inorganic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Nickel hexayttrium decaiodide, [NiY₆]I₁₀

Simon Steinberg and Gerd Meyer*

Department für Chemie, Anorganische Festkörper- und Koordinationschemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany Correspondence e-mail: gerd.meyer@uni-koeln.de

Received 24 March 2014: accepted 30 April 2014

Key indicators: single-crystal X-ray study; T = 293 K; mean $\sigma(I-Y) = 0.001$ Å; R factor = 0.034; wR factor = 0.091; data-to-parameter ratio = 41.2.

Comproportionation reactions of yttrium triiodide, yttrium and nickel led to the formation of the compound $[NiY_6]I_{10}$, which is isostructural with the prototypical $[RuY_6]I_{10}$. In particular, [NiY₆]I₁₀ is composed of isolated nickel centered yttrium octahedra (site symmetry $\overline{1}$) that are further surrounded by iodide ligands to construct a three-dimensional cluster complex framework. Although this compound has been previously detected by powder X-ray diffraction techniques [Payne & Corbett (1990). Inorg. Chem. 29, 2246-2251], details of the crystal structure for triclinic $[NiY_6]I_{10}$ were not provided.

Related literature

For a report of the prototypical [RuY₆]I₁₀, see: Hughbanks et al. (1989). For the determination of the lattice parameters of [NiY₆]I₁₀ from PXRD data, see: Payne & Corbett (1990). For a survey of isotypic structures, see: Rustige et al. (2012). For the synthesis of the starting material YI_3 , see: Corbett (1983); Meyer (1991). The symmetry of the refined structure was checked using the PLATON software package (Spek, 2009).

 $\gamma = 107.540 \ (5)^{\circ}$

Z = 1

V = 613.06 (8) Å³

Mo $K\alpha$ radiation

 $\mu = 27.35 \text{ mm}^{-1}$

T = 293 K $0.1 \times 0.1 \times 0.1 \; \mathrm{mm}$

Experimental

Crystal data	
[NiY ₆]I ₁₀	
$M_r = 1861.17$ Triclinic, $P\overline{1}$	
a = 9.4904 (7) Å b = 0.4900 (7) Å	
c = 7.5702 (5) Å	
$\alpha = 97.056 \ (6)^{\circ}$ $\beta = 105.096 \ (6)^{\circ}$	
p 102.090 (0)	

Data collection

Stoe IPDS 2T diffractometer Absorption correction: numerical [X-SHAPE (Stoe & Cie, 1999) and X-RED (Stoe & Cie, 2001)] $T_{\min} = 0.031, T_{\max} = 0.084$

11699 measured reflections 3294 independent reflections 2873 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.106$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	80 parameters
$wR(F^2) = 0.091$	$\Delta \rho_{\rm max} = 1.37 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.05	$\Delta \rho_{\rm min} = -1.64 \text{ e } \text{\AA}^{-3}$
3294 reflections	

Table 1

Averaged Y-Ni, Y-Y and Y-I distances (Å) in triclinic $[NiY_6]I_{10}$.

nteraction	Y-Ni	Y-Y	Y–I
Distance	2.649	3.746	3.143

Data collection: X-AREA (Stoe & Cie, 2003); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 and local programs.

This work was generously supported by the Deutsche Forschungsgemeinschaft Bonn (SFB 608 'Komplexe Übergangsmetallverbindungen mit Spin- und Ladungsfreiheitsgraden und Unordnung'), as well as by the Fonds der Chemischen Industrie e. V., Frankfurt a. M., through a PhD stipend to ST.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HP2066).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Corbett, J. D. (1983). Inorg. Synth. 22, 31.

- Hughbanks, T. & Corbett, J. D. (1989). Inorg. Chem. 28, 631-635.
- Meyer, G. (1991). Synthesis of Lanthanide and Actinide Compounds, edited by G. Meyer & L. R. Morss, pp. 135-144. Dordrecht: Kluwer Academic Publishers.
- Payne, M. W. & Corbett, J. D. (1990). Inorg. Chem. 29, 2246-2251.
- Rustige, C., Brühmann, M., Steinberg, S., Meyer, E., Daub, K., Zimmermann, S., Wolberg, M., Mudring, A.-V. & Meyer, G. (2012). Z. Anorg. Allg. Chem. 638, 1922-1931.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (2001). X-RED. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (2003). X-AREA. Stoe & Cie, Darmstadt, Germany.

supporting information

Acta Cryst. (2014). E70, i26 [doi:10.1107/S1600536814009775]

Nickel hexayttrium decaiodide, [NiY₆]I₁₀

Simon Steinberg and Gerd Meyer

S1. Comment

 $[NiY_6]I_{10}$ crystallizes with the triclinic $[RuY_6]I_{10}$ type of structure (Hughbanks *et al.*, 1989) and may be depicted as cubic closest packings of nickel and iodine atoms with yttrium atoms residing in 6/11 of all octahedral holes. Particularly, the yttrium atoms occupy those voids surrounding the nickel atoms to aggregate to octahedral $[NiY_6]$ clusters (Fig. 1). The twelve edges of each $[NiY_6]$ octahedron are capped by inner iodido ligands forming cuboctahedra around the endohedral nickel atoms. Additionally, the yttrium atoms bond to outer iodido ligands that reside in the inner coordination spheres of like clusters. More specifically, the iodido ligands interconnect the $[NiY_6]$ clusters *via* (i)–(i)–, (i)–(*a*)– and (*a*)–(i)– functionalities (Fig. 2), which can be emphasized by the formula $[NiY_6]I_{i_2/1}I_{i_4/2}I_{i_6/2}I_{a_{i_6/2}}$ (Rustige *et al.*, 2012 and lit. cited therein). The averaged Y–Y and Y–I (see below) distances correlate well with data of recently reported yttrium cluster iodides (Rustige *et al.*, 2012).

S2. Experimental

 $[NiY_6]I_{10}$ was obtained from comproportionation reactions of yttrium triiodide, yttrium and nickel. Yttrium triiodide was synthesized from reactions of the pure elements (Corbett, 1983; Meyer, 1991), while the metals were obtained from commercial sources (Y, smart elements, 99.99%; Ni, Riedel–de Haen, 99.8%) and used without further purification. Due to the sensivity of the used chemicals and products to air and moisture, all sample preparations were performed under a nitrogen atmosphere in a glove box with strict exclusion of air and water (< 0.1 p.p.m.). The reaction mixtures were loaded as $\{NiY_3\}I_3$ in pre–cleaned, one–side He–arc welded tantalum tubes, which were closed inside a glove box, arc– welded at the other end and jacketed by evacuated, fused silica tubes. The mixtures were first heated to 1050 °C, kept at that temperature for one week, slowly–annealed to 700 °C and, then, rapidly cooled to room temperature. The product appeared as a black powder containing small crystals of polyhedral shape. Single crystals were selected from the bulk and fixed in capilleries, which were closed inside a glove box. The crystals were subsequently transferred to a Stoe *IPDS* 2 T diffractometer and complete sets of intensity data were collected at room temperature (293 (2) K).

S3. Refinement

The intensity data sets were corrected for Lorentz and polarization effects. The structure was solved using direct methods (*SHELXS97*, Sheldrick, 2008) and refined on F² (*SHELXL97*, Sheldrick, 2008). A numerical absorption correction and a crystal shape optimization were carried out with the programs *X-RED* (Stoe & Cie, 2001) and *X-SHAPE* (Stoe & Cie, 1999), respectively. The *PLATON* software package (Spek, 2009) was utilized to check the symmetry of the refined structure and no higher symmetry was identified. As the largest difference peaks (1.365 and -1.635 e.Å) are located 0.73 Å and 0.81 Å near to the I2 and I1 sites, respectively, and all thermal ellipsoids are reasonable in shape and size (Rustige *et al.*, 2012), the presence of further atom sites was excluded. To compare the lattice parameters of the title compound to those of more recently reported yttrium cluster iodides (Rustige *et al.*, 2012), a lattice setting unlike the standard setting

Figure 1

Representation of isolated [NiY₆] octahedra. The edges are capped by the iodido ligands, whereas each yttrium atom bonds to one outer iodido ligand (90% probability thermal ellipsoids).

Figure 2

View on the (i)–(i)–, (i)–a)– and (a)–(i)–interconnections as seen in the triclinic $[NiY_6]I_{10}$.

Hexayttrium nickel decaiodide

Crystal data

Y₆NiI₁₀ $M_r = 1861.17$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 9.4904 (7) Å b = 9.4990 (7) Å c = 7.5702 (5) Å a = 97.056 (6)° $\beta = 105.096$ (6)° $\gamma = 107.540$ (5)° V = 613.06 (8) Å³

Data collection

Stoe IPDS 2T
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: not measured pixels mm ⁻¹
ω and φ scans
Absorption correction: numerical
[X-SHAPE (Stoe & Cie, 1999) and X-RED (Stoe
& Cie, 2001)]

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	$w = 1/[\sigma^2(F_o^2) + (0.0426P)^2]$
$wR(F^2) = 0.091$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
3294 reflections	$\Delta ho_{ m max} = 1.37 \ m e \ m \AA^{-3}$
80 parameters	$\Delta \rho_{\rm min} = -1.64 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: SHELXL,
Primary atom site location: structure-invariant	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
direct methods	Extinction coefficient: 0.0065 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

Z = 1

F(000) = 792

 $\theta = 2.3 - 29.7^{\circ}$

T = 293 K

 $R_{\rm int} = 0.106$

 $h = -12 \rightarrow 12$ $k = -12 \rightarrow 12$ $l = -10 \rightarrow 10$

 $\mu = 27.35 \text{ mm}^{-1}$

Polyhedral, black

 $0.1 \times 0.1 \times 0.1$ mm

 $T_{\text{min}} = 0.031, T_{\text{max}} = 0.084$ 11699 measured reflections 3294 independent reflections 2873 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 29.2^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$

 $D_{\rm x} = 5.041 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 7675 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.46133 (4)	0.27745 (5)	0.36198 (5)	0.03196 (12)	
I2	0.09092 (5)	-0.53117 (5)	-0.73275 (5)	0.03117 (12)	
13	0.62560 (4)	0.18495 (5)	-0.08746 (6)	0.03022 (12)	

supporting information

I4	0.18872 (4)	-0.09482 (4)	-0.45161 (4)	0.02376 (11)
15	0.26512 (4)	0.35524 (4)	-0.21790 (6)	0.02461 (11)
Y1	0.03920 (6)	-0.24090 (6)	-0.88682 (7)	0.01994 (13)
Y2	0.28566 (6)	0.08659 (6)	-0.02824 (7)	0.02070 (13)
Y3	0.12577 (6)	0.16546 (6)	-0.65217 (7)	0.02003 (13)
Ni1	0.0000	0.0000	0.0000	0.01763 (19)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0218 (2)	0.0379 (3)	0.02921 (19)	0.00438 (18)	0.00735 (15)	-0.00074 (17)
I2	0.0445 (3)	0.0225 (2)	0.02586 (18)	0.01531 (18)	0.00550 (16)	0.00573 (15)
I3	0.0238 (2)	0.0314 (2)	0.0443 (2)	0.01372 (17)	0.01644 (16)	0.01687 (19)
I4	0.02514 (19)	0.0264 (2)	0.02106 (17)	0.01056 (16)	0.00748 (13)	0.00530 (14)
I5	0.02516 (19)	0.0237 (2)	0.02650 (17)	0.00764 (14)	0.01043 (13)	0.00798 (13)
Y1	0.0214 (2)	0.0197 (3)	0.0214 (2)	0.00886 (18)	0.00798 (17)	0.00681 (18)
Y2	0.0188 (2)	0.0232 (3)	0.0223 (2)	0.00806 (18)	0.00821 (17)	0.00681 (19)
Y3	0.0212 (2)	0.0205 (3)	0.0198 (2)	0.00802 (18)	0.00750 (16)	0.00500 (17)
Nil	0.0174 (4)	0.0184 (5)	0.0191 (4)	0.0072 (3)	0.0070 (3)	0.0060 (3)

Geometric parameters (Å, °)

I1—Y3 ⁱ	3.0062 (7)	Y1—Y2 ^{vii}	3.7458 (8)
I1—Y2	3.0150 (7)	Y1—Y3	3.7913 (8)
I2—Y1 ⁱⁱ	3.0839 (7)	Y2—Ni1	2.6595 (5)
I2—Y3 ⁱⁱⁱ	3.1124 (7)	Y2—I3 ^{iv}	3.0999 (6)
I2—Y1	3.2421 (6)	Y2—Y3 ⁱ	3.6579 (8)
I3—Y2 ^{iv}	3.0999 (6)	Y2—Y1 ^{vi}	3.7404 (8)
I3—Y1 ^v	3.1255 (7)	Y2—Y1 ⁱ	3.7458 (8)
I3—Y2	3.2437 (7)	Y2—Y3 ^{vi}	3.8540 (8)
I4—Y1	3.1700 (6)	Y3—Ni1 ^{vii}	2.6540 (5)
I4—Y3	3.1805 (6)	Y3—I1 ^{vii}	3.0062 (7)
I4—Y3 ^{vi}	3.1811 (7)	Y3—I2 ^{ix}	3.1124 (7)
I4—Y2	3.1999 (6)	Y3—I4 ^{vi}	3.1811 (7)
I5-Y1 ^{vi}	3.1085 (7)	Y3—Y2 ^{vii}	3.6579 (8)
I5—Y2	3.1091 (6)	Y3—Y1 ^{viii}	3.6863 (7)
I5—Y3	3.2633 (7)	Y3—Y2 ^{vi}	3.8540 (8)
Y1—Ni1 ^{vii}	2.6339 (5)	Ni1—Y1 ⁱ	2.6339 (5)
Y1—I2 ⁱⁱ	3.0839 (7)	Ni1—Y1 ^{vi}	2.6339 (5)
$Y1 - I5^{vi}$	3.1085 (7)	Ni1—Y3 ^{vi}	2.6540 (5)
$Y1 - I3^{v}$	3.1255 (7)	Ni1—Y3 ⁱ	2.6540 (5)
Y1—Y3 ^{viii}	3.6863 (7)	Ni1—Y2 ^x	2.6595 (5)
Y1—Y2 ^{vi}	3.7404 (8)		
Y3 ⁱ —I1—Y2	74.819 (17)	I1—Y2—Y1 ^{vi}	95.963 (18)
Y1 ⁱⁱ —I2—Y3 ⁱⁱⁱ	73.012 (17)	$I3^{iv}$ —Y2—Y1 ^{vi}	142.723 (19)
Y1 ⁱⁱ —I2—Y1	97.915 (17)	I5—Y2—Y1 ^{vi}	53.010 (13)
Y3 ⁱⁱⁱ —I2—Y1	170.822 (19)	I4—Y2—Y1 ^{vi}	95.321 (16)

$Y2^{iv}$ —I3— $Y1^{v}$	73.981 (17)	I3—Y2—Y1 ^{vi}	134.546 (18)
Y2 ^{iv} —I3—Y2	97.455 (17)	$Y3^{i}$ $Y2$ $Y1^{vi}$	59.759 (14)
Y1 ^v —I3—Y2	171.270 (19)	Ni1—Y2—Y1 ⁱ	44.682 (11)
Y1—I4—Y3	73.313 (16)	$I1 - Y2 - Y1^{i}$	96.665 (18)
Y1—I4—Y3 ^{vi}	97.782 (17)	$I3^{iv} - Y2 - Y1^{i}$	53.322 (14)
$Y_3 - I_4 - Y_3^{v_i}$	92.193 (17)	$15 - Y2 - Y1^{i}$	141.452 (18)
Y1—I4—Y2	167.857 (18)	$I4 - Y2 - Y1^{i}$	93.299 (17)
Y3—I4—Y2	97.453 (17)	$I3 - Y2 - Y1^{i}$	135.838 (19)
Y3 ^{vi} —[4—Y2	74.310 (16)	$Y3^{i} - Y2 - Y1^{i}$	61.592 (15)
Y1 ^{vi} —I5—Y2	73.966 (16)	$Y1^{vi} Y2 Y1^{i}$	89.447 (15)
Y1 ^{vi} —[5—Y3	97.326 (18)	Ni1—Y2—Y3 ^{vi}	43.448 (11)
Y2—I5—Y3	97.588 (18)	[1_Y2_Y3 ^{vi}	142.34 (2)
$Ni1^{vii}$ $Y1$ $I2^{ii}$	99 864 (17)	$13^{iv} Y2 Y2^{vi}$	93 585 (17)
Ni 1^{vii} Y1 $ 15^{\text{vi}}$	97 898 (17)	$15 - Y2 - Y3^{vi}$	91 241 (16)
12^{ii} $Y1$ $J5^{vi}$	94 416 (18)	13 - 12 - 13 $14 - Y^2 - Y^{3^{vi}}$	52 622 (13)
$Ni1^{vii}$ $V1$ $I3^{v}$	97 912 (18)	$13 - V2 - V3^{vi}$	$133\ 462\ (18)$
12^{ii} V1 13^{v}	88 724 (19)	V_{3i} V_{2} V_{3vi}	89 881 (16)
12 - 11 - 13 $15^{vi} - V1 - 13^{v}$	$163 \ 10 \ (2)$	13 - 12 - 13 V1 ^{vi} V2 V3 ^{vi}	59 875 (14)
15 - 11 - 15 Ni1 ^{vii} V1 IA	07.867(18)	$\mathbf{V}_{1i}^{i} = \mathbf{V}_{2}^{i} = \mathbf{V}_{3vi}^{i}$	58 011 (13)
$12^{ii} \times 1 14$	$\frac{162}{27}$ (2)	$\frac{11 - 12 - 15}{11 + 12}$	33.011(13)
12 - 11 - 14 15vi V1 14	102.27(2) 83 101 (17)	1 1 1 - 1 3 - 11 Ni 1 vii V2 I2ix	99.248 (19) 08 706 (17)
13 - 11 - 14 $12^{v} + V1 = 14$	83.191(17)	$\frac{11}{10} \frac{11}{10} 11$	98.700(17)
15 - 11 - 14	179.04(2)	$\frac{11}{10} - \frac{1}{10} - \frac{12}{12}$	90.934(19)
$\frac{1}{10} - \frac{1}{10} - \frac{1}{10}$	170.04(2)	1111 - 15 - 14	97.190 (17)
$12^{-1} I I - I2$ $15^{vi} V I I2$	82.085 (17)	$11^{11} - 15 - 14$	163.932(18)
15 - 11 - 12 12x - V1 - 12	81.030(10)	12 - 13 - 14 N: 1 vii V2 IAvi	103.91(2)
13 - 11 - 12	82.341(10)	$\frac{11}{11} = \frac{1}{12} = \frac{14}{14}$	90.029 (17)
14 - 1 - 12	80.185 (15)	$11^{11} - 13 - 14^{11}$	164.07(2)
$N11^{vii}$ Y 1 Y 3 v^{viii}	46.028 (12)	$12^{11} - Y 3 - 14^{11}$	87.890 (18)
$12^{}$ Y 1 Y 3^{+}	53.849 (14)	14 - Y 3 - 14	87.807 (17)
15^{v} Y 1 Y 3 $^{\text{v}}$	98./81 (1/)	$N11^{vii}$ Y 3—15	1/6./4 (2)
13° Y 1 Y 3 $^{\circ}$	96.476 (18)	$11^{v_{1}} - Y 3 - 15$	83.500 (17)
$14 - Y 1 - Y 3^{\text{vm}}$	143.879 (19)	12 ¹ Y 3—15	82.942 (16)
$12 - Y 1 - Y 3^{\text{vm}}$	135.914 (19)	14—Y 3—15	81.059 (15)
$N_1 I^{v_1} Y_1 Y_2 V_1$	45.319 (11)	14 ^{vi} —Y3—15	80.592 (16)
12^{n} Y1 $Y2^{n}$	95.733 (17)	N_{11}^{vn} Y_{3} Y_{2}^{vn}	46.558 (12)
15^{v_1} Y 1 $-$ Y 2 v_1	53.024 (13)	$11^{\text{vn}} - Y3 - Y2^{\text{vn}}$	52.700 (15)
13^{v} Y1 $-$ Y2 $^{v_{1}}$	143.204 (19)	12^{ix} Y3 Y2 Vii	96.907 (18)
$14 - Y1 - Y2^{v_1}$	96.770 (17)	$14 - Y3 - Y2^{vii}$	95.821 (17)
$12 - Y1 - Y2^{v_1}$	134.455 (19)	14^{v_1} Y3 Y2 VII	143.186 (18)
$Y3^{viii}$ $Y1$ $Y2^{vi}$	59.009 (14)	$15 - Y3 - Y2^{v_{11}}$	136.194 (19)
Ni1 ^{vn} —Y1—Y2 ^{vn}	45.234 (12)	Ni1 ^{vn} —Y3—Y1 ^{vm}	45.581 (11)
$I2^{ii}$ Y1 - Y2 ^{vii}	98.116 (18)	$I1^{vii}$ Y3 Y1 Viii	97.251 (19)
I5 ^{vi} —Y1—Y2 ^{vii}	142.547 (19)	I2 ^{ix} —Y3—Y1 ^{viii}	53.138 (14)
I3 ^v —Y1—Y2 ^{vii}	52.697 (13)	I4—Y3—Y1 ^{viii}	142.755 (19)
I4—Y1—Y2 ^{vii}	94.288 (17)	$I4^{vi}$ —Y3—Y1 ^{viii}	94.750 (17)
I2—Y1—Y2 ^{vii}	134.926 (19)	I5—Y3—Y1 ^{viii}	136.052 (19)
$Y3^{viii}$ — $Y1$ — $Y2^{vii}$	62.465 (15)	Y2 ^{vii} —Y3—Y1 ^{viii}	61.232 (14)
$Y2^{vi}$ — $Y1$ — $Y2^{vii}$	90.553 (16)	Ni1 ^{vii} —Y3—Y1	43.984 (11)

Ni1 ^{vii} —Y1—Y3	44.407 (11)	I1 ^{vii} —Y3—Y1	95.871 (19)
I2 ⁱⁱ —Y1—Y3	144.254 (18)	I2 ^{ix} —Y3—Y1	142.674 (18)
I5 ^{vi} —Y1—Y3	92.436 (17)	I4—Y3—Y1	53.216 (13)
I3 ^v —Y1—Y3	94.680 (17)	I4 ^{vi} —Y3—Y1	94.652 (16)
I4—Y1—Y3	53.471 (13)	I5—Y3—Y1	134.247 (18)
I2—Y1—Y3	133.650 (17)	Y2 ^{vii} —Y3—Y1	60.346 (15)
Y3 ^{viii} —Y1—Y3	90.435 (16)	Y1 ^{viii} —Y3—Y1	89.565 (16)
Y2 ^{vi} —Y1—Y3	61.551 (14)	Ni1 ^{vii} —Y3—Y2 ^{vi}	43.561 (12)
Y2 ^{vii} —Y1—Y3	58.063 (14)	$I1^{vii}$ —Y3—Y2 ^{vi}	142.796 (19)
Ni1—Y2—I1	98.905 (19)	$I2^{ix}$ Y3 Y2 vi	95.413 (17)
Ni1—Y2—I3 ^{iv}	97.985 (17)	I4—Y3—Y2 ^{vi}	94.365 (16)
I1—Y2—I3 ^{iv}	90.836 (17)	$I4^{vi}$ —Y3—Y2 ^{vi}	53.068 (13)
Ni1—Y2—I5	97.335 (17)	I5—Y3—Y2 ^{vi}	133.637 (19)
I1—Y2—I5	95.806 (19)	$Y2^{vii}$ — $Y3$ — $Y2^{vi}$	90.119 (16)
I3 ^{iv} —Y2—I5	162.14 (2)	Y1 ^{viii} —Y3—Y2 ^{vi}	59.523 (14)
Ni1—Y2—I4	96.070 (17)	Y1—Y3—Y2 ^{vi}	58.574 (14)
I1—Y2—I4	165.00 (2)	Y1 ⁱ —Ni1—Y1 ^{vi}	180.0
I3 ^{iv} —Y2—I4	86.140 (18)	Y1 ⁱ —Ni1—Y3 ^{vi}	88.391 (16)
I5—Y2—I4	83.167 (16)	Y1 ^{vi} —Ni1—Y3 ^{vi}	91.609 (16)
Ni1—Y2—I3	176.84 (2)	Y1 ⁱ —Ni1—Y3 ⁱ	91.609 (16)
I1—Y2—I3	84.194 (17)	Y1 ^{vi} —Ni1—Y3 ⁱ	88.391 (16)
I3 ^{iv} —Y2—I3	82.545 (17)	Y3 ^{vi} —Ni1—Y3 ⁱ	180.00 (2)
I5—Y2—I3	81.665 (16)	Y1 ⁱ —Ni1—Y2	90.083 (17)
I4—Y2—I3	80.844 (17)	Y1 ^{vi} —Ni1—Y2	89.917 (17)
Ni1—Y2—Y3 ⁱ	46.433 (12)	Y3 ^{vi} —Ni1—Y2	92.991 (17)
I1-Y2-Y3 ⁱ	52.481 (14)	Y3 ⁱ —Ni1—Y2	87.009 (17)
I3 ^{iv} —Y2—Y3 ⁱ	97.823 (18)	Y1 ⁱ —Ni1—Y2 ^x	89.917 (17)
I5—Y2—Y3 ⁱ	99.371 (18)	Y1 ^{vi} —Ni1—Y2 ^x	90.083 (17)
I4—Y2—Y3 ⁱ	142.503 (18)	Y3 ^{vi} —Ni1—Y2 ^x	87.009 (17)
I3—Y2—Y3 ⁱ	136.648 (19)	Y3 ⁱ —Ni1—Y2 ^x	92.991 (17)
Ni1—Y2—Y1 ^{vi}	44.765 (11)	Y2—Ni1—Y2 ^x	180.000 (7)

Symmetry codes: (i) x, y, z+1; (ii) -x, -y-1, -z-2; (iii) x, y-1, z; (iv) -x+1, -y, -z; (v) -x+1, -y, -z-1; (vi) -x, -y, -z-1; (vii) x, y, z-1; (viii) -x, -y, -z-2; (ix) x, y+1, z; (x) -x, -y, -z-1; (vi) x, y, z-1; (viii) -x, -y, -z-2; (iii) x, y-1, z; (v) -x+1, -y, -z-1; (vi) -x, -y, -z-1; (vi) x, y, z-1; (viii) -x, -y, -z-2; (iii) x, y-1, z; (v) -x+1, -y, -z-1; (vi) -x, -y, -z-1; (vi) x, y, z-1; (viii) -x, -y, -z-2; (iii) x, y-1, z; (v) -x+1, -y, -z-1; (vi) -x, -y, -z-1; (vi) -x, -y, -z-1; (vi) -x, -y, -z-2; (iii) -x, -y, -z-2; (