

Acta Crystallographica Section E Structure Reports Online

# ISSN 1600-5368

# **Buprenorphine**

# Jaroslaw Mazurek,<sup>a</sup>\* Marcel Hoffmann,<sup>a</sup> Anna Fernandez Casares,<sup>a</sup> Phillip D. Cox<sup>b</sup> and Mathew D. Minardi<sup>c</sup>

<sup>a</sup>Crystallics B.V., Meibergdreef 31, 1105 AZ Amsterdam, The Netherlands, <sup>b</sup>Noramco Inc., 503 Carr Rd, Suite 200, Wilmington, DE 19809, USA, and <sup>c</sup>Noramco Inc., 1440 Olympic Drive, Athens, GA 30601, USA Correspondence e-mail: jaroslaw.mazurek@crystallics.com

Received 25 March 2014; accepted 29 April 2014

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.052; wR factor = 0.146; data-to-parameter ratio = 13.9.

In the crystal structure of a semi-synthetic opioid drug buprenorphine,  $C_{29}H_{41}NO_4$  {systematic name: (2S)-2-[(5R,6R,7R,14S)-9 $\alpha$ -cyclopropylmethyl-3-hydroxy-6-methoxy-4,5-epoxy-6,14-ethanomorphinan-7-yl]-3,3-dimethylbutan-2ol}, the cyclopropylmethyl group is disordered over two sites with an occupancy factor of 0.611 (3) for the major component. One of the hydroxy groups is involved in intramolecular O-H···O hydrogen bond. The other hydroxy group acts as a proton donor in an intermolecular O-H···O interaction that connects molecules into a zigzag chain along the *b* axis.

#### **Related literature**

For the crystal structure of buprenorphine hydrochloride, see: Flippen-Anderson *et al.* (1994); Kratochvil *et al.* (1994). For pharmacological information on buprenorphine, see: Weinberg *et al.* (1988); Huang *et al.* (2001). For the Kitaigorodskii packing coefficient, see: Kitajgorodskij (1973).



#### Experimental

*Crystal data* C<sub>29</sub>H<sub>41</sub>NO<sub>4</sub>

 $M_r = 467.63$ 

Z = 2

Mo  $K\alpha$  radiation

 $0.45 \times 0.45 \times 0.25 \text{ mm}$ 

 $\mu = 0.08 \text{ mm}^{-1}$ 

T = 296 K

Monoclinic,  $P2_1$  a = 9.8154 (6) Å b = 10.4283 (9) Å c = 13.4508 (9) Å  $\beta = 108.796$  (5)° V = 1303.37 (16) Å<sup>3</sup>

#### Data collection

Bruker KappaCCD diffractometer 14483 measured reflections 4886 independent reflections

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$   $wR(F^2) = 0.146$  S = 1.044886 reflections 352 parameters 112 restraints 4312 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.026$ 

H atoms treated by a mixture of independent and constrained refinement 
$$\begin{split} &\Delta\rho_{max}=0.32 \text{ e } \text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.31 \text{ e } \text{\AA}^{-3} \end{split}$$

#### Table 1

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$  D-H  $H\cdots A$   $D\cdots A$   $D-H\cdots A$ 
 $O1-H1A\cdots O11^i$  0.88 (4)
 1.93 (4)
 2.798 (3)
 166 (3)

  $O1-H1A\cdots O7$  0.92 (3)
 1.81 (3)
 2.574 (2)
 139 (3)

Symmetry code: (i)  $-x + 1, y + \frac{1}{2}, -z$ .

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004).

Supporting information for this paper is available from the IUCr electronic archives (Reference: GK2610).

#### References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Flippen-Anderson, J. L., George, C., Bertha, C. M. & Rice, K. C. (1994). *Heterocycles*, 39, 751–766.
- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Huang, P., Kehner, G. B., Cowan, A. & Liu-Chen, L. Y. (2001). J. Pharmacol. Exp. Ther. 297, 688–695.
- Kitajgorodskij, A. I. (1973). In Molecular Crystals and Molecules. New York: Academic Press.
- Kratochvil, B., Husak, M., Bulej, P. & Jegorov, A. (1994). Collect. Czech. Chem. Commun. 59, 2472–2480.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Weinberg, D. S., Inturrisi, C. E., Reidenberg, B., Moulin, D. E., Nip, T. J., Wallenstein, S., Houde, R. W. & Foley, K. M. (1988). *Clin. Pharmacol. Ther.* 44, 335–342.

# supporting information

Acta Cryst. (2014). E70, o635 [doi:10.1107/S1600536814009672]

# **Buprenorphine**

# Jaroslaw Mazurek, Marcel Hoffmann, Anna Fernandez Casares, Phillip D. Cox and Mathew D. Minardi

# S1. Comment

Buprenorphine is a semisynthetic opioid (Weinberg *et al.*, 1988) that is used as a pain killer. The molecule has clearly defined hydrophilic and hydrophobic parts. In the latter part, static disorder for cyclopropylmethyl group is observed with the occupation of 0.612 (8) and 0.388 (8) for the two disordered sites. The minor component of the disordered part adopts a conformation that is similar to the one observed for buprenorphine hydrochloride salt (Flippen-Anderson *et al.*, 1994; Kratochvil *et al.*, 1994). In the major component the C29-N24-C25-C26 torsion angle equals to -155.4 (4)° whereas in the minor component the corresponding C29-N24-C25A-C26A angle is -72.2 (7)°. This disorder may result from a relatively loose packing of the crystal (Kitaigorodskii packing cooeficient of 0.65 (Kitajgorodskij, 1973)) that allows for some flexibility in the hydrophobic parts of the molecule.

# S2. Experimental

Suspension of 29.6 mg of buprenorphine in 200 ml of ethyl acetate was stirred at 25 °C for 14 days. After that time the liquid was separated from the solid and left for evaporation at room temperature. After several days colorless crystals (m.p. 492.5 K) appeared that were used for diffraction studies.

# S3. Refinement

All C-bound H-atoms were included in the geometrically determined positions with  $U_{iso}=1.2 U_{eq}(C)$ . H atoms from the OH groups were located on a Fourier difference map and refined isotropically. In the absence of significant anomalous scattering effects, Friedel pairs were merged. The absolute configuration is known from the synthetic route. The cyclo-propylmethyl group is disordered over two positions. To properly model the disordered fragment restrains were imposed on some bond lengths and anisotropic thermal parameters [DFIX, SADI and SIMU commands in SHELXL-97 (Sheldrick, 2008)].



# Figure 1

Molecular structure and atom numbering scheme for buprenorphine. Displacement ellipsoids are shown at the 50% probability level. The minor position of the disordered part has been omitted for clarity.



# Figure 2

Crystal packing diagram - view along the a axis. Hydrogen bonds are shown as blue lines.

# (2*S*)-2-[(5*R*,6*R*,7*R*,14*S*)-9α-Cyclopropylmethyl-3-hydroxy-6-methoxy-4,5-epoxy-6,14-ethanomorphinan-7yl]-3,3-dimethylbutan-2-ol

F(000) = 508

 $\theta = 1.0-32.6^{\circ}$ 

 $\mu = 0.08 \text{ mm}^{-1}$ 

Block, colourless

 $0.45 \times 0.45 \times 0.25$  mm

T = 296 K

 $D_{\rm x} = 1.192 {\rm Mg m^{-3}}$ 

Melting point: 492.15 K Mo  $K\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 6648 reflections

### Crystal data

C<sub>29</sub>H<sub>41</sub>NO<sub>4</sub>  $M_r = 467.63$ Monoclinic, P2<sub>1</sub> Hall symbol: P 2yb a = 9.8154 (6) Å b = 10.4283 (9) Å c = 13.4508 (9) Å  $\beta = 108.796$  (5)° V = 1303.37 (16) Å<sup>3</sup> Z = 2

#### Data collection

| Bruker KappaCCD                                | 4886 independent reflections                                    |
|------------------------------------------------|-----------------------------------------------------------------|
| diffractometer                                 | 4312 reflections with $I > 2\sigma(I)$                          |
| Radiation source: fine-focus sealed tube       | $R_{\rm int} = 0.026$                                           |
| Horizonally mounted graphite crystal           | $\theta_{\rm max} = 32.6^\circ, \ \theta_{\rm min} = 3.8^\circ$ |
| monochromator                                  | $h = -14 \rightarrow 14$                                        |
| Detector resolution: 9 pixels mm <sup>-1</sup> | $k = -15 \rightarrow 15$                                        |
| CCD scans                                      | $l = -20 \rightarrow 20$                                        |
| 14483 measured reflections                     |                                                                 |

#### Refinement

Refinement on  $F^2$ Secondary atom site location: difference Fourier Least-squares matrix: full map  $R[F^2 > 2\sigma(F^2)] = 0.052$ Hydrogen site location: inferred from  $wR(F^2) = 0.146$ neighbouring sites S = 1.04H atoms treated by a mixture of independent 4886 reflections and constrained refinement 352 parameters  $w = 1/[\sigma^2(F_0^2) + (0.0762P)^2 + 0.1599P]$ where  $P = (F_0^2 + 2F_c^2)/3$ 112 restraints Primary atom site location: structure-invariant  $(\Delta/\sigma)_{\rm max} = 0.007$  $\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$ direct methods  $\Delta \rho_{\rm min} = -0.31 \ {\rm e} \ {\rm \AA}^{-3}$ 

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x                          | v                          | Z                          | $U_{\rm iso}^*/U_{\rm eq}$ | Occ. (<1) |
|------|----------------------------|----------------------------|----------------------------|----------------------------|-----------|
| 01   | 0 79854 (19)               | 0 6680 (2)                 | 0 14153 (17)               | 0.0696 (5)                 |           |
| HIA  | 0 754 (4)                  | 0.6000(2)                  | 0.086(3)                   | 0.0090(9)                  |           |
| C2   | 0.731(1)<br>0.7100(2)      | 0.629(1)                   | 0.000(3)                   | 0.0492(4)                  |           |
| C3   | 0.59432(19)                | 0.0375(2)                  | 0.18247(14)                | 0.0408(3)                  |           |
| 04   | 0.55939(15)                | 0.48055 (14)               | 0.10217(11)<br>0.10755(10) | 0.0442(3)                  |           |
| C5   | 0.33939(13)<br>0.44475(17) | 0.10055(11)<br>0.40252(17) | 0.12545 (12)               | 0.0112(3)<br>0.0352(3)     |           |
| Н5А  | 0.3618                     | 0.4015                     | 0.0609                     | 0.042*                     |           |
| C6   | 0.48701 (18)               | 0.26326 (17)               | 0.15977 (13)               | 0.012<br>0.0378 (3)        |           |
| 07   | 0.51953 (16)               | 0.20320(17)<br>0.19164(15) | 0.13977(13)<br>0.07950(13) | 0.0570(3)                  |           |
| C8   | 0.6421(3)                  | 0.19101(10)<br>0.2234(3)   | 0.0510(3)                  | 0.0520(1)<br>0.0751(9)     |           |
| H8A  | 0.6489                     | 0.1664                     | -0.0032                    | 0.113*                     |           |
| H8B  | 0 7270                     | 0.2153                     | 0.1112                     | 0.113*                     |           |
| HSC  | 0.6338                     | 0.3101                     | 0.0258                     | 0.113*                     |           |
|      | 0.34273(18)                | 0.20874 (16)               | 0.17199 (13)               | 0.0355(3)                  |           |
| НОА  | 0.2657                     | 0.2508                     | 0.1163                     | 0.043*                     |           |
| C10  | 0.2037<br>0.3121 (2)       | 0.06174 (16)               | 0.15353 (14)               | 0.043                      |           |
| 011  | 0.30844(16)                | 0.03344(14)                | 0.13333(11)<br>0.04772(11) | 0.0463(3)                  |           |
| H11A | 0.30011(10)<br>0.401(3)    | 0.05311(11)<br>0.054(3)    | 0.050(2)                   | 0.0103(3)                  |           |
| C12  | 0.4294(3)                  | -0.0206(2)                 | 0.030(2)<br>0.2276(2)      | 0.0634 (6)                 |           |
| H12A | 0.5217                     | 0.0071                     | 0.2256                     | 0.095*                     |           |
| H12B | 0.4145                     | -0.1087                    | 0.2060                     | 0.095*                     |           |
| H12C | 0 4259                     | -0.0123                    | 0.2978                     | 0.095*                     |           |
| C13  | 0.1567 (3)                 | 0.0210(2)                  | 0.15323 (18)               | 0.0512 (4)                 |           |
| C14  | 0.0423 (3)                 | 0.1179 (3)                 | 0.0930 (3)                 | 0.0660(7)                  |           |
| H14A | -0.0506                    | 0.0906                     | 0.0941                     | 0.099*                     |           |
| H14B | 0.0418                     | 0.1233                     | 0.0216                     | 0.099*                     |           |
| H14C | 0.0641                     | 0.2006                     | 0.1256                     | 0.099*                     |           |
| C15  | 0.1171 (4)                 | -0.1091(3)                 | 0.0959 (3)                 | 0.0722 (7)                 |           |
| H15A | 0.0227                     | -0.1344                    | 0.0951                     | 0.108*                     |           |
| H15B | 0.1858                     | -0.1729                    | 0.1319                     | 0.108*                     |           |
| H15C | 0.1181                     | -0.1006                    | 0.0251                     | 0.108*                     |           |
| C16  | 0.1457 (4)                 | 0.0033 (3)                 | 0.2641 (2)                 | 0.0775 (9)                 |           |
| H16A | 0.0492                     | -0.0211                    | 0.2587                     | 0.116*                     |           |
| H16B | 0.1696                     | 0.0825                     | 0.3023                     | 0.116*                     |           |
| H16C | 0.2114                     | -0.0624                    | 0.3005                     | 0.116*                     |           |
| C17  | 0.3285 (3)                 | 0.26244 (19)               | 0.27611 (15)               | 0.0467 (4)                 |           |
| H17A | 0.2287                     | 0.2835                     | 0.2661                     | 0.056*                     |           |
| H17B | 0.3588                     | 0.1978                     | 0.3307                     | 0.056*                     |           |
| C18  | 0.4216 (2)                 | 0.38261 (19)               | 0.30967 (13)               | 0.0449 (4)                 |           |
| C19  | 0.5770 (3)                 | 0.3344 (2)                 | 0.35075 (16)               | 0.0557 (5)                 |           |
| H19A | 0.5886                     | 0.2774                     | 0.4099                     | 0.067*                     |           |
| H19B | 0.6420                     | 0.4063                     | 0.3745                     | 0.067*                     |           |
| C20  | 0.6138 (2)                 | 0.2624 (2)                 | 0.26239 (17)               | 0.0531 (5)                 |           |
| H20A | 0.6965                     | 0.3024                     | 0.2507                     | 0.064*                     |           |
| H20B | 0.6392                     | 0.1744                     | 0.2840                     | 0.064*                     |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| C21  | 0.40045 (19) | 0.46967 (16) | 0.21299 (12) | 0.0366 (3)  |           |
|------|--------------|--------------|--------------|-------------|-----------|
| C22  | 0.2464 (2)   | 0.5222 (2)   | 0.17321 (18) | 0.0498 (4)  |           |
| H22A | 0.2390       | 0.5842       | 0.1180       | 0.060*      |           |
| H22B | 0.1805       | 0.4524       | 0.1433       | 0.060*      |           |
| C23  | 0.2020 (3)   | 0.5858 (3)   | 0.2599 (3)   | 0.0722 (8)  |           |
| H23A | 0.2542       | 0.6656       | 0.2803       | 0.087*      |           |
| H23B | 0.1000       | 0.6053       | 0.2342       | 0.087*      |           |
| N24  | 0.2327 (3)   | 0.5006 (2)   | 0.3518 (2)   | 0.0752 (7)  |           |
| C25  | 0.1960 (6)   | 0.5433 (5)   | 0.4459 (4)   | 0.0546 (11) | 0.612 (8) |
| H25A | 0.2198       | 0.6332       | 0.4601       | 0.065*      | 0.612 (8) |
| H25B | 0.2495       | 0.4937       | 0.5070       | 0.065*      | 0.612 (8) |
| C25A | 0.1310 (9)   | 0.5706 (7)   | 0.3988 (7)   | 0.0579 (17) | 0.388 (8) |
| H25C | 0.1742       | 0.6493       | 0.4331       | 0.069*      | 0.388 (8) |
| H25D | 0.0407       | 0.5908       | 0.3450       | 0.069*      | 0.388 (8) |
| C26  | 0.0370 (5)   | 0.5228 (7)   | 0.4219 (4)   | 0.0817 (19) | 0.612 (8) |
| H26  | -0.0280      | 0.5633       | 0.3586       | 0.098*      | 0.612 (8) |
| C27  | -0.0006 (12) | 0.3835 (9)   | 0.4492 (6)   | 0.101 (3)   | 0.612 (8) |
| H27A | -0.0864      | 0.3432       | 0.4024       | 0.122*      | 0.612 (8) |
| H27B | 0.0784       | 0.3255       | 0.4820       | 0.122*      | 0.612 (8) |
| C28  | -0.0193 (12) | 0.4978 (15)  | 0.5104 (10)  | 0.111 (4)   | 0.612 (8) |
| H28A | -0.1169      | 0.5251       | 0.5018       | 0.133*      | 0.612 (8) |
| H28B | 0.0473       | 0.5075       | 0.5811       | 0.133*      | 0.612 (8) |
| C26A | 0.1090 (8)   | 0.4783 (8)   | 0.4756 (5)   | 0.068 (2)   | 0.388 (8) |
| H26A | 0.1901       | 0.4331       | 0.5253       | 0.082*      | 0.388 (8) |
| C27A | -0.0235 (18) | 0.407 (2)    | 0.4081 (16)  | 0.143 (6)   | 0.388 (8) |
| H27C | -0.0687      | 0.4359       | 0.3366       | 0.171*      | 0.388 (8) |
| H27D | -0.0275      | 0.3148       | 0.4182       | 0.171*      | 0.388 (8) |
| C28A | -0.031 (2)   | 0.492 (3)    | 0.495 (2)    | 0.129 (7)   | 0.388 (8) |
| H28C | -0.0410      | 0.4516       | 0.5570       | 0.155*      | 0.388 (8) |
| H28D | -0.0822      | 0.5725       | 0.4755       | 0.155*      | 0.388 (8) |
| C29  | 0.3847 (3)   | 0.4674 (2)   | 0.39174 (18) | 0.0652 (7)  |           |
| H29A | 0.3989       | 0.4147       | 0.4546       | 0.078*      |           |
| C30  | 0.4872 (4)   | 0.5871 (3)   | 0.4255 (2)   | 0.0727 (8)  |           |
| H30A | 0.4337       | 0.6566       | 0.4434       | 0.087*      |           |
| H30B | 0.5656       | 0.5651       | 0.4884       | 0.087*      |           |
| C31  | 0.5502 (3)   | 0.6346 (2)   | 0.34350 (17) | 0.0512 (4)  |           |
| C32  | 0.51126 (19) | 0.57300 (18) | 0.24722 (14) | 0.0407 (3)  |           |
| C33  | 0.6662 (3)   | 0.7197 (2)   | 0.36339 (19) | 0.0595 (5)  |           |
| H33A | 0.6944       | 0.7668       | 0.4254       | 0.071*      |           |
| C34  | 0.7396 (2)   | 0.7347 (2)   | 0.2915 (2)   | 0.0567 (5)  |           |
| H34A | 0.8112       | 0.7968       | 0.3042       | 0.068*      |           |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$   | $U^{22}$    | U <sup>33</sup> | $U^{12}$    | $U^{13}$   | $U^{23}$     |
|----|------------|-------------|-----------------|-------------|------------|--------------|
| 01 | 0.0602 (9) | 0.0785 (13) | 0.0795 (12)     | -0.0284 (9) | 0.0357 (9) | -0.0159 (10) |
| C2 | 0.0464 (9) | 0.0461 (10) | 0.0558 (10)     | -0.0073 (8) | 0.0174 (8) | -0.0025 (8)  |
| C3 | 0.0458 (8) | 0.0371 (8)  | 0.0408 (7)      | -0.0032 (7) | 0.0158 (6) | -0.0005 (6)  |

| 04   | 0.0529 (7)  | 0.0451 (7)  | 0.0428 (6)  | -0.0126 (6)  | 0.0267 (5)  | -0.0058 (5)  |
|------|-------------|-------------|-------------|--------------|-------------|--------------|
| C5   | 0.0413 (7)  | 0.0379 (7)  | 0.0308 (6)  | -0.0052 (6)  | 0.0177 (5)  | -0.0017 (6)  |
| C6   | 0.0422 (7)  | 0.0368 (7)  | 0.0390 (7)  | -0.0003 (6)  | 0.0197 (6)  | -0.0058 (6)  |
| 07   | 0.0526 (7)  | 0.0521 (8)  | 0.0643 (8)  | -0.0096 (6)  | 0.0368 (6)  | -0.0220 (7)  |
| C8   | 0.0686 (13) | 0.0789 (17) | 0.103 (2)   | -0.0219 (14) | 0.0626 (14) | -0.0399 (16) |
| C9   | 0.0454 (8)  | 0.0309 (6)  | 0.0366 (7)  | 0.0013 (6)   | 0.0219 (6)  | -0.0002 (6)  |
| C10  | 0.0550 (9)  | 0.0303 (7)  | 0.0450 (8)  | 0.0014 (6)   | 0.0264 (7)  | 0.0003 (6)   |
| 011  | 0.0568 (7)  | 0.0429 (7)  | 0.0489 (6)  | -0.0055 (6)  | 0.0304 (6)  | -0.0113 (5)  |
| C12  | 0.0773 (15) | 0.0390 (10) | 0.0713 (14) | 0.0109 (10)  | 0.0204 (12) | 0.0095 (10)  |
| C13  | 0.0661 (11) | 0.0370 (8)  | 0.0646 (11) | -0.0087 (8)  | 0.0406 (10) | -0.0049 (8)  |
| C14  | 0.0492 (11) | 0.0595 (14) | 0.0966 (18) | -0.0044 (10) | 0.0339 (12) | -0.0078 (13) |
| C15  | 0.0888 (18) | 0.0478 (12) | 0.097 (2)   | -0.0240 (12) | 0.0537 (16) | -0.0190 (13) |
| C16  | 0.117 (2)   | 0.0613 (15) | 0.0815 (16) | -0.0256 (16) | 0.0692 (17) | -0.0056 (13) |
| C17  | 0.0724 (12) | 0.0366 (8)  | 0.0426 (8)  | -0.0043 (8)  | 0.0348 (8)  | -0.0019 (7)  |
| C18  | 0.0703 (11) | 0.0386 (8)  | 0.0337 (7)  | -0.0049 (8)  | 0.0277 (7)  | -0.0026 (6)  |
| C19  | 0.0773 (14) | 0.0489 (10) | 0.0340 (8)  | 0.0003 (10)  | 0.0082 (9)  | 0.0052 (8)   |
| C20  | 0.0517 (10) | 0.0477 (10) | 0.0543 (10) | 0.0058 (8)   | 0.0093 (8)  | -0.0023 (9)  |
| C21  | 0.0461 (8)  | 0.0340 (7)  | 0.0359 (7)  | -0.0009 (6)  | 0.0216 (6)  | -0.0008 (6)  |
| C22  | 0.0485 (9)  | 0.0411 (9)  | 0.0671 (12) | 0.0013 (8)   | 0.0289 (9)  | 0.0010 (8)   |
| C23  | 0.0728 (14) | 0.0496 (12) | 0.117 (2)   | -0.0031 (11) | 0.0626 (15) | -0.0192 (14) |
| N24  | 0.1076 (17) | 0.0555 (11) | 0.0982 (16) | -0.0207 (12) | 0.0827 (15) | -0.0271 (11) |
| C25  | 0.072 (3)   | 0.0528 (19) | 0.052 (2)   | 0.0074 (19)  | 0.038 (2)   | -0.0066 (17) |
| C25A | 0.068 (4)   | 0.056 (3)   | 0.060 (4)   | 0.022 (3)    | 0.034 (3)   | 0.003 (3)    |
| C26  | 0.065 (3)   | 0.127 (5)   | 0.064 (2)   | 0.040 (3)    | 0.035 (2)   | 0.012 (3)    |
| C27  | 0.074 (4)   | 0.132 (7)   | 0.089 (5)   | -0.023 (4)   | 0.014 (3)   | 0.043 (5)    |
| C28  | 0.094 (5)   | 0.174 (9)   | 0.095 (5)   | 0.058 (6)    | 0.074 (5)   | 0.054 (5)    |
| C26A | 0.074 (4)   | 0.085 (5)   | 0.063 (4)   | 0.029 (4)    | 0.047 (3)   | 0.020 (4)    |
| C27A | 0.082 (8)   | 0.177 (14)  | 0.174 (14)  | -0.044 (9)   | 0.048 (10)  | -0.034 (12)  |
| C28A | 0.099 (10)  | 0.180 (15)  | 0.119 (12)  | 0.023 (11)   | 0.051 (8)   | 0.036 (12)   |
| C29  | 0.114 (2)   | 0.0501 (12) | 0.0533 (10) | -0.0199 (13) | 0.0572 (13) | -0.0161 (10) |
| C30  | 0.115 (2)   | 0.0607 (14) | 0.0589 (12) | -0.0255 (15) | 0.0515 (13) | -0.0260 (12) |
| C31  | 0.0679 (12) | 0.0413 (9)  | 0.0486 (10) | -0.0064 (9)  | 0.0245 (9)  | -0.0119 (8)  |
| C32  | 0.0480 (8)  | 0.0356 (8)  | 0.0402 (7)  | -0.0018 (7)  | 0.0166 (6)  | -0.0023 (6)  |
| C33  | 0.0744 (14) | 0.0455 (10) | 0.0571 (11) | -0.0099 (10) | 0.0190 (10) | -0.0178 (9)  |
| C34  | 0.0542 (10) | 0.0452 (10) | 0.0675 (13) | -0.0122 (9)  | 0.0154 (9)  | -0.0108 (10) |
|      |             |             |             |              |             |              |

Geometric parameters (Å, °)

| 01—C2  | 1.358 (3) | C17—H17B | 0.9700    |
|--------|-----------|----------|-----------|
| O1—H1A | 0.88 (4)  | C18—C19  | 1.530 (3) |
| С2—С3  | 1.393 (3) | C18—C21  | 1.544 (2) |
| C2—C34 | 1.397 (3) | C18—C29  | 1.545 (3) |
| C3—C32 | 1.372 (2) | C19—C20  | 1.544 (3) |
| C3—O4  | 1.377 (2) | C19—H19A | 0.9700    |
| O4—C5  | 1.470 (2) | C19—H19B | 0.9700    |
| С5—С6  | 1.540 (2) | C20—H20A | 0.9700    |
| C5—C21 | 1.548 (2) | C20—H20B | 0.9700    |
| С5—Н5А | 0.9800    | C21—C32  | 1.494 (2) |
|        |           |          |           |

| С6—О7                    | 1.431 (2)         | C21—C22                             | 1.533 (3)            |
|--------------------------|-------------------|-------------------------------------|----------------------|
| C6—C20                   | 1.532 (3)         | C22—C23                             | 1.522 (3)            |
| С6—С9                    | 1.583 (2)         | C22—H22A                            | 0.9700               |
| O7—C8                    | 1.415 (3)         | C22—H22B                            | 0.9700               |
| C8—H8A                   | 0.9600            | C23—N24                             | 1.472 (4)            |
| C8—H8B                   | 0.9600            | С23—Н23А                            | 0.9700               |
| C8—H8C                   | 0.9600            | C23—H23B                            | 0 9700               |
| C9-C17                   | 1 556 (2)         | N24-C29                             | 1 456 (4)            |
| $C_{9}$ $C_{10}$         | 1.557 (2)         | N24_C25                             | 1.492 (4)            |
|                          | 0.9800            | $C_{25}$                            | 1.492(4)<br>1 504(7) |
|                          | 1.443(2)          | C25 H25A                            | 0.0700               |
| $C_{10}$ $C_{12}$        | 1.443(2)          | C25_H25R                            | 0.9700               |
| C10 - C12                | 1.522(3)          | C25—H25B                            | 0.9700               |
|                          | 1.582(3)          | $C_{20} = C_{28}$                   | 1.487 (9)            |
| CI2_HIA                  | 0.92 (3)          | $C_{20}$                            | 1.572 (9)            |
| CI2—HI2A                 | 0.9600            | C26—H26                             | 0.9800               |
| С12—Н12В                 | 0.9600            | C27—C28                             | 1.493 (10)           |
| C12—H12C                 | 0.9600            | С27—Н27А                            | 0.9700               |
| C13—C14                  | 1.534 (4)         | С27—Н27В                            | 0.9700               |
| C13—C16                  | 1.541 (3)         | C28—H28A                            | 0.9700               |
| C13—C15                  | 1.546 (3)         | C28—H28B                            | 0.9700               |
| C14—H14A                 | 0.9600            | C29—C30                             | 1.576 (4)            |
| C14—H14B                 | 0.9600            | C29—H29A                            | 0.9800               |
| C14—H14C                 | 0.9600            | C30—C31                             | 1.511 (3)            |
| C15—H15A                 | 0.9600            | C30—H30A                            | 0.9700               |
| C15—H15B                 | 0.9600            | C30—H30B                            | 0.9700               |
| C15—H15C                 | 0.9600            | C31—C32                             | 1.384 (3)            |
| C16—H16A                 | 0.9600            | C31—C33                             | 1.400 (3)            |
| C16—H16B                 | 0.9600            | C33—C34                             | 1.388 (4)            |
| C16—H16C                 | 0.9600            | С33—Н33А                            | 0.9300               |
| C17—C18                  | 1 531 (3)         | C34—H34A                            | 0.9300               |
| C17—H17A                 | 0.9700            |                                     | 0.7200               |
|                          | 0.9700            |                                     |                      |
| C2 O1 H1A                | 103 (2)           | C18 C10 H10A                        | 100.8                |
| $C_2 = C_1 = C_1^2$      | 105(2)<br>1250(2) | $C_{10} = C_{10} = H_{10A}$         | 109.8                |
| 01 - 02 - 03             | 123.0(2)          | $C_{20}$ $C_{19}$ $H_{10}$ $H_{10}$ | 109.8                |
| 01 - 02 - 034            | 119.08 (19)       | С10—С19—П19В                        | 109.8                |
| $C_{3} = C_{2} = C_{34}$ | 115.//(19)        | C20—C19—H19B                        | 109.8                |
| $C_{32} = C_{3} = C_{4}$ | 113.03 (15)       | HI9A—CI9—HI9B                       | 108.2                |
| $C_{32} = C_{3} = C_{2}$ | 121.17 (17)       | C6-C20-C19                          | 111.52 (17)          |
| 04-C3-C2                 | 125.50 (17)       | С6—С20—Н20А                         | 109.3                |
| C3—O4—C5                 | 107.60 (12)       | С19—С20—Н20А                        | 109.3                |
| O4—C5—C6                 | 115.14 (14)       | C6—C20—H20B                         | 109.3                |
| O4—C5—C21                | 106.95 (13)       | С19—С20—Н20В                        | 109.3                |
| C6—C5—C21                | 108.25 (12)       | H20A—C20—H20B                       | 108.0                |
| O4—C5—H5A                | 108.8             | C32—C21—C22                         | 112.84 (15)          |
| C6—C5—H5A                | 108.8             | C32—C21—C18                         | 106.10 (14)          |
| С21—С5—Н5А               | 108.8             | C22—C21—C18                         | 110.72 (15)          |
| O7—C6—C20                | 111.26 (15)       | C32—C21—C5                          | 101.87 (13)          |
| O7—C6—C5                 | 111.72 (14)       | C22—C21—C5                          | 112.53 (15)          |

| C20—C6—C5     | 109.76 (15) | C18—C21—C5    | 112.33 (14) |
|---------------|-------------|---------------|-------------|
| O7—C6—C9      | 108.39 (13) | C23—C22—C21   | 112.4 (2)   |
| C20—C6—C9     | 113.49 (15) | C23—C22—H22A  | 109.1       |
| C5—C6—C9      | 101.90 (13) | C21—C22—H22A  | 109.1       |
| C8—O7—C6      | 119.87 (16) | C23—C22—H22B  | 109.1       |
| O7—C8—H8A     | 109.5       | C21—C22—H22B  | 109.1       |
| O7—C8—H8B     | 109.5       | H22A—C22—H22B | 107.8       |
| H8A—C8—H8B    | 109.5       | N24—C23—C22   | 110.4 (2)   |
| O7—C8—H8C     | 109.5       | N24—C23—H23A  | 109.6       |
| H8A—C8—H8C    | 109.5       | C22—C23—H23A  | 109.6       |
| H8B—C8—H8C    | 109.5       | N24—C23—H23B  | 109.6       |
| C17—C9—C10    | 115.25 (14) | С22—С23—Н23В  | 109.6       |
| C17—C9—C6     | 107.89 (14) | H23A—C23—H23B | 108.1       |
| C10—C9—C6     | 117.87 (13) | C29—N24—C23   | 111.19 (18) |
| С17—С9—Н9А    | 104.8       | C29—N24—C25   | 104.9 (3)   |
| С10—С9—Н9А    | 104.8       | C23—N24—C25   | 119.5 (3)   |
| С6—С9—Н9А     | 104.8       | C29—N24—C25A  | 133.6 (4)   |
| O11—C10—C12   | 107.66 (16) | C23—N24—C25A  | 94.3 (4)    |
| O11—C10—C9    | 107.40 (14) | N24—C25—C26   | 107.0 (4)   |
| C12—C10—C9    | 112.49 (17) | N24—C25—H25A  | 110.3       |
| O11—C10—C13   | 103.00 (16) | C26—C25—H25A  | 110.3       |
| C12—C10—C13   | 112.04 (18) | N24—C25—H25B  | 110.3       |
| C9—C10—C13    | 113.52 (14) | C26—C25—H25B  | 110.3       |
| C10-011-H11A  | 101.6 (16)  | H25A—C25—H25B | 108.6       |
| C10-C12-H12A  | 109.5       | C28—C26—C25   | 118.7 (7)   |
| C10-C12-H12B  | 109.5       | C28—C26—C27   | 58.4 (5)    |
| H12A—C12—H12B | 109.5       | C25—C26—C27   | 112.8 (6)   |
| C10-C12-H12C  | 109.5       | C28—C26—H26   | 117.7       |
| H12A—C12—H12C | 109.5       | С25—С26—Н26   | 117.7       |
| H12B—C12—H12C | 109.5       | С27—С26—Н26   | 117.7       |
| C14—C13—C16   | 108.8 (2)   | C28—C27—C26   | 58.0 (5)    |
| C14—C13—C15   | 106.9 (2)   | С28—С27—Н27А  | 118.0       |
| C16—C13—C15   | 107.1 (2)   | С26—С27—Н27А  | 118.0       |
| C14—C13—C10   | 111.42 (17) | С28—С27—Н27В  | 118.0       |
| C16—C13—C10   | 113.5 (2)   | С26—С27—Н27В  | 118.0       |
| C15—C13—C10   | 108.93 (18) | H27A—C27—H27B | 115.1       |
| C13—C14—H14A  | 109.5       | C26—C28—C27   | 63.6 (5)    |
| C13—C14—H14B  | 109.5       | C26—C28—H28A  | 117.4       |
| H14A—C14—H14B | 109.5       | C27—C28—H28A  | 117.4       |
| C13—C14—H14C  | 109.5       | C26—C28—H28B  | 117.4       |
| H14A—C14—H14C | 109.5       | C27—C28—H28B  | 117.4       |
| H14B—C14—H14C | 109.5       | H28A—C28—H28B | 114.5       |
| C13—C15—H15A  | 109.5       | N24—C29—C18   | 108.7 (2)   |
| C13—C15—H15B  | 109.5       | N24—C29—C30   | 113.6 (2)   |
| H15A—C15—H15B | 109.5       | C18—C29—C30   | 112.59 (18) |
| C13—C15—H15C  | 109.5       | N24—C29—H29A  | 107.2       |
| H15A—C15—H15C | 109.5       | C18—C29—H29A  | 107.2       |
| H15B—C15—H15C | 109.5       | C30—C29—H29A  | 107.2       |
|               |             |               |             |

| C13—C16—H16A    | 109.5       | C31—C30—C29       | 115.01 (17) |
|-----------------|-------------|-------------------|-------------|
| C13—C16—H16B    | 109.5       | C31—C30—H30A      | 108.5       |
| H16A—C16—H16B   | 109.5       | С29—С30—Н30А      | 108.5       |
| C13—C16—H16C    | 109.5       | С31—С30—Н30В      | 108.5       |
| H16A—C16—H16C   | 109.5       | С29—С30—Н30В      | 108.5       |
| H16B—C16—H16C   | 109.5       | H30A—C30—H30B     | 107.5       |
| C18—C17—C9      | 109.96 (14) | C32—C31—C33       | 115.8 (2)   |
| C18—C17—H17A    | 109.7       | C32—C31—C30       | 118.4 (2)   |
| С9—С17—Н17А     | 109.7       | C33—C31—C30       | 124.6 (2)   |
| C18—C17—H17B    | 109.7       | C3—C32—C31        | 122.89 (18) |
| С9—С17—Н17В     | 109.7       | C3—C32—C21        | 109.98 (15) |
| H17A—C17—H17B   | 108.2       | C31—C32—C21       | 125.23 (17) |
| C19—C18—C17     | 105.59 (17) | C34—C33—C31       | 120.7 (2)   |
| C19—C18—C21     | 110.22 (16) | С34—С33—Н33А      | 119.6       |
| C17—C18—C21     | 109.11 (14) | С31—С33—Н33А      | 119.6       |
| C19—C18—C29     | 111.45 (18) | C33—C34—C2        | 122.5 (2)   |
| C17—C18—C29     | 115.04 (16) | С33—С34—Н34А      | 118.8       |
| C21—C18—C29     | 105.44 (16) | C2—C34—H34A       | 118.8       |
| C18—C19—C20     | 109.58 (16) |                   |             |
| C29—N24—C25—C26 | -155.4 (4)  | C29—N24—C25A—C26A | -72.2 (7)   |
|                 |             |                   |             |

# Hydrogen-bond geometry (Å, °)

| D—H···A                   | D—H      | H···A    | D···A     | D—H···A |
|---------------------------|----------|----------|-----------|---------|
| O1—H1A···O11 <sup>i</sup> | 0.88 (4) | 1.93 (4) | 2.798 (3) | 166 (3) |
| O11—H11A····O7            | 0.92 (3) | 1.81 (3) | 2.574 (2) | 139 (3) |

Symmetry code: (i) -x+1, y+1/2, -z.