0.037 (3)	0.025 (3)	-0.013 (3)	-0.006 (3)	-0.002 (3)
C5	0.037 (3)	0.047 (4)	0.028 (3)	-0.012 (3)	0.001 (3)	-0.007 (4)
C6	0.025 (3)	0.041 (3)	0.023 (3)	-0.001 (2)	0.010 (3)	-0.002 (3)
N1	0.030 (3)	0.035 (3)	0.047 (4)	0.002 (2)	0.005 (3)	-0.003 (3)
C7	0.031 (3)	0.031 (3)	0.032 (3)	-0.001 (3)	0.003 (2)	-0.000(2)
C8	0.028 (3)	0.043 (4)	0.027 (4)	-0.004 (3)	-0.001 (2)	0.001 (2)
C9	0.027 (3)	0.041 (3)	0.052 (4)	0.008 (3)	-0.002 (4)	-0.009(5)
C10	0.060 (4)	0.032 (3)	0.056 (5)	0.005 (3)	0.003 (3)	-0.002 (3)
C11	0.047 (4)	0.037 (4)	0.041 (4)	-0.010 (3)	-0.000 (3)	-0.001 (3)
C12	0.036 (3)	0.041 (3)	0.026 (4)	-0.011 (3)	0.005 (3)	-0.001 (3)

Geometric parameters (Å, °)

Sn1—C1 ⁱ	2.142 (5)	N1—H1B	0.91 (2)	
Sn1—C1	2.142 (5)	N1—H1C	0.90 (2)	
Sn1—Cl1	2.5685 (16)	C7—C12	1.498 (8)	
Sn1—Cl1 ⁱ	2.5686 (16)	C7—C8	1.519 (8)	
Sn1—Cl2	2.5842 (17)	С7—Н7	1.0000	

Sn1—Cl2 ⁱ	2.5843 (17)	C8—C9	1.506 (8)
C1—C2	1.357 (7)	C8—H8A	0.9900
C1—C6	1.392 (7)	C8—H8B	0.9900
C2—C3	1.383 (7)	C9—C10	1.509 (9)
С2—Н2	0.9500	С9—Н9А	0.9900
C3—C4	1,399 (8)	С9—Н9В	0.9900
C3—H3	0.9500	C10—C11	1 511 (9)
C4-C5	1 343 (9)		0.9900
CA = HA	0.9500	C10 H10R	0.9900
C_{4}	1 406 (8)		1.404(0)
C5_U5	1.400 (8)		1.494 (9)
	0.9500		0.9900
	0.9500	CII—HIIB	0.9900
NI—C/	1.471 (8)	CI2—HI2A	0.9900
NI—HIA	0.91 (2)	C12—H12B	0.9900
C1 ⁱ —Sn1—C1	179.6 (4)	H1B—N1—H1C	99 (7)
$C1^{i}$ — $Sn1$ — $C11$	91.82 (16)	N1—C7—C12	111.1 (5)
C1— $Sn1$ — $C11$	88.46 (17)	N1—C7—C8	110.2 (5)
$C1^{i}$ $Sn1$ $C11^{i}$	88 45 (17)	C12-C7-C8	110.2(5)
C1 Shi Chi	91.82 (16)	N1_C7_H7	107.7
$C_1 = S_{n1} = C_{11}$	91.12 (8)	C12 - C7 - H7	107.7
$C1^{i}$ Sp1 $C12$	91.12(0)	$C_{12} = C_{7} = H_{7}$	107.7
$C_1 = S_{11} = C_{12}$	90.00 (17) 90.72 (16)	$C_{0} = C_{0} = C_{1}$	107.7
C1 = S11 = C12	89.72 (10)	C_{2}	110.1 (0)
CII - SnI - CI2	89.41 (5)	C_{2} C_{3} H_{8} H_{8}	109.6
	1/8.38 (5)	C/-C8-H8A	109.6
$C1^{1}$ — $Sn1$ — $C12^{1}$	89.72 (16)	C9—C8—H8B	109.6
$C1$ — $Sn1$ — $Cl2^{i}$	90.00 (17)	С7—С8—Н8В	109.6
$Cl1$ — $Sn1$ — $Cl2^{i}$	178.39 (5)	H8A—C8—H8B	108.2
$Cl1^{i}$ — $Sn1$ — $Cl2^{i}$	89.41 (5)	C8—C9—C10	112.6 (6)
Cl2—Sn1—Cl2 ⁱ	90.10 (8)	С8—С9—Н9А	109.1
C2—C1—C6	118.3 (5)	С10—С9—Н9А	109.1
C2—C1—Sn1	121.5 (4)	С8—С9—Н9В	109.1
C6-C1-Sn1	120.1 (4)	С10—С9—Н9В	109.1
C1—C2—C3	122.7 (5)	H9A—C9—H9B	107.8
C1—C2—H2	118.6	C9—C10—C11	110.0 (6)
С3—С2—Н2	118.6	C9—C10—H10A	109.7
C2-C3-C4	118.5 (5)	C11—C10—H10A	109.7
C2—C3—H3	120.8	C9-C10-H10B	109.7
C4 - C3 - H3	120.8	C_{11} C_{10} H_{10B}	109.7
$C_{5} - C_{4} - C_{3}$	119.7 (5)	H_{10A} C_{10} H_{10B}	109.7
$C_5 = C_4 = C_5$	120.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.2
$C_3 = C_4 = 114$	120.2	C_{12} C_{11} U_{11A}	113.1 (3)
$C_3 = C_4 = H_4$	120.2	CI2—CII—HIIA	109.0
C4 = C5 = U5	121.3 (0)	$C10 - C11 - \Pi11A$	109.0
	119.5	CI2—CII—HIIB	109.0
С6—С5—Н5	119.3	CIU—CII—HIIB	109.0
C1—C6—C5	119.3 (5)	HIIA—CII—HIIB	107.8
C1—C6—H6	120.3	C11—C12—C7	111.8 (5)
С5—С6—Н6	120.3	C11—C12—H12A	109.3

C7—N1—H1A C7—N1—H1B H1A—N1—H1B C7—N1—H1C H1A—N1—H1C	99 (5) 118 (5) 103 (6) 117 (5) 122 (7)	C7—C12—H12A C11—C12—H12B C7—C12—H12B H12A—C12—H12B	109.3 109.3 109.3 107.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	93.3 (8) -41.0 (6) -132.1 (6) 48.4 (6) 138.5 (6) -87.6 (4) 138.0 (5) 47.0 (5) -132.5 (5) -42.4 (5) 4.0 (12) -177.0 (6) -4.4 (12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} 3.1 \ (11) \\ -1.6 \ (12) \\ -2.3 \ (10) \\ 178.6 \ (6) \\ 1.2 \ (11) \\ 178.7 \ (6) \\ 54.3 \ (7) \\ -55.7 \ (10) \\ 55.1 \ (10) \\ -53.5 \ (8) \\ 53.4 \ (8) \\ -177.3 \ (6) \\ -53.5 \ (7) \end{array}$

Symmetry code: (i) -x, -y, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N1—H1A····Cl2 ⁱⁱ	0.91 (3)	2.35 (4)	3.244 (8)	166 (10)
N1—H1 <i>B</i> …Cl1 ⁱⁱⁱ	0.91 (3)	2.36 (6)	3.172 (9)	148 (8)
N1—H1C···Cl2 ⁱ	0.90 (3)	2.60 (7)	3.328 (9)	139 (9)

Symmetry codes: (i) -*x*, -*y*, *z*; (ii) *x*+1/2, *y*, *z*-1/2; (iii) -*x*, -*y*, *z*-1.