

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diethyl 7,7'-dichloro-4-oxo-4H-[1,4'-biquinoline]-3,3'-dicarboxylate

Yoshinobu Ishikawa* and Yasuhiro Sugisawa

School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan

Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Received 16 April 2014; accepted 6 May 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.060; wR factor = 0.186; data-to-parameter ratio = 16.6.

In the title compound, $C_{24}H_{18}Cl_2N_2O_5$, the quinoline and quinolinone moieties are nearly perpendicular to each other, forming a dihedral angle of $82.36 (3)^\circ$. In the crystal, molecules form a halogen bond between a Cl atom of a quinolinone moiety and the N atom of the quinoline moiety of the inversion equivalent $[Cl \cdot \cdot N = 3.106 (3) \text{ Å}]$. The molecules also form two kinds of C-H···O hydrogen-bonded centrosymmetric inversion dimers, making chains along the caxis direction which are further interlinked by the halogen bonds into layers parallel to the bc plane.

Related literature

For background to this study, see: Ishikawa & Fujii (2011). For a related structure, see: Ishikawa & Yoshida (2014).

Experimental

Crystal data

$C_{24}H_{18}Cl_2N_2O_5$	$\gamma = 94.77 \ (3)^{\circ}$
$M_r = 485.32$	V = 1089.0 (8) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 7.631 (4) Å	Mo $K\alpha$ radiation
b = 12.416 (5) Å	$\mu = 0.34 \text{ mm}^{-1}$
c = 12.461 (5) Å	$T = 100 { m K}$
$\alpha = 107.99 \ (3)^{\circ}$	$0.35 \times 0.25 \times 0.10 \text{ mm}$
$\beta = 101.08 \ (3)^{\circ}$	

Data collection

Rigaku AFC-7R diffractometer 6003 measured reflections 4994 independent reflections 4229 reflections with $F^2 > 2\sigma(F^2)$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.060$	300 parameters
$wR(F^2) = 0.186$	H-atom parameters constrained
S = 1.10	$\Delta \rho_{\rm max} = 0.66 \ {\rm e} \ {\rm \AA}^{-3}$
4994 reflections	$\Delta \rho_{\rm min} = -0.95 \ {\rm e} \ {\rm A}^{-3}$

 $R_{\rm int} = 0.059$

3 standard reflections

every 150 reflections

intensity decay: 1.7%

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} C16-H11\cdots O1^{i}\\ C13-H10\cdots O2^{ii} \end{array}$	0.95	2.35	3.231 (3)	155 (1)
	0.95	2.38	3.301 (4)	162 (1)

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x + 1, -y + 1, -z + 1.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

This work was partly supported by Grants-in-Aid (No. 24590141 to YI) for Scientific Research from the Japan Society for the Promotion of Science. We acknowledge the University of Shizuoka for instrumental support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: LD2125).

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.
- Ishikawa, Y. & Fujii, S. (2011). Bioinformation, 6, 221-225.
- Ishikawa, Y. & Yoshida, N. (2014). Acta Cryst. E70, o523.
- Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2014). E70, o655 [doi:10.1107/S1600536814010320]

Diethyl 7,7'-dichloro-4-oxo-4H-[1,4'-biquinoline]-3,3'-dicarboxylate

Yoshinobu Ishikawa and Yasuhiro Sugisawa

S1. Comment

4-Quinolones show inhibition not only to Gram negative and Gram positive bacteria, but also to human immunodeficiency virus (HIV). The inhibition to HIV is derived from their chelating ability to metal ions in the active site of metalloenzyme HIV integrase. According to our inhibitor design targeting metalloenzyme influenza virus RNA polymerase (Ishikawa & Fujii, 2011), we tried to synthesize a 4-quinolone derivative bearing a benzenesulfonyl group. The crystallographic analysis revealed that the reaction of ethyl 4-oxo-1,4-dihydroquinoline-3-carboxylate with benzenesulfonyl chloride in the presence of K_2CO_3 in *N*,*N*-dimethylformamide (DMF) at 120 °C provided an unexpected 1,4'-biquinoline derivative, diethyl 4-oxo-4*H*-[1,4'-biquinoline]-3,3'-dicarboxylate (Ishikawa & Yoshida, 2014). 1,4'-Biquinoline derivatives might be potential enzyme inhibitors. Thus, we synthesized the title compound, a dichlorinated 1,4'biquinoline derivative, by the similar method mentioned above, and herein report its crystal structure.

As shown in Fig.1, the C–N bond formation between the quinolinone and quinoline rings is confirmed. The chloroquinolinone and chloroquinoline moieties are nearly perpendicular to each other [dihedral angle = 97.64 (3)°]. In the crystal, the molecules are linked to each other to give dimers through halogen bond between the Cl atoms of the chloroquinolinone moieties and the N atoms of the chloroquinoline moieties of the inversion equivalentsⁱ [Cl1…N2 = 3.106 (3) Å, i: -x + 1, -y, -z + 1]. Two systems of C–H…O hydrogen-bonded dimers form chains along the *c*-axis, which are interlinked by the halogen bonds forming layers parallel to the *bc* plane, as shown in Fig.2. On the other hand, clear-cut ring-ring stacking interaction is not found. These findings are in contrast with those in the crystal packing of diethyl 4oxo-4*H*-[1,4'-biquinoline]-3,3'-dicarboxylate (Ishikawa & Yoshida, 2014).

S2. Experimental

In a Schlenk tube under nitrogen atmosphere, the mixture of ethyl 7-chloro-4-oxo-1,4-dihydroquinoline-3-carboxylate (5.00 mmol), benzenesulfonyl chloride (5.00 mmol), K₂CO₃ (10.0 mmol) in 10 ml of DMF were stirred at 130 °C overnight. After cooling to room temperature ice water was added. The precipitates were collected, and were recrystallized from DMF to give white solids (yield: 18%). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 0.90 (t, 3H, *J* = 7.0 Hz), 1.23 (t, 3H, *J* = 7.0 Hz), 4.03–4.15 (m, 2H), 4.20 (q, 2H, *J* = 7.0 Hz), 6.99 (d, 1H, *J* = 1.4 Hz), 7.52 (dd, 1H, *J* = 1.4 and 8.3 Hz), 7.74 (br s, 2H), 8.31 (d, 1H, *J* = 8.3 Hz), 8.43 (s, 1H), 8.70 (s, 1H), 9.57 (s, 1H). DART-MS calcd for [C₂₄H₁₈Cl₂N₂O₅ + H⁺]: 484.059, found 485.099. Single crystals suitable for X-ray diffraction were obtained by slow evapolation of an ethyl acetate solution of the title compound at room temperature.

S3. Refinement

The C(*sp*²)-bound [C–H 0.95 Å, $U_{iso}(H) = 1.2U_{eq}(C)$] and methylene [C–H 0.99 Å, $U_{iso}(H) = 1.2U_{eq}(C)$] hydrogen atoms were placed in geometrical positions and refined using a riding model. A rotating group model was applied to the methyl groups with distance constraint [C–H = 0.98 Å, $U_{iso}(H) = 1.2U_{eq}(C)$].

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.

Figure 2

A view of the intermolecular interactions of the title compound, represented as dashed green lines for Cl…N and dashed black lines for C–H…O interactions.

Diethyl 7,7'-dichloro-4-oxo-4H-[1,4'-biquinoline]-3,3'-dicarboxylate

Crystal data	
$C_{24}H_{18}Cl_2N_2O_5$ $M_r = 485.32$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 7.631 (4) Å b = 12.416 (5) Å c = 12.461 (5) Å a = 107.99 (3)° $\beta = 101.08$ (3)° $\gamma = 94.77$ (3)° V = 1089.0 (8) Å ³	Z = 2 F(000) = 500.00 $D_x = 1.480 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 25 reflections $\theta = 15.3 - 17.4^{\circ}$ $\mu = 0.34 \text{ mm}^{-1}$ T = 100 K Plate, colorless $0.35 \times 0.25 \times 0.10 \text{ mm}$
Data collection	
Rigaku AFC-7R diffractometer ω -2 θ scans 6003 measured reflections 4994 independent reflections 4229 reflections with $F^2 > 2\sigma(F^2)$ $R_{int} = 0.059$	$\theta_{\text{max}} = 27.5^{\circ}$ $h = -9 \rightarrow 9$ $k = -15 \rightarrow 16$ $l = -16 \rightarrow 9$ 3 standard reflections every 150 reflections intensity decay: 1.7%
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.060$ $wR(F^2) = 0.186$ S = 1.10 4994 reflections 300 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1156P)^2 + 1.0113P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.66 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.95 \text{ e } \text{Å}^{-3}$

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.73301 (8)	0.03469 (5)	0.79333 (5)	0.02074 (18)	
Cl2	-0.29884 (8)	0.05407 (6)	0.46908 (5)	0.02351 (19)	
01	0.7561 (3)	0.59358 (16)	1.06621 (15)	0.0228 (4)	
O2	0.4484 (3)	0.72976 (15)	0.83028 (15)	0.0197 (4)	
03	0.6483 (3)	0.77390 (15)	1.00077 (15)	0.0198 (4)	
O4	0.7338 (3)	0.44766 (18)	0.47536 (16)	0.0261 (5)	
05	0.8082 (3)	0.41909 (16)	0.64744 (15)	0.0182 (4)	
N1	0.5095 (3)	0.39265 (17)	0.73369 (16)	0.0138 (4)	
N2	0.2732 (3)	0.20828 (18)	0.37892 (17)	0.0174 (5)	

C1	0.5012 (3)	0.5061 (2)	0.7706 (2)	0.0141 (5)
C2	0.5822 (3)	0.5797 (2)	0.8794 (2)	0.0145 (5)
C3	0.6857 (4)	0.5365 (2)	0.9646 (2)	0.0163 (5)
C4	0.8031 (4)	0.3633 (3)	0.9917 (2)	0.0198 (5)
C5	0.8157 (4)	0.2478 (3)	0.9544 (3)	0.0208 (5)
C6	0.7215 (4)	0.1800 (2)	0.8429 (2)	0.0175 (5)
C7	0.6192 (3)	0.2257 (2)	0.7685 (2)	0.0157 (5)
C8	0.6992 (3)	0.4127 (2)	0.9191 (2)	0.0154 (5)
C9	0.6093 (3)	0.3430 (2)	0.80736 (19)	0.0142 (5)
C10	0.5507 (4)	0.6999 (2)	0.8995 (2)	0.0152 (5)
C11	0.6218 (4)	0.8920 (2)	1.0198 (3)	0.0202 (5)
C12	0.7347 (4)	0.9628 (3)	1.1383 (3)	0.0272 (6)
C13	0.4320 (4)	0.2725 (3)	0.4112 (2)	0.0178 (5)
C14	0.5195 (4)	0.3360 (2)	0.5282 (2)	0.0157 (5)
C15	0.4338 (3)	0.32682 (19)	0.61337 (19)	0.0141 (5)
C16	0.1675 (4)	0.2425 (3)	0.6666 (2)	0.0179 (5)
C17	-0.0004 (4)	0.1789 (3)	0.6309 (3)	0.0193 (5)
C18	-0.0794 (4)	0.1281 (3)	0.5107 (3)	0.0190 (5)
C19	0.0106 (4)	0.1366 (2)	0.4280 (2)	0.0185 (5)
C20	0.2636 (4)	0.2570 (2)	0.5836 (2)	0.0158 (5)
C21	0.1866 (4)	0.2007 (2)	0.4634 (2)	0.0156 (5)
C22	0.6974 (4)	0.4081 (2)	0.5471 (2)	0.0171 (5)
C23	0.9888 (4)	0.4845 (3)	0.6723 (3)	0.0203 (5)
C24	0.9854 (4)	0.6121 (3)	0.7135 (3)	0.0259 (6)
H1	0.4346	0.5369	0.7175	0.0170*
H2	0.8658	0.4101	1.0677	0.0238*
Н3	0.8873	0.2151	1.0037	0.0250*
H4	0.5570	0.1784	0.6926	0.0188*
H5A	0.4926	0.8991	1.0160	0.0243*
H6B	0.6599	0.9189	0.9596	0.0243*
H7A	0.6963	0.9352	1.1971	0.0326*
H8B	0.7188	1.0433	1.1540	0.0326*
H9C	0.8623	0.9559	1.1408	0.0326*
H10	0.4926	0.2769	0.3525	0.0213*
H11	0.2205	0.2771	0.7470	0.0215*
H12	-0.0642	0.1687	0.6863	0.0232*
H13	-0.0441	0.1001	0.3480	0.0222*
H14A	1.0365	0.4633	0.6013	0.0244*
H15B	1.0710	0.4644	0.7325	0.0244*
H16A	1.1094	0.6531	0.7397	0.0310*
H17B	0.9245	0.6318	0.7779	0.0310*
H18C	0.9200	0.6340	0.6497	0.0310*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0250 (4)	0.0193 (3)	0.0227 (4)	0.0070 (3)	0.0079 (3)	0.0114 (3)
Cl2	0.0156 (3)	0.0274 (4)	0.0264 (4)	-0.0013 (3)	0.0043 (3)	0.0089 (3)

O1	0.0318 (11)	0.0220 (10)	0.0129 (9)	0.0056 (8)	0.0014 (7)	0.0052 (7)
O2	0.0249 (9)	0.0203 (9)	0.0161 (9)	0.0049 (7)	0.0034 (7)	0.0094 (7)
03	0.0249 (10)	0.0147 (9)	0.0170 (9)	0.0023 (7)	-0.0005 (7)	0.0045 (7)
O4	0.0241 (10)	0.0375 (12)	0.0205 (10)	-0.0052 (8)	0.0041 (8)	0.0181 (9)
05	0.0144 (8)	0.0252 (9)	0.0180 (9)	0.0003 (7)	0.0028 (7)	0.0126 (7)
N1	0.0160 (10)	0.0165 (10)	0.0101 (9)	0.0026 (8)	0.0030 (7)	0.0063 (8)
N2	0.0204 (10)	0.0194 (10)	0.0140 (10)	0.0037 (8)	0.0043 (8)	0.0073 (8)
C1	0.0155 (11)	0.0163 (11)	0.0130 (10)	0.0012 (9)	0.0054 (8)	0.0074 (9)
C2	0.0164 (11)	0.0154 (11)	0.0140 (11)	0.0022 (9)	0.0059 (9)	0.0067 (9)
C3	0.0183 (11)	0.0196 (12)	0.0133 (11)	0.0029 (9)	0.0067 (9)	0.0069 (9)
C4	0.0227 (12)	0.0239 (13)	0.0145 (11)	0.0044 (10)	0.0036 (9)	0.0087 (10)
C5	0.0243 (13)	0.0254 (13)	0.0182 (12)	0.0092 (10)	0.0053 (10)	0.0134 (10)
C6	0.0194 (12)	0.0187 (12)	0.0188 (12)	0.0059 (9)	0.0085 (9)	0.0092 (10)
C7	0.0164 (11)	0.0190 (12)	0.0149 (11)	0.0036 (9)	0.0062 (9)	0.0083 (9)
C8	0.0154 (11)	0.0201 (12)	0.0126 (11)	0.0019 (9)	0.0047 (9)	0.0076 (9)
C9	0.0145 (11)	0.0201 (12)	0.0126 (11)	0.0036 (9)	0.0065 (8)	0.0096 (9)
C10	0.0177 (11)	0.0172 (11)	0.0128 (11)	0.0023 (9)	0.0065 (9)	0.0060 (9)
C11	0.0263 (13)	0.0153 (12)	0.0188 (12)	0.0034 (10)	0.0033 (10)	0.0065 (9)
C12	0.0307 (15)	0.0186 (13)	0.0255 (14)	0.0033 (11)	-0.0024 (11)	0.0032 (11)
C13	0.0185 (12)	0.0234 (12)	0.0157 (11)	0.0038 (9)	0.0064 (9)	0.0108 (10)
C14	0.0170 (11)	0.0180 (11)	0.0153 (11)	0.0039 (9)	0.0040 (9)	0.0094 (9)
C15	0.0166 (11)	0.0151 (11)	0.0126 (11)	0.0044 (9)	0.0024 (8)	0.0074 (9)
C16	0.0194 (12)	0.0224 (12)	0.0156 (11)	0.0042 (9)	0.0049 (9)	0.0106 (10)
C17	0.0191 (12)	0.0249 (13)	0.0190 (12)	0.0058 (10)	0.0085 (9)	0.0114 (10)
C18	0.0134 (11)	0.0220 (12)	0.0233 (13)	0.0011 (9)	0.0032 (9)	0.0108 (10)
C19	0.0182 (12)	0.0211 (12)	0.0170 (12)	0.0028 (9)	0.0023 (9)	0.0085 (10)
C20	0.0174 (11)	0.0193 (12)	0.0143 (11)	0.0052 (9)	0.0043 (9)	0.0098 (9)
C21	0.0162 (11)	0.0167 (11)	0.0154 (11)	0.0023 (9)	0.0016 (9)	0.0086 (9)
C22	0.0177 (11)	0.0199 (12)	0.0157 (11)	0.0019 (9)	0.0055 (9)	0.0078 (9)
C23	0.0128 (11)	0.0272 (13)	0.0233 (13)	0.0010 (9)	0.0032 (9)	0.0126 (11)
C24	0.0223 (13)	0.0239 (14)	0.0322 (15)	0.0027 (10)	0.0006 (11)	0.0141 (12)

Geometric parameters (Å, °)

Cl1—C6	1.733 (3)	C14—C22	1.498 (4)
Cl2—C18	1.742 (3)	C15—C20	1.416 (4)
O1—C3	1.231 (3)	C16—C17	1.364 (4)
O2—C10	1.216 (4)	C16—C20	1.423 (4)
O3—C10	1.341 (3)	C17—C18	1.418 (4)
O3—C11	1.450 (4)	C18—C19	1.368 (5)
O4—C22	1.209 (4)	C19—C21	1.418 (4)
O5—C22	1.329 (3)	C20—C21	1.422 (3)
O5—C23	1.466 (3)	C23—C24	1.511 (4)
N1-C1	1.351 (4)	C1—H1	0.950
N1-C9	1.400 (4)	C4—H2	0.950
N1-C15	1.443 (3)	С5—Н3	0.950
N2-C13	1.311 (4)	C7—H4	0.950
N2—C21	1.368 (4)	С11—Н5А	0.990

C1—C2	1.369 (3)	C11—H6B	0.990
C2—C3	1.462 (4)	C12—H7A	0.980
C2-C10	1.483 (4)	C12—H8B	0.980
C3—C8	1.484 (4)	C12—H9C	0.980
C4—C5	1.383 (4)	C13—H10	0.950
C4—C8	1.404 (4)	C16—H11	0.950
C5—C6	1.396 (4)	C17—H12	0.950
C6—C7	1.382 (4)	C19—H13	0.950
C7—C9	1.400 (4)	C23—H14A	0.990
C8-C9	1.396 (3)	C23—H15B	0.990
C11—C12	1.510 (4)	C24—H16A	0.980
C13 - C14	1421(3)	C24—H17B	0.980
C14-C15	1.121(3) 1.377(4)	C24—H18C	0.980
014 015	1.577 (4)	624 11166	0.900
01…03	2.744 (3)	N1···H15B ^v	3.5315
01…C1	3.599 (4)	N2···H17B ^{iv}	3.4348
O1…C4	2.797 (4)	N2…H18C ^{iv}	2.6158
O1…C10	3.050 (4)	C1····H10 ^{iv}	3.4894
O2…C1	2.730 (4)	C1…H15B ^v	3.1990
O2…C11	2.608 (3)	C3····H2 ^{xi}	3.5544
O3…C1	3.576 (3)	C3…H11 ⁱⁱⁱ	3.5186
O3…C3	2.889 (4)	C4···H15B ^{xi}	3.3403
O4…C13	2.839 (4)	C4…H16A ^{xi}	3.3578
O4…C23	2.710 (4)	C4···H17B ^{xi}	3,1853
04…C24	3.174 (4)	C5···H5A ⁱⁱⁱ	3.0056
05…N1	2.737 (3)	C5···H12 ^{vii}	3,5018
05…C1	3.129 (4)	C5…H16A ^{xi}	3.5386
05····C7	3.552 (4)	C5···H17B ^{xi}	3.3435
05	3.042(4)	C6···H5A ⁱⁱⁱ	2,9375
05···C13	3577(4)	C6···H7A ⁱⁱⁱ	3 2632
05 °C15	2888(4)	C6···H12 ^{vii}	2 7567
N1…C3	2.866 (3)	C7···H7A ⁱⁱⁱ	3 1775
N1…C16	2 894 (4)	$C7 \cdots H12^{vii}$	2 8588
N1…C22	3,002 (4)	C10H2 ⁱⁱⁱ	3 5006
N2…C15	2 806 (3)	C10···H10 ^{iv}	3 1987
C1C8	2,566 (4)	C10····H16A ^v	3 4673
C1C14	3 143 (4)		2 9378
C1 = C1	3 358 (4)	C11···H6B ^{viii}	3 2975
C1 ···C22	3 360 (4)		3 3685
C1 C22 C2C9	2 833 (4)		3 3011
C2 C)	2.000 (4)	$C12 \cdots H13^{xiii}$	2 7660
C5C9	2.791(4) 2.788(A)	$C12 \cdot H13$	2.7009
C5 C9 C6…C8	2.700(4) 2.780(4)	$C13 \cdots H18C^{iv}$	3 0680
C7C15	2.700 (4)	C15H1/AV	2 5047
C7C16	2.037(4)		2 2040
C7C20	3.404 (4) 2.220 (1)	C16H14Av	3.2940 2.2712
C0C1/	2.237 (4) 2.286 (1)	C10 ¹¹ 114A	3.2/12
C0C14	3.300(4)		2.8230
07010	5.41/(4)	$U1/\cdots \Pi/A^{\cdots}$	5.5554

C9···C20	3277(4)	C17…H13 ^{ix}	3 5923
C13C19	3.578(4)	$C17 \cdots H15B^{v}$	3 3327
C13···C20	2.752(5)	$C19 \cdots H7\Delta^{xii}$	3 4912
C14C21	2.752(5)		3.4960
C14 C21	2.735(4)		2 4002
	2.021(4)		5.4902 2.2125
C17C21	2.809(5)	C19H18C.	3.3133 2.1957
C18···C20	2.780 (4)	C20H14A	3.1857
	3.102 (4)	C20H15B	3.3105
	3.106 (3)	C21···H14A ^v	3.5795
Cl2···Cl2 ⁿ	3.5616 (17)	C21···H18C ^{IV}	2.9127
O1…N1 ^m	3.477 (4)	С22…Н1 ¹	3.5465
O1···C1 ⁱⁱⁱ	3.494 (4)	C22···H14A ^{vi}	3.5804
O1···C2 ⁱⁱⁱ	3.521 (4)	C23···H1 ^{vii}	3.3137
O1···C3 ⁱⁱⁱ	3.512 (4)	C23····H2 ^{xi}	3.0336
O1…C8 ⁱⁱⁱ	3.509 (4)	C23···H11 ^{vii}	3.4964
O1…C9 ⁱⁱⁱ	3.487 (4)	C24···H2 ^{xi}	2.8503
O1…C16 ⁱⁱⁱ	3.231 (3)	C24···H3 ^{xi}	3.4109
O2····C4 ⁱⁱⁱ	3.577 (4)	H1····O4 ^{iv}	2.5687
O2…C13 ^{iv}	3.301 (4)	H1···C13 ^{iv}	3.4318
02…C24 ^v	3.548 (4)	H1····C22 ^{iv}	3.5465
O4…C1 ^{iv}	3,476 (4)	H1···C23 ^v	3.3137
O4…C14 ^{iv}	3 443 (4)	H1···H10 ^{iv}	2,7626
04····C15 ^{iv}	3 558 (4)	$H1 \cdots H1 \Delta A^{v}$	3 0313
$04 \cdots C^{23^{vi}}$	3.356(4)	H1H15B ^v	2 9039
$04 \cdots C24^{v_i}$	3.270(4) 3.436(4)	$H1 \cdots H16\Delta^{v}$	2.9039
$05 \cdots C17^{\text{vii}}$	3,430 (4)		2.5074
	3.393(4)		2 4059
	3.477(4)		5.4950 2.5544
	3.100 (3) 2.412 (4)		3.3344
	3.412 (4)		3.5006
	3.494 (4)		3.0336
	3.476 (4)	H2···C24 ^{xi}	2.8503
C201 ^m	3.521 (4)	H2···H15B ^{x1}	2.4244
C2···C3 ^m	3.578 (5)	H2···H16A ^{x1}	2.7246
C2…C8 ⁱⁱⁱ	3.589 (4)	H2···H17B ^{xi}	2.4712
C3…O1 ⁱⁱⁱ	3.512 (4)	H3····O2 ⁱⁱⁱ	3.5724
C3···C2 ⁱⁱⁱ	3.578 (5)	H3····O3 ^{xi}	3.5471
C3···C3 ⁱⁱⁱ	3.264 (4)	H3····C24 ^{xi}	3.4109
C3···C8 ⁱⁱⁱ	3.535 (4)	H3···H5A ⁱⁱⁱ	3.0498
C4…O2 ⁱⁱⁱ	3.577 (4)	H3···H8B ^x	3.5569
C4…C10 ⁱⁱⁱ	3.384 (5)	H3····H9C ^{xi}	3.3216
C6…C11 ⁱⁱⁱ	3.587 (5)	H3····H16A ^{xi}	3.1037
C8…O1 ⁱⁱⁱ	3.509 (4)	H3····H17B ^{xi}	2.8161
C8…C2 ⁱⁱⁱ	3.589 (4)	H4…Cl2 ^{vii}	3.1862
C8…C3 ⁱⁱⁱ	3.535 (4)	H4…Cl2 ^{ix}	3.1952
C9…O1 ⁱⁱⁱ	3.487 (4)	H4…H7A ⁱⁱⁱ	3.0634
C10····C4 ⁱⁱⁱ	3.384 (5)	H4…H12 ^{vii}	2.9178
C11C6 ⁱⁱⁱ	3.587 (5)	H5A…Cl1 ⁱⁱⁱ	3.1443
C11···C11 ^{viii}	3 490 (5)	H5A····C5 ⁱⁱⁱ	3 0056
	5.770 (5)	115/1 05	5.0050

C13…O2 ^{iv}	3.301 (4)	H5A····C6 ⁱⁱⁱ	2.9375
C14O4 ^{iv}	3.443 (4)	H5A····C11 ^{viii}	2.9378
C15…O4 ^{iv}	3.558 (4)	H5A····C12 ^{viii}	3.3011
C16…O1 ⁱⁱⁱ	3.231 (3)	H5A…H3 ⁱⁱⁱ	3.0498
C16…C23 ^v	3.388 (5)	H5A····H5A ^{viii}	2.6538
C17…O5 ^v	3.395 (4)	H5A…H6B ^{viii}	2.5893
C18…C18 ^{ix}	3.450 (4)	H5A…H8B ^{viii}	2.7235
C23····O4 ^{vi}	3.276 (4)	H6B····Cl1 ^{xiv}	2.9705
C23…C16 ^{vii}	3.388 (5)	H6B····C11 ^{viii}	3.2975
C24····O2 ^{vii}	3.548 (4)	H6B····H5A ^{viii}	2.5893
C24…O4 ^{vi}	3.436 (4)	H6B····H6B ^{viii}	3.3956
C24…N2 ^{iv}	3.412 (4)	H6B····H8B ^{viii}	3.1042
Cl1···H3	2.8323	H7A…Cl1 ⁱⁱⁱ	3.3484
Cl1···H4	2.7746	H7A····Cl2 ^{xiii}	3.2436
Cl2…H12	2.8089	H7A…C6 ⁱⁱⁱ	3.2632
Cl2…H13	2.8031	H7A····C7 ⁱⁱⁱ	3 1775
01····H2	2 4958	$H7A\cdots C16^{iii}$	3 2940
02···H1	2.3541	H7A····C17 ⁱⁱⁱ	3 5354
02····H5A	2 5424	$H7A \cdots C19^{xiii}$	3 4912
02···H6B	2 5978	H7AH4 ⁱⁱⁱ	3 0634
03···H7A	2.5759		3 0133
03···H8B	3 2380	H7A···H12 ⁱⁱⁱ	3 4423
03···H9C	2 5830	$H7A \cdots H13^{xiii}$	2 6772
04···H10	2.5650	H8B····O2 ^{viii}	3 1553
O4…H14A	2.3170	H8B···C11 ^{viii}	3 3685
04···H18C	2.6932	H8B···C19 ^{xiii}	3 4869
05…H1	3 4480	H8B···H3 ^{xiv}	3 5569
05···H16A	3 2950		2 7235
05···H17B	2.6098	H8B···H6B ^{viii}	3 1042
05···H18C	2.7231	H8B···H13 ^{xiii}	2 5821
N1…H4	2 6190	$H9C\cdots C11^{xi}$	3 0218
N1…H11	2,5903	H9C····C19 ^{xiii}	3 4902
N2…H13	2.5685	H9C···H3 ^{xi}	3 3216
C1H11	3 3147	H9C···H12 ⁱⁱⁱ	3 2541
C1···H17B	3 4411	$H9C\cdots H13^{xiii}$	2 5698
C2…H17B	3.2151	$H10\cdots O2^{iv}$	2.3840
C3…H1	3 3018	$H10 \cdots C1^{iv}$	3 4894
C3…H2	2 6316	$H10 \cdots C10^{iv}$	3 1987
C5…H4	3 2843	$H10 \cdots H1^{iv}$	2 7626
С6…Н2	3 2504	$H10\cdots H16A^{vi}$	3 5807
C7···H3	3 2817	H10····H18C ^{iv}	3 4202
C7…H11	3 1390	H11O1 ⁱⁱⁱ	2 3474
C8····H3	3 2855	H11O3 ⁱⁱⁱ	3 3776
C8…H4	3 2917	H11····C3 ⁱⁱⁱ	3 5186
C9…H1	3 2331	H11C23 ^v	3 4964
С9…Н2	3 2661	H11H7A ⁱⁱⁱ	3 0133
C9H11	2.8974	H11H14A ^v	3 5728
C10…H1	2.4741	H11H15B ^v	2.7129

С10…Н5А	2.5743	H12····Cl1 ^v	2.9460
С10…Н6В	2.6022	H12…O5 ^v	3.4785
C10…H17B	3.5241	H12…C5 ^v	3.5018
C14…H1	3.0701	H12…C6 ^v	2.7567
C14…H4	3.2328	H12…C7 ^v	2.8588
C15…H1	2.5282	H12…H4 ^v	2.9178
С15…Н4	2.5115	H12…H7A ⁱⁱⁱ	3.4423
C15…H10	3.2423	H12····H9C ⁱⁱⁱ	3.2541
C15…H11	2.7043	H12…H13 ^{ix}	3.4222
С16…Н4	3.1231	H12…H15B ^v	3.5653
С17…Н13	3.2952	H13····Cl1 ⁱ	3.4612
C18…H11	3.2670	H13…C12 ^{xii}	2.7669
С19…Н12	3.2857	H13…C17 ^{ix}	3.5923
С20…Н1	3.3755	H13…H7A ^{xii}	2.6772
С20…Н4	2.7971	H13····H8B ^{xii}	2.5821
C20…H12	3.2767	H13····H9C ^{xii}	2.5698
С20…Н13	3.3143	H13…H12 ^{ix}	3.4222
C21…H10	3.1520	H13…H16A ^{iv}	3.5989
C21…H11	3.3155	H13…H18C ^{iv}	3.3482
С22…Н1	3.3402	H14A…O4 ^{vi}	2.4859
С22…Н10	2.5803	H14A…C15 ^{vii}	3.5947
C22…H14A	2.5239	H14A…C16 ^{vii}	3.2712
С22…Н15В	3.1771	H14A…C20 ^{vii}	3.1857
С22…Н17В	3.3676	H14A…C21 ^{vii}	3.5795
C22…H18C	2.9232	H14A…C22 ^{vi}	3.5804
Н2…Н3	2.3340	H14A…H1 ^{vii}	3.0313
H4…H11	3.0391	H14A…H11 ^{vii}	3.5728
Н5А…Н7А	2.3705	H14A…H14A ^{vi}	2.9112
H5A…H8B	2.3637	H14A…H18C ^{vi}	3.0792
Н5А…Н9С	2.8598	H15B…O1 ^{xi}	2.9240
Н6В…Н7А	2.8598	H15B…N1 ^{vii}	3.5315
H6B····H8B	2.3689	H15B…C1 ^{vii}	3.1990
Н6В…Н9С	2.3653	H15B····C4 ^{xi}	3.3403
H11…H12	2.3146	H15B…C16 ^{vii}	2.8250
H14A…H16A	2.3955	H15B…C17 ^{vii}	3.3327
H14A…H17B	2.8510	H15B····C20 ^{vii}	3.3105
H14A…H18C	2.3186	$H15B\cdots H1^{vii}$	2.9039
H15B…H16A	2.3082	H15B…H2 ^{xi}	2.4244
H15B…H17B	2.4072	H15B…H11 ^{vii}	2.7129
H15B…H18C	2.8493	H15B…H12 ^{vii}	3.5653
Cl1···H5A ⁱⁱⁱ	3.1443	H16A…O2 ^{vii}	2.5834
Cl1···H6B ^x	2.9705	H16A…O4 ^{vi}	3.0967
Cl1…H7A ⁱⁱⁱ	3.3484	H16A…C4 ^{xi}	3.3578
Cl1…H9C ^{xi}	3.0218	H16A····C5 ^{xi}	3.5386
Cl1…H12 ^{vii}	2.9460	H16A…C10 ^{vii}	3.4673
$C11 \cdots H13^i$	3.4612	H16A…H1 ^{vii}	2.9874
C12…H4 ^v	3.1862	H16A…H2 ^{xi}	2.7246
Cl2…H4 ^{ix}	3.1952	H16A…H3 ^{xi}	3,1037

Cl2…H7A ^{xii}	3.2436	H16A…H10 ^{vi}	3.5807
O1…H2 ^{xi}	3.5966	H16A…H13 ^{iv}	3.5989
O1…H11 ⁱⁱⁱ	2.3474	H17B…N2 ^{iv}	3.4348
O1…H15B ^{xi}	2.9240	H17B····C4 ^{xi}	3.1853
O2…H2 ⁱⁱⁱ	3.4958	H17B····C5 ^{xi}	3.3435
O2…H3 ⁱⁱⁱ	3.5724	H17B····H2 ^{xi}	2.4712
O2…H8B ^{viii}	3.1553	H17B····H3 ^{xi}	2.8161
02···H10 ^{iv}	2.3840	H18C····O4 ^{vi}	3.3897
02° H16A ^v	2 5834	H18C···N2 ^{iv}	2.6158
O3…H3 ^{xi}	3 5471	H18C····C13 ^{iv}	3 0680
03···H11 ^{···}	3 3776	H18C····C19 ^{iv}	3 3135
O4…H1 ^{iv}	2 5687	H18C····C21 ^{iv}	2 9127
$04 \cdots H14A^{vi}$	2.3867	H18C···H10 ^{iv}	3 4202
$04 \cdots H16A^{vi}$	3 0967	H18C···H13 ^{iv}	3 3482
$04 \cdots H18C^{vi}$	3 3897	$H18C \cdots H14\Delta^{vi}$	3 0792
$05 \cdots H12^{\text{vii}}$	3 4785		5.0772
05-1112	5.4785		
$C_{10} = O_{3} = C_{11}$	114.2(2)	N2 C21 C10	1178(2)
C10 - 05 - C11	114.2(2)	$N_2 = C_2 I = C_{19}$	117.0(2)
$C_{22} = 03 = C_{23}$	110.9(3)	$N_2 = C_2 I = C_2 0$	122.0(2)
CI = NI = CI5	120.29 (18)	C19 - C21 - C20	119.4(3)
CI = NI = CI5	118.8 (3)	04 - 022 - 03	125.5(3)
$C_9 - N_1 - C_{13}$	120.4(2)	04 - 022 - 014	122.1(3)
C13 - N2 - C21	117.9(2)	05 - 022 - 014	112.7(3)
NI - CI - C2	124.4 (3)	05-023-024	111.6 (3)
C1—C2—C3	119.9 (3)	NI-CI-HI	117.786
C1—C2—C10	114.2 (3)	C2-C1-H1	117.790
C3—C2—C10	125.88 (19)	C5—C4—H2	119.465
O1—C3—C2	125.3 (3)	C8—C4—H2	119.451
O1—C3—C8	120.6 (3)	C4—C5—H3	120.608
C2—C3—C8	114.06 (19)	С6—С5—Н3	120.608
C5—C4—C8	121.1 (2)	С6—С7—Н4	120.721
C4—C5—C6	118.8 (3)	С9—С7—Н4	120.707
Cl1—C6—C5	120.1 (3)	O3—C11—H5A	110.202
Cl1—C6—C7	118.02 (17)	O3—C11—H6B	110.200
C5—C6—C7	121.9 (3)	C12—C11—H5A	110.211
C6—C7—C9	118.6 (2)	С12—С11—Н6В	110.205
C3—C8—C4	118.94 (19)	H5A—C11—H6B	108.490
C3—C8—C9	122.3 (3)	C11—C12—H7A	109.471
C4—C8—C9	118.7 (3)	C11—C12—H8B	109.470
N1—C9—C7	120.18 (19)	С11—С12—Н9С	109.479
N1—C9—C8	118.8 (3)	H7A—C12—H8B	109.465
С7—С9—С8	121.0 (3)	H7A—C12—H9C	109.468
O2—C10—O3	122.7 (3)	H8B—C12—H9C	109.475
O2—C10—C2	123.53 (19)	N2-C13-H10	117.798
O3—C10—C2	113.8 (3)	C14—C13—H10	117.799
O3—C11—C12	107.5 (3)	C17—C16—H11	119.933
N2-C13-C14	124.4 (3)	C20—C16—H11	119.934
C13—C14—C15	117.7 (3)	C16—C17—H12	120.148

C13—C14—C22	116.4 (3)	C18—C17—H12	120.160
C15—C14—C22	125.9 (2)	C18—C19—H13	120.507
N1-C15-C14	121.1 (2)	C21—C19—H13	120.503
N1-C15-C20	118.5 (3)	O5—C23—H14A	109.305
C14—C15—C20	120.3 (2)	O5—C23—H15B	109.313
C17—C16—C20	120.1 (3)	C24—C23—H14A	109.316
C16—C17—C18	119.7 (3)	C24—C23—H15B	109.312
Cl2—C18—C17	118.1 (3)	H14A—C23—H15B	107.959
C12 - C18 - C19	119 79 (18)	C23—C24—H16A	109 468
C17 - C18 - C19	122.1 (3)	C^{23} C^{24} H^{17B}	109 468
C_{18} C_{19} C_{21}	1122.1(3) 1190(2)	C^{23} C^{24} $H^{18}C$	109.100
C_{15} C_{20} C_{16}	119.6(2) 123.6(2)	$H_{164} - C_{24} + H_{17B}$	109.100
C_{15} C_{20} C_{21}	125.0(2) 116.0(3)	H16A C24 H18C	109.471
$C_{15} = C_{20} = C_{21}$	110.9(3) 110.5(2)	H17P C24 H18C	109.473
010-020-021	119.3 (2)	III/D-024-III80	109.478
C10-03-C11-C12	177.9(2)	C3_C8_C9_N1	30(4)
C10-O3-C11-H5A	57.8	C_{3}^{-} C_{8}^{-} C_{9}^{-} C_{7}^{-}	-177.6(3)
C10-O3-C11-H6B	-61.9	$C_{4} = C_{8} = C_{9} = C_{7}$	-178.3(3)
$C_{11} O_3 C_{10} O_2$	-0.4(4)	C4 C8 C9 C7	170.3(3)
$C_{11} = 03 = C_{10} = 02$	178.5(2)	$C_{4} = C_{3} = C_{3} = C_{7}$	-59.5
C11 - 05 - C10 - C2	178.3(2)	O_{3} C_{11} C_{12} H_{2}^{PP}	-170.5
$C_{22} = 05 = C_{23} = C_{24}$	-42 1	O_{3} C_{11} C_{12} $H_{0}C$	179.5
$C_{22} = 05 = C_{23} = H_{14}A$	-42.1		00.3
C22—O5—C23—H15B	-160.0	H5A = C11 = C12 = H/A	50.4
$C_{23} = 05 = C_{22} = 04$	-0.1(4)	H5A - C11 - C12 - H8B	-59.4
$C_{23} = 05 = C_{22} = C_{14}$	1/7.69 (18)	H5A—C11—C12—H9C	-1/9.4
CI - NI - C9 - C7	-179.3(2)	H6B—C11—C12—H/A	-1/9./
C1—N1—C9—C8	0.1 (4)	H6B—C11—C12—H8B	60.3
C9—N1—C1—C2	-1.5 (4)	H6B—C11—C12—H9C	-59.7
C9—N1—C1—H1	178.5	N2—C13—C14—C15	1.9 (4)
C1—N1—C15—C14	73.6 (3)	N2-C13-C14-C22	-177.6(3)
C1—N1—C15—C20	-102.8 (3)	H10-C13-C14-C15	-178.1
C15—N1—C1—C2	-173.7 (2)	H10-C13-C14-C22	2.4
C15—N1—C1—H1	6.3	C13—C14—C15—N1	-177.0 (2)
C9—N1—C15—C14	-98.5 (3)	C13—C14—C15—C20	-0.7 (4)
C9—N1—C15—C20	85.0 (3)	C13—C14—C22—O4	28.4 (4)
C15—N1—C9—C7	-7.3 (4)	C13—C14—C22—O5	-149.5 (3)
C15—N1—C9—C8	172.1 (2)	C15—C14—C22—O4	-151.1 (3)
C13—N2—C21—C19	176.4 (3)	C15—C14—C22—O5	31.0 (4)
C13—N2—C21—C20	-1.5 (4)	C22—C14—C15—N1	2.5 (4)
C21—N2—C13—C14	-0.8 (4)	C22-C14-C15-C20	178.8 (3)
C21—N2—C13—H10	179.2	N1-C15-C20-C16	-4.0 (4)
N1—C1—C2—C3	-0.2 (4)	N1-C15-C20-C21	175.0 (2)
N1-C1-C2-C10	-179.0 (2)	C14—C15—C20—C16	179.5 (3)
H1—C1—C2—C3	179.8	C14—C15—C20—C21	-1.4 (4)
H1—C1—C2—C10	1.0	C17—C16—C20—C15	176.3 (3)
C1—C2—C3—O1	-176.1(3)	C17—C16—C20—C21	-2.7 (4)
C1—C2—C3—C8	3.0 (4)	C20—C16—C17—C18	-0.5 (4)
C1-C2-C10-O2	6.7 (4)	C20—C16—C17—H12	179.5
-	× /		

5
3
5.6 (3)
5)
1.2
74 (17)
(4)
3
9.7 (3)
(4)
4
4)
5.3 (2)
3.2 (3)
4)
0
0
0
1
0
0
(

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x-1, -y, -z+1; (iii) -x+1, -y+1, -z+2; (iv) -x+1, -y+1, -z+1; (v) x-1, y, z; (vi) -x+2, -y+1, -z+1; (vii) x+1, y, z; (viii) -x+1, -y+2, -z+2; (ix) -x, -y, -z+1; (x) x, y-1, z; (xi) -x+2, -y+1, -z+2; (xii) x-1, y-1, z-1; (xiii) x+1, y+1, z+1; (xiv) x, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
С16—Н11…О1 ^{ііі}	0.95	2.35	3.231 (3)	155 (1)
C13—H10…O2 ^{iv}	0.95	2.38	3.301 (4)	162 (1)

Symmetry codes: (iii) -*x*+1, -*y*+1, -*z*+2; (iv) -*x*+1, -*y*+1, -*z*+1.