

ISSN 1600-5368

{Dimethyl [(phenylsulfonyl)amido]phosphato- $\kappa^2 O, O'$ }bis(triphenylphosphane-*kP*)copper(I)

Olesia V. Moroz,* Viktor A. Trush, Tatiana Yu. Sliva, Kateryna O. Znovjyak and Vladimir M. Amirkhanov

Taras Shevchenko National University of Kyiv, Department of Chemistry, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine Correspondence e-mail: ovmoroz@yahoo.com

Received 24 April 2014; accepted 5 May 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.008 Å; R factor = 0.086; wR factor = 0.120; data-to-parameter ratio = 21.2.

In the title complex, $[Cu(C_8H_{11}NO_5PS)(C_{18}H_{15}P)_2]$, the Cu^I ion is coordinated by two triphenylphosphane molecules and two O atoms of the chelating dimethyl(phenylsulfonyl)amidophosphate anion, generating a squashed CuO_2P_2 tetrahedron. In the six-membered chelate ring, the Cu, P and O atoms are almost coplanar (r.m.s. deviation = 0.024 Å), with the N and S atoms displaced in the same direction, by 0.708 (5) and 0.429 (2) Å, respectively.

Related literature

For the synthesis of sulfonylamide derivatives, see: Kirsanov (1965); Moroz et al. (2012). For details of the pharmacological and biological properties of sulfonylamide derivatives, see: Kishino & Saito (1979); Xu & Angell (2000). For Cu^Icontaining complexes with triphenylphosphane, see: Barron et al. (1987); Yang et al. (2001); Zabirov et al. (2003). For details of potential applications of Cu^I-containing complexes, see: Nagashima et al. (1993); Nondek et al. (1987); Tarkhanova et al. (2001); Zazybin et al. (2006); Verat et al. (2006). For coordination compounds of 3d metals with sulfonylamidophosphate ligands, see: Moroz et al. (2009); Trush et al. (2011). For the coordination mode of structural analogs of β -diketones, see: Gawryszewska et al. (2011); Yizhak et al. (2013); Kariaka et al. (2013); Amirkhanov et al. (2014).

 $V = 4011.6 (11) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.40 \times 0.30 \times 0.10 \ \text{mm}$

27134 measured reflections

9293 independent reflections

4739 reflections with $I > 2\sigma(I)$

 $\mu = 0.76 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.137$

Z = 4

Experimental

Crystal data

[Cu(C₈H₁₁NO₅PS)(C₁₈H₁₅P)₂] $M_r = 852.29$ Monoclinic, $P2_1/c$ a = 12.8657 (12) Åb = 26.281 (3) Å c = 13.971 (3) Å $\beta = 121.875 (10)^{\circ}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\rm min} = 0.74, \ T_{\rm max} = 0.90$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.086$	438 parameters
$wR(F^2) = 0.120$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.48 \ {\rm e} \ {\rm \AA}^{-3}$
9293 reflections	$\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (A	A)	۱.

Cu1-O3	2.065 (3)	Cu1-P2	2.2345 (15)
Cu1-O1	2.263 (3)	Cu1-P3	2.2381 (14)

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

The authors are grateful to Dr Y. S. Moroz for kind assistance in solving and refining the structure.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7222).

References

- Amirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. B. (2014). Ligands. Synthesis, Characterization and Role in Biotechnology, pp. 199-248. New York: NOVA Publishers.
- Barron, P. F., Dyason, J. C., Healy, P. C., Engelhardt, L. M., Pakawatchai, C., Patrick, V. A. & White, A. H. (1987). J. Chem. Soc. Dalton Trans. 5, 1099-1106

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Gawryszewska, P., Moroz, O. V., Trush, V. A., Kulesza, D. & Amirkhanov, V. M. (2011). J. Photochem. Photobiol. A Chem. 217, 1–9.
- Kariaka, N. S., Trush, V. A., Medviediev, V. V., Sliva, T. Y. & Amirkhanov, V. M. (2013). Acta Cryst. E69, m143.
- Kirsanov, A. V. (1965). In Fosfazosoedineniya (Phosphazo Compounds). Kiev: Naukova Dumka.
- Kishino, S. & Saito, S. (1979). US Patent No. 4 161524.
- Moroz, O. V., Trush, V. A., Konovalova, I. S., Shishkin, O. V., Moroz, Y. S., Demeshko, S. & Amirkhanov, V. M. (2009). *Polyhedron*, 28, 1331–1335.
- Moroz, O. V., Trush, V. A., Znovjyak, K. O., Konovalova, I. S., Omelchenko, I. V., Sliva, T. Yu., Shishkin, O. V. & Amirkhanov, V. M. (2012). J. Mol. Struct. 1017, 109–114.
- Nagashima, H., Ozaki, N., Ishii, M., Seki, K., Washiyama, M. & Itoh, K. (1993). J. Org. Chem. 58, 464–470.
- Nondek, L., Hun, L. G., Wichterlova, B. & Krupicka, S. (1987). J. Mol. Catal. 42, 51–55.
- Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tarkhanova, I. G., Smirnov, V. V. & Rostovshchikova, T. N. (2001). Kinet. Katal. 42, 216–222.
- Trush, E. A., Trush, V. A., Sliva, T. Y., Konovalova, I. S. & Amirkhanov, V. M. (2011). Acta Cryst. E67, m369–m370.
- Verat, A. Y., Sokolov, F. D., Zabirov, N. G., Babashkina, M. G., Krivolapov, D. B., Brusko, V. V. & Litvinov, I. A. (2006). *Inorg. Chim. Acta*, 359, 475–483.
- Xu, K. & Angell, C. (2000). Inorg. Chim. Acta, 298, 16–23.
- Yang, R.-N., Wang, D.-M., Liu, Y.-F. & Jin, D.-M. (2001). Polyhedron, 20, 585– 590.
- Yizhak, R. V., Znovjyak, K. O., Ovchynnikov, V. A., Sliva, T. Yu., Konovalova, I. S., Medviediev, V. V., Shishkin, O. V. & Amirkhanov, V. M. (2013). *Polyhedron*, 62, 293–299.
- Zabirov, N. G., Verat, A. Yu., Sokolov, F. D., Babashkina, M. G., Krivolapov, D. B. & Brusko, V. V. (2003). *Mendeleev Commun.* 13, 163–164.
- Zazybin, A., Osipova, O., Khusnutdinova, U., Aristov, I., Solomonov, B., Sokolov, F., Babashkina, M. & Zabirov, N. (2006). J. Mol. Catal. A Chem. 253, 234–238.

supporting information

Acta Cryst. (2014). E70, m209-m210 [doi:10.1107/S1600536814010095]

{Dimethyl [(phenylsulfonyl)amido]phosphato- $\kappa^2 O, O'$ }bis(triphenylphosphane- κP)copper(I)

Olesia V. Moroz, Viktor A. Trush, Tatiana Yu. Sliva, Kateryna O. Znovjyak and Vladimir M. Amirkhanov

S1. Introduction

Coordination chemistry of structural analogs of β -diketones has been widely studied during last 30 years. Among them, sulfonyl phosphoramides (SAPh) bearing a S(O)₂NHP(O) structural fragment and different substituents at sulfur and phosphorus atoms were first synthesized by Kirsanov (Kirsanov, 1965). These compounds are extensively used in medicine as bactericidal agents (Xu & Angell, 2000) and in agriculture as pesticides (Kishino & Saito, 1979). Recently, coordination compounds of lanthanides and 3*d* metals with SAPhs behaving as bidentate O,O-donor chelating ligands have been reported (Moroz, *et al.*, 2009; Moroz, *et al.*, 2012; Trush, *et al.*, 2011). As our contribution to the study of coordination compounds of 3*d* metals based on SAPh, we synthesized and structurally characterized a copper(I)-containing complex [Cu(*L*)(PPh₃)₂] (I) {where, H*L* is dimethyl(phenylsulfonyl)amidophosphate (C₆H₅S(O)₂NHP(O) (OCH₃)₂) and PPh₃ is triphenylphosphane}. Complexes of Cu¹ have useful luminescent properties, they can be used in microelectronics and as catalysts of homolytic C–Hal (Hal = Cl, Br) bond cleavage in polyhaloalkanes (Nagashima, *et al.*, 1993; Nondek, *et al.*, 1987; Tarkhanova, *et al.*, 2001; Zazybin, *et al.*, 2006). Triphenylphosphane molecule was used to prevent cluster formation during complexation reaction.

The molecular structure of **I** is shown in Figure1. Van der Waals contacts exist between molecules of **I** in the crystal structure. The coordination environment of the Cu ion is a distorted tetrahedron (2+2). The values for the bond angles around the central atom are in the range from 88.9 (1)° to 129.94 (6)°. The coordination polyhedron consists of two phosphorus atoms from PPh₃ molecules and two oxygen atoms from the phosphoryl and the sulfonyl groups of *L*⁻, which is coordinated in bidentate chelate mode forming with central ion a six-membered chelate ring. The later coordination mode is typical for the deprotonated structural analogs of β -diketones, SAPh and CAPh (carbacylamidophosphates) (Gawryszewska, *et al.*, 2011; Yizhak, *et al.*, 2013; Kariaka, *et al.*, 2013; Amirkhanov, *et al.*, 2014). It has already been observed for [Cu(PPh₃)_nL₁] based on N-acylamidophosphinate ligands (Verat, *et al.*, 2006) and for (PPh₃)₃CuI (Barron, *et al.*, 1987) that the number of the coordinated PPh₃ molecules to the central ion has the main influence on the Cu–P bond lengths. As in the present compound the Cu¹ atom coordinates two PPh₃, the Cu–P distances of 2.234 (1), 2.238 (1)Å are in good agreement with the values observed for the complexes containing two PPh₃ ligands (Yang, *et al.*, 2001; Zabirov, *et al.*, 2003; Verat, *et al.*, 2006).

The Cu–O(S) and Cu–O(P) bond lengths (2.263 (3) and 2.066 (3)Å, respectively) (Table1) are similar to the reported values for the complexes of 3*d*-metals with H*L* (Moroz, *et al.*, 2009; Trush, *et al.*, 2011). The amide nitrogen atom of the ligand is deprotonated that leads to decreasing the S–N, N–P and increasing the P–O, S–O bond length values (Table1) compared with those for H*L* (Moroz, *et al.*, 2009). Such changes may be related to the occurrence of the π -coupling in O –S–N–P–O fragment and are usual for SAPh ligands (Moroz, *et al.*, 2009; Trush, *et al.*, 2011). The value of the O(1)

—Cu(1)—O(3) angle of 88.9 (1)° is typical for the coordination compounds with O- donor SAPh and CAPh ligands. The phosphorus and sulfur atoms of I have distorted tetrahedral configurations (Table1). Oxygen atoms of the phosphoryl O(3) and the sulfonyl O(2) groups of the O—S—N—P—O structural fragment adopt an anticlinal conformation (the dihedral angle between O(2)—S(1)—P(1) and O(3)—P(1)—S(1) planes is 106.3°). The six-membered Cu—O—P—N— S—O metallocycle has a distorted boat conformation with the deviations of N(1) and Cu(1) from the mean plane of 0.40Å and 0.26Å, respectively.

S2. Experimental

The synthesis of HL was carried out according to previously published procedure (Moroz, et al., 2009).

Compound I was prepared according to the following scheme:

 $4HL + 4Cu + 8PPh_3 + O_2 \rightarrow 4[Cu(L)(PPh_3)_2] + 2H_2O$

Briefly, a heterogeneous mixture of copper powder (0.065g, 1mmol), triphenylphosphane (0.524g, 2mmol) and H*L* (0.287g, 1mmol) in 40mL of acetone was stirred for 4 days upon heating with a reflux condenser. Decreasing of the powder was observed simultaneously with gradual appearance of white precipitate. The later was filtered off, washed thoroughly with chilled isopropanol, dried and dissolved in minimal amount of DMF to remove the residual copper powder. The resulting solution was left at ambient temperature for crystallization in air. The colorless crystals were collected by filtration after 2 days, washed with chilled isopropanol and dried on filter. Yield: 0.64g (75%). The compound is soluble in methanol, acetonitrile, chloroform, DMSO and DMF. Anal. calc. for C₄₄H₄₁NO₅P₃SCu: C61.81, H4.71, N1.61, S3.54%; found: C62.00, H4.85, N1.64, S3.76%; IR (KBr, cm⁻¹): 1225, 1250 (s, SO₂) and 1180 (s, PO); ¹H NMR (400 MHz, CDCl₃): 3.28 (d, 6H, CH₃, $^{3}J_{P-H} = 12Hz$), 7.09 (m, H_{β}, 2H, C₆H₅(*L*⁻)), 7.27 (m, H_{β}, 12H, C₆H₅(PPh₃)), 7.33 (s, H_{γ}, 1H, C₆H₅(*L*⁻)), 7.39 (m, H_{$\alpha+\gamma$}, 18H, C₆H₅(PPh₃))) 7.62 (m, H_{$\alpha}, 2H, C₆H₅($ *L*⁻)) ppm. ³¹P NMR (162.1 MHz, CDCl₃): 0.8 (g, ³J_{P-H} = 12Hz,*L*⁻), -4.3 (s, PPh₃) ppm.</sub>

S3. Refinement

The H atoms were attached to carbon atoms geometrically. The H atoms were refined with riding constraints (C—H in the range 0.93–0.98Å, and U_{iso} (H) lie in the range 1.2-1.5 times U_{eq} of the parent atom). Crystal data, data collection and structure refinement details are summarized in Table 1.

Figure 1

Structural representation of I with atom numbering scheme and 50% probability thermal ellipsoid. The H atoms are omitted for clarity.

{Dimethyl [(phenylsulfonyl)amido]phosphato- $\kappa^2 O, O'$ }bis(triphenylphosphane- κP)copper(I)

Crystal data	
$[Cu(C_8H_{11}NO_5PS)(C_{18}H_{15}P)_2]$	F(000) = 1768
$M_r = 852.29$	$D_{\rm x} = 1.411 {\rm Mg m^{-3}}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 12.8657 (12) Å	Cell parameters from 27134 reflections
b = 26.281 (3) Å	$\theta = 2.9 - 28.5^{\circ}$
c = 13.971 (3) Å	$\mu = 0.76 \text{ mm}^{-1}$
$\beta = 121.875 (10)^{\circ}$	T = 100 K
$V = 4011.6 (11) \text{ Å}^3$	Needle, colourless
Z = 4	$0.40\times0.30\times0.10~mm$
Data collection	
Nonius KappaCCD	Absorption correction: multi-scan
diffractometer	(SADABS; Sheldrick, 2003)
Radiation source: sealed X-ray tube	$T_{\rm min} = 0.74, \ T_{\rm max} = 0.90$
Detector resolution: 9 pixels mm ⁻¹	27134 measured reflections
φ scans and ω scans with κ offset	9293 independent reflections
	4739 reflections with $I > 2\sigma(I)$

$R_{\text{int}} = 0.137$ $\theta_{\text{max}} = 28.5^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$ $h = -16 \rightarrow 16$	$k = -33 \rightarrow 34$ $l = -18 \rightarrow 18$
Refinement	
Refinement on F^2	Hydrogen sit

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.086$	H-atom parameters constrained
$wR(F^2) = 0.120$	$w = 1/[\sigma^2(F_o^2) + (0.0188P)^2]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
9293 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
438 parameters	$\Delta \rho_{\rm max} = 0.48 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.7620 (4)	0.16461 (19)	1.0173 (4)	0.0134 (12)	
C2	0.7765 (5)	0.15558 (19)	0.9275 (4)	0.0195 (13)	
H68	0.7094	0.1479	0.8566	0.023*	
C3	0.8930 (5)	0.1582 (2)	0.9452 (5)	0.0257 (14)	
H102	0.9034	0.1531	0.8848	0.031*	
C4	0.9933 (5)	0.1682 (2)	1.0499 (5)	0.0260 (14)	
H106	1.0707	0.1698	1.0602	0.031*	
C5	0.9789 (5)	0.1758 (2)	1.1401 (5)	0.0323 (16)	
H19	1.0468	0.1822	1.2115	0.039*	
C6	0.8614 (5)	0.1740 (2)	1.1237 (5)	0.0277 (15)	
H57	0.8509	0.1790	1.1840	0.033*	
C7	0.3285 (5)	0.2987 (2)	0.8180 (5)	0.0375 (17)	
H74A	0.2652	0.2749	0.7708	0.056*	
H74B	0.3002	0.3327	0.7928	0.056*	
H74C	0.3493	0.2948	0.8945	0.056*	
C8	0.6702 (5)	0.2749 (2)	0.8269 (5)	0.0303 (15)	
H7A	0.6423	0.3079	0.8330	0.045*	
H7B	0.7084	0.2774	0.7838	0.045*	
H7C	0.7283	0.2622	0.9008	0.045*	
C9	0.2961 (5)	0.06859 (19)	0.5000 (4)	0.0203 (5)	
C10	0.1706 (5)	0.06746 (19)	0.4622 (4)	0.0203 (5)	
H25	0.1469	0.0701	0.5144	0.024*	
C11	0.0819 (5)	0.06245 (18)	0.3490 (4)	0.0203 (5)	

H21	-0.0003	0.0612	0.3260	0.024*
C12	0.1160 (5)	0.05931 (19)	0.2692 (4)	0.0203 (5)
H16	0.0567	0.0560	0.1930	0.024*
C13	0.2384 (5)	0.06113 (19)	0.3045 (4)	0.0203 (5)
H15	0.2613	0.0599	0.2515	0.024*
C14	0.3274 (5)	0.06484 (19)	0.4179 (4)	0.0203 (5)
H35	0.4095	0.0648	0.4403	0.024*
C15	0.4477 (4)	0.00831 (18)	0.6988 (4)	0.0132 (12)
C16	0.4271 (4)	-0.03269 (19)	0.6270 (4)	0.0147 (12)
H20	0.3927	-0.0268	0.5504	0.018*
C17	0.4570 (5)	-0.0819 (2)	0.6678 (5)	0.0189 (13)
H6	0.4437	-0.1088	0.6192	0.023*
C18	0.5070 (5)	-0.0910 (2)	0.7817 (5)	0.0215 (14)
H56	0.5264	-0.1241	0.8093	0.026*
C19	0.5283 (5)	-0.0510(2)	0.8547 (5)	0.0242 (14)
H8	0.5628	-0.0573	0.9311	0.029*
C20	0.4987 (5)	-0.0024 (2)	0.8145 (5)	0.0236 (14)
H31	0.5123	0.0241	0.8640	0.028*
C21	0.5434 (5)	0.09651 (19)	0.6489 (4)	0.0141 (12)
C22	0.6453 (5)	0.0664 (2)	0.6779 (4)	0.0184 (13)
H60	0.6493	0.0333	0.7032	0.022*
C23	0.7411 (5)	0.0854 (2)	0.6694 (4)	0.0229 (14)
H29	0.8085	0.0650	0.6888	0.027*
C24	0.7358 (5)	0.1347 (2)	0.6320 (4)	0.0243 (14)
H54	0.7988	0.1472	0.6245	0.029*
C25	0.6370 (5)	0.1655 (2)	0.6057 (4)	0.0191 (13)
H70	0.6346	0.1988	0.5822	0.023*
C26	0.5425 (5)	0.14690 (19)	0.6142 (4)	0.0191 (13)
H67	0.4767	0.1680	0.5966	0.023*
C27	0.1898 (4)	0.0599 (2)	0.8496 (4)	0.0177 (13)
C28	0.1400 (5)	0.0630 (2)	0.9169 (4)	0.0232 (14)
H105	0.1078	0.0938	0.9224	0.028*
C29	0.1375 (5)	0.0207 (2)	0.9761 (5)	0.0324 (16)
H1	0.1021	0.0229	1.0193	0.039*
C30	0.1891 (5)	-0.0249 (2)	0.9696 (5)	0.0332 (16)
H45	0.1901	-0.0531	1.0104	0.040*
C31	0.2386 (5)	-0.0284 (2)	0.9029 (5)	0.0285 (15)
H72	0.2710	-0.0591	0.8975	0.034*
C32	0.2400 (5)	0.01393 (19)	0.8440 (4)	0.0209 (14)
H38	0.2748	0.0115	0.8003	0.025*
C33	0.0584 (4)	0.11361 (19)	0.6394 (4)	0.0143 (12)
C34	0.0297 (5)	0.1559 (2)	0.5668 (4)	0.0191 (13)
H61	0.0792	0.1847	0.5923	0.023*
C35	-0.0716 (5)	0.1547 (2)	0.4583 (5)	0.0251 (15)
H107	-0.0912	0.1832	0.4124	0.030*
C36	-0.1443 (5)	0.1115 (2)	0.4168 (5)	0.0275 (15)
H47	-0.2106	0.1104	0.3429	0.033*
C37	-0.1168 (5)	0.0703 (2)	0.4865 (5)	0.0275 (15)
	× /	· · ·	· · ·	/

H66	-0.1659	0.0415	0.4594	0.033*
C38	-0.0173 (5)	0.0709 (2)	0.5966 (4)	0.0194 (13)
H62	-0.0008	0.0425	0.6423	0.023*
C39	0.1906 (5)	0.1685 (2)	0.8525 (5)	0.0235 (6)
C40	0.0861 (5)	0.19774 (19)	0.8175 (5)	0.0235 (6)
H13	0.0132	0.1899	0.7510	0.028*
C41	0.0923 (5)	0.2386 (2)	0.8830 (4)	0.0235 (6)
H28	0.0230	0.2585	0.8589	0.028*
C42	0.1968 (5)	0.2504 (2)	0.9812 (5)	0.0235 (6)
H65	0.1984	0.2777	1.0242	0.028*
C43	0.3019 (5)	0.2214 (2)	1.0173 (5)	0.0235 (6)
H14	0.3742	0.2291	1.0845	0.028*
C44	0.2972 (5)	0.1810 (2)	0.9521 (4)	0.0235 (6)
H75	0.3673	0.1617	0.9757	0.028*
Cu1	0.36062 (6)	0.12135 (2)	0.75302 (5)	0.01638 (18)
N1	0.5554 (4)	0.21783 (15)	0.9479 (3)	0.0169 (10)
01	0.5448 (3)	0.12269 (13)	0.9166 (3)	0.0198 (9)
O2	0.6296 (3)	0.15752 (13)	1.1063 (3)	0.0246 (9)
O3	0.3780 (3)	0.19846 (12)	0.7364 (3)	0.0173 (9)
O4	0.4335 (3)	0.28906 (12)	0.8119 (3)	0.0268 (10)
O5	0.5671 (3)	0.24042 (13)	0.7711 (3)	0.0227 (9)
P1	0.48025 (13)	0.23250 (5)	0.81736 (13)	0.0190 (4)
P2	0.41040 (12)	0.07398 (5)	0.65026 (12)	0.0153 (3)
P3	0.20168 (12)	0.11467 (5)	0.77600 (12)	0.0162 (3)
S1	0.61185 (12)	0.16414 (5)	0.99649 (12)	0.0183 (3)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.008 (3)	0.014 (3)	0.015 (3)	0.000 (2)	0.004 (3)	0.003 (2)
C2	0.022 (4)	0.019 (3)	0.018 (3)	-0.001 (3)	0.011 (3)	-0.001 (3)
C3	0.034 (4)	0.026 (3)	0.026 (4)	0.003 (3)	0.022 (3)	0.001 (3)
C4	0.015 (3)	0.032 (4)	0.027 (4)	0.002 (3)	0.008 (3)	0.001 (3)
C5	0.021 (4)	0.045 (4)	0.023 (4)	-0.007 (3)	0.006 (3)	-0.013 (3)
C6	0.022 (4)	0.042 (4)	0.021 (4)	0.000 (3)	0.013 (3)	-0.002 (3)
C7	0.029 (4)	0.025 (4)	0.067 (5)	0.002 (3)	0.031 (4)	-0.005 (3)
C8	0.025 (4)	0.027 (4)	0.041 (4)	-0.007 (3)	0.020 (3)	0.008 (3)
C9	0.0184 (14)	0.0199 (12)	0.0188 (14)	0.0008 (11)	0.0072 (12)	-0.0007 (11)
C10	0.0184 (14)	0.0199 (12)	0.0188 (14)	0.0008 (11)	0.0072 (12)	-0.0007 (11)
C11	0.0184 (14)	0.0199 (12)	0.0188 (14)	0.0008 (11)	0.0072 (12)	-0.0007 (11)
C12	0.0184 (14)	0.0199 (12)	0.0188 (14)	0.0008 (11)	0.0072 (12)	-0.0007 (11)
C13	0.0184 (14)	0.0199 (12)	0.0188 (14)	0.0008 (11)	0.0072 (12)	-0.0007 (11)
C14	0.0184 (14)	0.0199 (12)	0.0188 (14)	0.0008 (11)	0.0072 (12)	-0.0007 (11)
C15	0.011 (3)	0.010 (3)	0.022 (3)	0.000 (2)	0.011 (3)	-0.004 (2)
C16	0.012 (3)	0.020 (3)	0.014 (3)	-0.002 (2)	0.008 (3)	0.002 (3)
C17	0.018 (3)	0.018 (3)	0.027 (4)	-0.005 (3)	0.016 (3)	-0.006 (3)
C18	0.020 (3)	0.019 (3)	0.028 (4)	0.004 (3)	0.015 (3)	0.002 (3)
C19	0.019 (3)	0.029 (4)	0.013 (3)	0.002 (3)	0.000 (3)	0.002 (3)

C20	0.025 (4)	0.021 (3)	0.017 (3)	0.002 (3)	0.005 (3)	-0.003 (3)
C21	0.012 (3)	0.018 (3)	0.010 (3)	-0.004 (2)	0.005 (3)	-0.008 (2)
C22	0.019 (3)	0.015 (3)	0.026 (4)	-0.001 (3)	0.016 (3)	-0.003 (3)
C23	0.016 (3)	0.024 (3)	0.028 (4)	0.001 (3)	0.011 (3)	-0.006 (3)
C24	0.027 (4)	0.030 (4)	0.022 (3)	-0.013 (3)	0.017 (3)	-0.007 (3)
C25	0.023 (4)	0.021 (3)	0.018 (3)	-0.010 (3)	0.015 (3)	-0.005 (3)
C26	0.020 (3)	0.015 (3)	0.021 (3)	-0.004 (3)	0.010 (3)	-0.003 (3)
C27	0.011 (3)	0.021 (3)	0.017 (3)	-0.004 (3)	0.005 (3)	0.000 (3)
C28	0.020 (3)	0.024 (3)	0.025 (4)	-0.002 (3)	0.011 (3)	0.006 (3)
C29	0.028 (4)	0.037 (4)	0.031 (4)	-0.014 (3)	0.014 (3)	-0.001 (3)
C30	0.033 (4)	0.024 (4)	0.025 (4)	-0.007 (3)	0.004 (3)	0.015 (3)
C31	0.023 (4)	0.021 (4)	0.033 (4)	-0.003 (3)	0.009 (3)	0.000 (3)
C32	0.013 (3)	0.017 (3)	0.017 (3)	-0.001 (3)	-0.002 (3)	0.004 (3)
C33	0.013 (3)	0.015 (3)	0.018 (3)	0.000 (2)	0.011 (3)	-0.002 (3)
C34	0.010 (3)	0.027 (3)	0.025 (4)	-0.003 (3)	0.012 (3)	0.002 (3)
C35	0.019 (4)	0.032 (4)	0.029 (4)	0.006 (3)	0.015 (3)	0.007 (3)
C36	0.011 (3)	0.045 (4)	0.023 (4)	-0.002 (3)	0.007 (3)	-0.003 (3)
C37	0.023 (4)	0.026 (4)	0.035 (4)	-0.002 (3)	0.016 (3)	-0.006 (3)
C38	0.013 (3)	0.024 (3)	0.019 (3)	0.000 (3)	0.008 (3)	0.000 (3)
C39	0.0276 (15)	0.0243 (14)	0.0243 (15)	0.0026 (12)	0.0176 (13)	-0.0019 (11)
C40	0.0276 (15)	0.0243 (14)	0.0243 (15)	0.0026 (12)	0.0176 (13)	-0.0019 (11)
C41	0.0276 (15)	0.0243 (14)	0.0243 (15)	0.0026 (12)	0.0176 (13)	-0.0019 (11)
C42	0.0276 (15)	0.0243 (14)	0.0243 (15)	0.0026 (12)	0.0176 (13)	-0.0019 (11)
C43	0.0276 (15)	0.0243 (14)	0.0243 (15)	0.0026 (12)	0.0176 (13)	-0.0019 (11)
C44	0.0276 (15)	0.0243 (14)	0.0243 (15)	0.0026 (12)	0.0176 (13)	-0.0019 (11)
Cu1	0.0157 (4)	0.0148 (4)	0.0206 (4)	-0.0015 (3)	0.0109 (3)	-0.0025 (3)
N1	0.025 (3)	0.009 (2)	0.017 (3)	-0.002 (2)	0.012 (2)	-0.004 (2)
01	0.016 (2)	0.016 (2)	0.021 (2)	-0.0027 (18)	0.0045 (18)	-0.0015 (18)
O2	0.027 (2)	0.030 (2)	0.019 (2)	-0.0022 (19)	0.014 (2)	0.0023 (19)
O3	0.014 (2)	0.012 (2)	0.024 (2)	-0.0024 (17)	0.0090 (19)	0.0023 (17)
O4	0.024 (2)	0.012 (2)	0.041 (3)	0.0049 (18)	0.016 (2)	0.0027 (19)
05	0.021 (2)	0.022 (2)	0.028 (2)	-0.0081 (18)	0.015 (2)	-0.0018 (19)
P1	0.0175 (9)	0.0135 (8)	0.0252 (9)	-0.0002 (7)	0.0108 (8)	0.0006 (7)
P2	0.0143 (8)	0.0137 (8)	0.0186 (9)	-0.0004 (6)	0.0093 (7)	-0.0005 (7)
P3	0.0144 (8)	0.0150 (8)	0.0211 (8)	-0.0007 (7)	0.0106 (7)	-0.0002 (7)
S 1	0.0198 (9)	0.0175 (8)	0.0189 (8)	-0.0015 (7)	0.0110 (7)	0.0002 (7)

Geometric parameters (Å, °)

C1—C6	1.378 (7)	C24—H54	0.9300	
C1—C2	1.384 (6)	C25—C26	1.373 (6)	
C1—S1	1.795 (5)	С25—Н70	0.9300	
C2—C3	1.386 (7)	С26—Н67	0.9300	
С2—Н68	0.9300	C27—C28	1.392 (6)	
C3—C4	1.371 (7)	C27—C32	1.392 (7)	
C3—H102	0.9300	C27—P3	1.821 (5)	
C4—C5	1.381 (7)	C28—C29	1.396 (7)	
C4—H106	0.9300	C28—H105	0.9300	

C5 C(1 405 (7)	C20 C20	1.20(.(7))
	1.405 (7)	C29—C30	1.396 (7)
С5—Н19	0.9300	С29—Н1	0.9300
С6—Н57	0.9300	C30—C31	1.382 (7)
C7—O4	1.419 (5)	C30—H45	0.9300
С7—Н74А	0.9600	C31—C32	1.390 (7)
C7—H74B	0.9600	С31—Н72	0.9300
С7—Н74С	0.9600	С32—Н38	0.9300
C8—O5	1.448 (5)	C33—C38	1.397 (6)
C8—H7A	0.9600	C33—C34	1.416 (6)
C8—H7B	0.9600	С33—Р3	1.824 (5)
C8—H7C	0.9600	C34—C35	1.382 (7)
<u>C9</u> — <u>C14</u>	1 406 (6)	C34—H61	0.9300
C9-C10	1 409 (6)	C_{35} C_{36}	1 390 (7)
C9P2	1.824 (5)	C35—H107	0.9300
C_{10} C_{11}	1.024(5) 1.383(6)	C_{26} C_{27}	1,370(7)
C10_H25	0.0300	$C_{36} = U_{47}$	1.370(7)
C10—H23	0.9300	$C_{30} - H_{4}$	0.9300
	1.400 (6)	$C_{37} = C_{38}$	1.387 (7)
CII—H2I	0.9300	C3/—H66	0.9300
C12—C13	1.380 (6)	С38—Н62	0.9300
C12—H16	0.9300	C39—C44	1.382 (7)
C13—C14	1.384 (6)	C39—C40	1.394 (7)
C13—H15	0.9300	C39—P3	1.823 (5)
C14—H35	0.9300	C40—C41	1.386 (7)
C15—C16	1.399 (6)	C40—H13	0.9300
C15—C20	1.415 (7)	C41—C42	1.355 (7)
C15—P2	1.824 (5)	C41—H28	0.9300
C16—C17	1.385 (6)	C42—C43	1.394 (6)
C16—H20	0.9300	С42—Н65	0.9300
C17—C18	1.386 (7)	C43—C44	1.380(7)
С17—Н6	0.9300	C43—H14	0.9300
C18—C19	1 388 (7)	C44—H75	0.9300
C18—H56	0.9300	Cu1—O3	2,065 (3)
C19-C20	1 366 (7)	Cu101	2.000(3)
C10 H8	0.9300	Cul P2	2.203(3)
C_{10} H_{21}	0.0300	Cu1 = 12	2.2343(13) 2.2381(14)
C_{20} C_{21} C_{22}	1 205 (6)	N1 S1	2.2381(14)
$C_2 I = C_2 Z$	1.393 (0)	NI DI	1.506 (4)
$C_{21} = C_{20}$	1.409 (0)		1.390 (4)
C21—P2	1.820 (5)	01-51	1.470 (3)
C22—C23	1.391 (6)	02—\$1	1.438 (3)
С22—Н60	0.9300	O3—P1	1.496 (3)
C23—C24	1.386 (7)	O4—P1	1.590 (3)
С23—Н29	0.9300	O5—P1	1.572 (3)
C24—C25	1.382 (7)		
C6—C1—C2	121.0 (5)	C27—C28—C29	121.1 (5)
C6—C1—S1	118.9 (4)	C27—C28—H105	119.5
C2C1S1	120.1 (4)	C29—C28—H105	119.5
C1—C2—C3	118.8 (5)	C28—C29—C30	119.0 (5)

С1—С2—Н68	120.6	C28—C29—H1	120.5
С3—С2—Н68	120.6	С30—С29—Н1	120.5
C4—C3—C2	121.2 (5)	C31—C30—C29	120.3 (5)
C4—C3—H102	119.4	C31—C30—H45	119.8
C2—C3—H102	119.4	С29—С30—Н45	119.8
C3—C4—C5	119.9 (5)	C30—C31—C32	120.1 (5)
C3—C4—H106	120.1	C_{30} C_{31} H_{72}	120.0
C5-C4-H106	120.1	$C_{32} = C_{31} = H_{72}$	120.0
C4-C5-C6	119.8 (6)	C_{31} C_{32} C_{27} C_{27}	120.0 120.7(5)
$C_{4} = C_{5} = C_{0}$	120.1	$C_{31} = C_{32} = C_{27}$	120.7 (3)
C6 C5 H19	120.1	$C_{27} C_{22} H_{28}$	119.7
$C_{0} = C_{0} = C_{0}$	120.1	$C_{27} = C_{32} = C_{34}$	117.7
C1 = C0 = C3	119.2 (3)	$C_{30} = C_{33} = C_{34}$	117.7(3)
C1	120.4	$C_{38} - C_{33} - P_{3}$	123.5 (4)
C5—C6—H57	120.4	C34—C33—P3	118.3 (4)
04—C/—H/4A	109.5	C35—C34—C33	120.4 (5)
O4—C7—H74B	109.5	С35—С34—Н61	119.8
H74A—C7—H74B	109.5	С33—С34—Н61	119.8
O4—C7—H74C	109.5	C34—C35—C36	120.8 (5)
H74A—C7—H74C	109.5	C34—C35—H107	119.6
H74B—C7—H74C	109.5	С36—С35—Н107	119.6
O5—C8—H7A	109.5	C37—C36—C35	119.0 (5)
O5—C8—H7B	109.5	С37—С36—Н47	120.5
H7A—C8—H7B	109.5	С35—С36—Н47	120.5
O5—C8—H7C	109.5	C36—C37—C38	121.3 (5)
H7A—C8—H7C	109.5	С36—С37—Н66	119.3
H7B—C8—H7C	109.5	С38—С37—Н66	119.3
C14—C9—C10	117.3 (5)	C37—C38—C33	120.6 (5)
C14—C9—P2	122.7 (4)	С37—С38—Н62	119.7
C10—C9—P2	120.1 (4)	С33—С38—Н62	119.7
C11—C10—C9	121.3 (5)	C44—C39—C40	118.9 (5)
C11—C10—H25	1193	C44—C39—P3	1155(4)
C9-C10-H25	119.3	C40-C39-P3	125.6(4)
C10-C11-C12	120.0(5)	C_{41} C_{40} C_{39}	129.0(1) 119.2(5)
C10 $C11$ $H21$	120.0 (5)	C_{41} C_{40} H_{13}	120.4
$C_{10} = C_{11} = H_{21}$	120.0	$C_{41} = C_{40} = H_{13}$	120.4
$C_{12} = C_{11} = H_{21}$	120.0	$C_{40} = C_{40} = 1115$	120.4
$C_{13} = C_{12} = C_{11}$	119.3 (3)	C42 - C41 - C40	121.7(3)
C13-C12-H16	120.3	C42 - C41 - H28	119.1
CII—CI2—HI6	120.3	C40—C41—H28	119.1
C12—C13—C14	120.6 (5)	C41 - C42 - C43	119.7 (5)
С12—С13—Н15	119.7	С41—С42—Н65	120.1
C14—C13—H15	119.7	С43—С42—Н65	120.1
C13—C14—C9	121.3 (5)	C44—C43—C42	119.0 (5)
C13—C14—H35	119.4	C44—C43—H14	120.5
C9—C14—H35	119.4	C42—C43—H14	120.5
C16—C15—C20	117.6 (5)	C43—C44—C39	121.5 (5)
C16—C15—P2	123.3 (4)	C43—C44—H75	119.3
C20—C15—P2	119.0 (4)	С39—С44—Н75	119.3
C17—C16—C15	121.2 (5)	O3—Cu1—P2	112.93 (9)

C17—C16—H20	119.4	O3—Cu1—P3	104.75 (9)
C15—C16—H20	119.4	P2—Cu1—P3	129.95 (6)
C16—C17—C18	119.6 (5)	O3—Cu1—O1	88.88 (13)
С16—С17—Н6	120.2	P2—Cu1—O1	98.93 (9)
С18—С17—Н6	120.2	P3—Cu1—O1	113.89 (9)
C17—C18—C19	120.3 (5)	S1—N1—P1	125.1 (3)
С17—С18—Н56	119.9	S1—O1—Cu1	131.3 (2)
С19—С18—Н56	119.9	P1—O3—Cu1	127.3 (2)
C20—C19—C18	120.2 (5)	C7—O4—P1	120.7 (3)
С20—С19—Н8	119.9	C8—O5—P1	120.7 (3)
С18—С19—Н8	119.9	O3—P1—O5	107.5 (2)
C19—C20—C15	121.1 (5)	O3—P1—O4	111.3 (2)
С19—С20—Н31	119.5	O5—P1—O4	100.9 (2)
С15—С20—Н31	119.5	O3—P1—N1	118.7 (2)
C22—C21—C26	117.9 (5)	O5—P1—N1	111.6 (2)
C22—C21—P2	123.9 (4)	O4—P1—N1	105.4 (2)
C26—C21—P2	118.2 (4)	C21—P2—C15	104.3 (2)
C23—C22—C21	120.7 (5)	C21—P2—C9	101.8 (2)
С23—С22—Н60	119.6	С15—Р2—С9	104.4 (2)
С21—С22—Н60	119.6	C21—P2—Cu1	114.54 (16)
C24—C23—C22	119.9 (5)	C15—P2—Cu1	113.38 (17)
С24—С23—Н29	120.1	C9—P2—Cu1	116.87 (17)
С22—С23—Н29	120.1	С27—Р3—С39	103.1 (2)
C25—C24—C23	120.2 (5)	С27—Р3—С33	103.8 (2)
С25—С24—Н54	119.9	C39—P3—C33	106.1 (2)
С23—С24—Н54	119.9	C27—P3—Cu1	119.89 (17)
C26—C25—C24	120.1 (5)	C39—P3—Cu1	112.55 (18)
С26—С25—Н70	120.0	C33—P3—Cu1	110.26 (16)
С24—С25—Н70	120.0	O2—S1—O1	114.8 (2)
C25—C26—C21	121.2 (5)	O2—S1—N1	110.3 (2)
С25—С26—Н67	119.4	01—S1—N1	112.7 (2)
С21—С26—Н67	119.4	O2—S1—C1	106.1 (2)
C28—C27—C32	118.8 (5)	01—S1—C1	106.2 (2)
C28—C27—P3	122.7 (4)	N1—S1—C1	106.1 (2)
C32—C27—P3	118.3 (4)		
C6—C1—C2—C3	-2.7 (8)	Cu1—O3—P1—N1	-27.4 (3)
S1—C1—C2—C3	177.4 (4)	C8—O5—P1—O3	175.3 (3)
C1—C2—C3—C4	1.8 (8)	C8—O5—P1—O4	58.6 (4)
C2—C3—C4—C5	0.0 (8)	C8—O5—P1—N1	-53.0 (4)
C3—C4—C5—C6	-0.8 (9)	C7—O4—P1—O3	49.6 (4)
C2-C1-C6-C5	1.9 (8)	C7—O4—P1—O5	163.5 (4)
S1—C1—C6—C5	-178.2 (4)	C7—O4—P1—N1	-80.3 (4)
C4—C5—C6—C1	-0.1 (8)	S1—N1—P1—O3	49.7 (4)
C14—C9—C10—C11	0.5 (7)	S1—N1—P1—O5	-76.2 (3)
P2C9C10C11	-178.8 (4)	S1—N1—P1—O4	175.1 (3)
C9—C10—C11—C12	-1.2 (8)	C22—C21—P2—C15	1.3 (5)
C10-C11-C12-C13	0.1 (8)	C26—C21—P2—C15	179.7 (4)

C11—C12—C13—C14	1.5 (8)	C22—C21—P2—C9	-107.1 (4)
C12—C13—C14—C9	-2.2 (8)	C26—C21—P2—C9	71.4 (4)
C10-C9-C14-C13	1.2 (8)	C22—C21—P2—Cu1	125.8 (4)
P2-C9-C14-C13	-179.6 (4)	C26—C21—P2—Cu1	-55.7 (4)
C20-C15-C16-C17	-0.8 (7)	C16—C15—P2—C21	-85.1 (4)
P2-C15-C16-C17	180.0 (4)	C20—C15—P2—C21	95.7 (4)
C15—C16—C17—C18	0.7 (7)	C16—C15—P2—C9	21.4 (5)
C16—C17—C18—C19	-0.7 (7)	C20—C15—P2—C9	-157.8 (4)
C17—C18—C19—C20	0.8 (8)	C16—C15—P2—Cu1	149.7 (4)
C18—C19—C20—C15	-0.9 (8)	C20—C15—P2—Cu1	-29.5 (4)
C16—C15—C20—C19	0.9 (8)	C14—C9—P2—C21	20.4 (5)
P2-C15-C20-C19	-179.9 (4)	C10—C9—P2—C21	-160.3 (4)
C26—C21—C22—C23	-1.8 (7)	C14—C9—P2—C15	-87.9 (5)
P2-C21-C22-C23	176.6 (4)	C10—C9—P2—C15	91.3 (4)
C21—C22—C23—C24	0.1 (8)	C14—C9—P2—Cu1	146.0 (4)
C22—C23—C24—C25	1.5 (8)	C10—C9—P2—Cu1	-34.8 (5)
C23—C24—C25—C26	-1.4 (8)	C28—C27—P3—C39	20.0 (5)
C24—C25—C26—C21	-0.3 (8)	C32—C27—P3—C39	-155.7 (4)
C22—C21—C26—C25	1.9 (7)	C28—C27—P3—C33	-90.5 (5)
P2-C21-C26-C25	-176.6 (4)	C32—C27—P3—C33	93.8 (4)
C32—C27—C28—C29	-1.4 (8)	C28—C27—P3—Cu1	146.0 (4)
P3—C27—C28—C29	-177.0 (4)	C32—C27—P3—Cu1	-29.7 (5)
C27—C28—C29—C30	1.7 (8)	C44—C39—P3—C27	80.6 (4)
C28—C29—C30—C31	-1.8 (8)	C40—C39—P3—C27	-100.9(5)
C29—C30—C31—C32	1.6 (8)	C44—C39—P3—C33	-170.6 (4)
C30—C31—C32—C27	-1.2 (8)	C40—C39—P3—C33	7.9 (5)
C28—C27—C32—C31	1.1 (8)	C44—C39—P3—Cu1	-50.0 (4)
P3—C27—C32—C31	176.9 (4)	C40—C39—P3—Cu1	128.5 (4)
C38—C33—C34—C35	1.3 (7)	C38—C33—P3—C27	-17.6 (5)
P3—C33—C34—C35	173.5 (4)	C34—C33—P3—C27	170.6 (4)
C33—C34—C35—C36	-2.5 (7)	C38—C33—P3—C39	-125.8 (4)
C34—C35—C36—C37	2.2 (8)	C34—C33—P3—C39	62.4 (4)
C35—C36—C37—C38	-0.8 (8)	C38—C33—P3—Cu1	112.0 (4)
C36—C37—C38—C33	-0.3 (8)	C34—C33—P3—Cu1	-59.7 (4)
C34—C33—C38—C37	0.1 (7)	Cu1—O1—S1—O2	115.2 (3)
P3—C33—C38—C37	-171.7 (4)	Cu1—O1—S1—N1	-12.2 (3)
C44—C39—C40—C41	0.4 (7)	Cu1—O1—S1—C1	-127.9 (3)
P3—C39—C40—C41	-178.1 (4)	P1—N1—S1—O2	-157.4 (3)
C39—C40—C41—C42	-1.1 (8)	P1—N1—S1—O1	-27.6 (4)
C40—C41—C42—C43	1.0 (8)	P1—N1—S1—C1	88.2 (3)
C41—C42—C43—C44	-0.2 (8)	C6—C1—S1—O2	-18.7 (5)
C42—C43—C44—C39	-0.5 (8)	C2—C1—S1—O2	161.2 (4)
C40—C39—C44—C43	0.4 (8)	C6-C1-S1-O1	-141.2 (4)
P3—C39—C44—C43	179.0 (4)	C2-C1-S1-O1	38.7 (5)
Cu1—O3—P1—O5	100.4 (2)	C6-C1-S1-N1	98.7 (4)
Cu1—O3—P1—O4	-150.0 (2)	C2-C1-S1-N1	-81.5 (5)