

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetrakis(2,6-dimethylpyridinium) dihydrogen decavanadate dihydrate

Erik Rakovský* and Lukáš Krivosudský

Comenius University, Faculty of Natural Sciences, Department of Inorganic Chemistry, Mlynská dolina CH2, 842 15 Bratislava, Slovak Republic Correspondence e-mail: rakovsky@fns.uniba.sk

Received 21 February 2014; accepted 14 May 2014

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.031; wR factor = 0.084; data-to-parameter ratio = 17.1.

The structure of the title compound, $(C_7H_{10}N)_4[H_2V_{10}O_{28}]$ -2H₂O, was solved from a non-merohedrally twinned crystal (ratio of twin components ~0.6:0.4). The asymmetric unit consists of one-half decavanadate anion (the other half completed by inversion symmetry), two 2,6-dimethyl-pyridinium cations and one water molecule of crystallization. In the crystal, the components are connected by strong N-H···O and O-H···O hydrogen bonds, forming a supra-molecular chain along the *b*-axis direction. There are weak C-H···O interactions between the chains.

Related literature

For our previously published research on polyoxidovanadates, see: Rakovský & Gyepes (2006); Pacigová *et al.* (2007); Klištincová *et al.* (2008, 2010); Bartošová *et al.* (2012). For more general background to their applications, see: Crans (1998); Hagrman *et al.* (2001). Other decavanadates with pyridinium derivatives as the cations have been reported by Asgedom *et al.* (1996); Arrieta *et al.* (1988); Santiago *et al.* (1988). For IR spectra interpretation, see: Ban-Oganowska *et al.* (2002); Elassal *et al.* (2011); Medhi & Mukherjee (1965). For hydrogen-bond criteria, see: Jeffrey (1997).

Experimental

Crystal data $(C_7H_{10}N)_4[H_2V_{10}O_{28}] \cdot 2H_2O$ $M_r = 1428.09$

Monoclinic, C2/ca = 24.7777 (5) Å Mo $K\alpha$ radiation $\mu = 1.98 \text{ mm}^{-1}$

 $0.41 \times 0.22 \times 0.08 \text{ mm}$

59285 measured reflections

5867 independent reflections

5086 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

constrained and restrained

T = 293 K

 $R_{\rm int} = 0.032$

refinement $\Delta \rho_{\rm max} = 0.77 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

b = 8.35654 (16) Å c = 25.0089 (6) Å $\beta = 113.878 (3)^{\circ}$ $V = 4735.0 (2) \text{ Å}^{3}$ Z = 4

Data collection

Oxford Diffraction Gemini R diffractometer Absorption correction: gaussian (*CrysAlis PRO*; Agilent, 2014) $T_{\rm min} = 0.575, T_{\rm max} = 0.873$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.084$ S = 1.08 S67 reflections 344 parameters6 restraints

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
013-H13···01 ⁱ	0.80(2)	2.00(2)	2.789 (2)	172 (3)
$N1 - H1 \cdots O9$	0.82(2)	1.81 (2)	2.625 (2)	178 (3)
$C15-H15\cdots O2^{ii}$	0.93	2.54	3.396 (3)	152
$N2-H2\cdots O1W$	0.83(2)	1.89(2)	2.689 (3)	163 (3)
$C21 - H21A \cdots O4^{iii}$	0.96	2.62	3.270 (3)	125
$C21 - H21B \cdots O5^{iv}$	0.96	2.50	3.454 (3)	171
$C24 - H24 \cdots O12^{v}$	0.93	2.49	3.297 (3)	145
C25-H25···O7 ^v	0.93	2.53	3.237 (3)	134
$C25-H25\cdots O10^{v}$	0.93	2.51	3.264 (3)	138
$C27 - H27B \cdots O1^{i}$	0.96	2.46	3.347 (4)	153
$O1W - H1W \cdots O11^{i}$	0.83(2)	2.02(2)	2.833 (2)	168 (3)
$O1W - H2W \cdots O8$	0.83 (2)	1.90 (2)	2.718 (2)	171 (3)

Symmetry codes: (i) $-x + \frac{3}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x + 1, y - 1, -z + \frac{1}{2}$; (iv) x, y - 1, z; (v) $x - \frac{1}{2}, y - \frac{1}{2}, z$.

Data collection: *CrysAlis PRO* (Agilent, 2014); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL2014*/1 (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2010); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009) and *publCIF* (Westrip, 2010).

This work was supported by the Slovak Grant Agency VEGA (project No. 1/0336/13).

Supporting information for this paper is available from the IUCr electronic archives (Reference: GK2606).

References

- Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England. Arrieta, J. M., Arnaiz, A., Lorente, L., Santiago, C. & Germain, G. (1988). Acta Cryst. C44, 1004–1008.
- Asgedom, G., Sreedhara, A., Kivikoski, J. & Rao, C. P. (1996). Polyhedron, 16, 643–651.
- Ban-Oganowska, H., Godlewska, P., Macalik, L., Hanuza, J., Oganowski, W. & van der Maas, J. H. (2002). J. Mol. Struct. 605, 291–307.
- Bartošová, L., Padělková, Z., Rakovský, E. & Schwendt, P. (2012). Polyhedron, **31**, 565–569.

Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Crans, D. C. (1998). Peroxo, Hydroxylamido and acac Derived Vanadium Complexes: Chemistry, Biochemistry and Insulin-Mimetic Action of Selected Vanadium Compounds. ACS Symposium Series 711, edited by Al. S. Tracey & D. C. Crans. Oxford University Press.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Elassal, Z., Groula, L., Nohair, K., Sahibed-dine, A., Brahmi, R., Loghmarti, M., Mzerd, A. & Bensitel, M. (2011). Arab. J. Chem. 4, 313–319.
- Hagrman, P. J., Finn, R. C. & Zubieta, J. (2001). Solid State Sci. 3, 745-774.
- Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York: Oxford University Press.

- Klištincová, L., Rakovský, E. & Schwendt, P. (2008). *Inorg. Chem. Commun.* 11, 1140–1142.
- Klištincová, L., Rakovský, E., Schwendt, P., Plesch, G. & Gyepes, R. (2010). Inorg. Chem. Commun. 13, 1275–1277.
- Medhi, K. C. & Mukherjee, D. K. (1965). Spectrochim. Acta, 21, 895-902.
- Pacigová, S., Rakovský, É., Sivák, M. & Žák, Z. (2007). Acta Cryst. C63, m419– m422.
- Rakovský, E. & Gyepes, R. (2006). Acta Cryst. E62, m2108-m2110.
- Santiago, C., Arnaiz, A., Lorente, L., Arrieta, J. M. & Germain, G. (1988). Acta Cryst. C44, 239–242.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, m225-m226 [doi:10.1107/S1600536814011118]

Tetrakis(2,6-dimethylpyridinium) dihydrogen decavanadate dihydrate

Erik Rakovský and Lukáš Krivosudský

S1. Comment

The reaction system $V_2O_5 - 2$,6-dimethylpyridine $- H_2O - HClO_4$ was studied as a part of our study of the formation of transition metal complexes with substituted pyridinium ligands in the presence of polyoxovanadate anions. We wish to obtain a better understanding of the role of the counter-ion in the formation of $H_nV_{10}O_{28}^{(6-n)-}$ species and the influence of the cation and the decavanadate anion protonation mode on the IR spectra and information about possible side products of the syntheses. This article is a continuation of our previous work on salts of polyoxovanadates with organic cations (Rakovský & Gyepes, 2006; Pacigová *et al.*, 2007). The oxovanadates(V) and peroxovanadium compounds are also of great interest in biochemistry and medicine because of their diverse biological activities (Crans, 1998). Heterobimetallic compounds containing, beside polyoxovanadate core, entities composed of other transition metals bound to organic ligands have been extensively studied due to their potential applications in the field of catalysis and material science (Hagrman *et al.*, 2001; Klištincová *et al.*, 2008; Klištincová *et al.*, 2010; Bartošová *et al.*, 2012). Several decavanadates with pyridine and its derivatives are already known. Asgedom *et al.* (1996) reported the structure of (C₅H₆N)₆V₁₀O₂₈.H₂O (Arrieta *et al.*, 1988) and (C₆H₈N)₃H₃V₁₀O₂₈.H₂O (Santiago *et al.*, 1988).

The system mentioned above was studied in the pH range 2.5–7 and the crystalline product was only obtained at pH 2.5, which is typical pH value for the dihydrogendecavanadate formation. The asymmetric unit of the title compound, (I), consists of one-half decavanadate anion of C_i symmetry, lying on a special position on the centre of symmetry, which is protonated on the μ -OV₃ bridging atom O13, two 2,6-dimethylpyridinium cations and one water molecule of crystallization (Fig. 1). The terminal vanadium-oxygen bond lengths are in the range 1.5916 (17)–1.6153 (16) Å, with an average value of 1.601 (10) Å. The bond lengths of the bridging O atoms with coordination numbers two are in the range 1.6768 (14)–2.0752 (15) Å with the mean value of 1.84 (12) Å. There are 2 types of μ -OV₃ bridging oxygen groups present: unprotonated (O12) with bond lengths in the range 2.0678 (15)–2.1170 (14) Å with the mean value of 2.10 (3) Å. Bond lengths of the six-coordinated μ -OV₆ oxygen atom (O14) are in the range 2.0592 (13)–2.3588 (14) Å with an average value of 2.24 (13) Å.

The supramolecular structure is formed by D-H···O hydrogen bonds [D = N, O or C, with H···O ≤ 2.72 Å and D-H···O $> 120^{\circ}$ (Jeffrey, 1997)] between cations and anions, cations and water molecules, between two anions and between water molecules and anions (Table 1). Adjacent [H₂V₁₀O₂₈]⁴⁻ anions are mutually linked together by the system of strong hydrogen bonds: directly by two anion-anion hydrogen bonds O13–H1V···O1 and *via* two bridging water molecules, where water acts as a H-bond donor for both anions, forming O1W–H1W···O11 and O1W–H2W···O8 hydrogen bonds. N–H group of the first cation is donating H-bond to the anion, thus forming N1–H10···O9 hydrogen bond, N–H group of the second cation acts as a H-bond donor for the water molecule, forming N2–H20···O1W hydrogen bond. This system of hydrogen bonds is forming supramolecular chain running in the *b* axis direction (Fig. 2).

The C–H···O weak hydrogen bonds present in the structure are involved in the interaction between neighbouring supramolecular chains, with exception of C21–H21B···O5 and C27–H27B···O1 bonds, which are reinforcing mutual bonding between one of the anions, cation and the water molecule hydrogen-bonded to the cation.

S2. Experimental

All reactants with the exception of purified vanadium pentoxide were obtained commercially and used without further purification.

Purified vanadium pentoxide was prepared as follows: to 1.5 l of water, NH_4VO_3 (50 g) and NH_3 (60 ml, w = 25%) were added. The mixture was stirred and heated in a water bath until the temperature reached 343 K and left cool down for about 1 h. After cooling the mixture was filtered. White NH_4VO_3 was precipited by adding of crystalline NH_4NO_3 (70 g) to the filtrate, filtered out and washed with distilled water (20 ml) and ethanol (20 ml). The product was dried on air. Purified NH_4VO_3 was heated in a porcelain dish at 773 K for at least 2 h.

 $2 \text{ NH}_4 \text{VO}_3 \rightarrow \text{V}_2 \text{O}_5 + 2 \text{ NH}_3 + \text{H}_2 \text{O}$

Test for purity of prepared V_2O_5 : small amout of the product added to cold 1 *M* solution of KOH in a test tube completely dissolves.

Synthesis of the $(C_7H_{10}N)_4H_2V_{10}O_{28}.2H_2O$ (I): V₂O₅ (0.9 g, 0.005 mol) was dissolved after stirring overnight in 100 ml of 0.1 *M* solution of 2,6-dimethylpyridine. Yellow solution obtained was filtered and adjusted to pH 2.5 with 4 *M* HClO₄. Orange plate crystals were isolated after standing 5 days at 277 K.

Vanadium was determined gravimetrically as V_2O_5 . C, H and N were estimated on a CHN analyser (Carlo Erba). Analysis calculated for $C_{28}H_{46}N_4O_{30}V_{10}$ (found): C 23.55 (23.59), H 3.25 (3.21), N 3.92 (3.89), V 35.67 (35.58).

The FT—IR spectra were performed with a Nonius 6700 FTIR spectrophotometer in nujol mulls. The IR spectrum of prepared compound exhibits characteristic bands of the decavanadate anion [965 (*s*), 944 (*s*), 926 (*m*), 829 (*s*) and 589 (*m*) cm⁻¹] (Klištincová *et al.*, 2010) as well as characteristic bands for protonated 2,6-dimethylpyridine (2534 (*sh*) – $v(NH^+)$; 1629 (*s*), 1641 (*s*) – $\delta(NH^+)$) and other bands for the base (716 (*s*), 794 (*s*) – $\delta(CH)$; 971 (*s*) – $v(C-CH_3)$; 1175 (*m*), 1280 (*m*) – $\delta(CH \text{ comb.})$, 1415 (*m*) – v(C-C) or v(C-N)) (Ban-Oganowska *et al.*, 2002; Elassal *et al.*, 2011; Medhi *et al.*, 1965).

S3. Refinement

The selected crystal was a non-merohedral twin with the twin law: -1 0 0; 0 -1 0; 1 0 1 (given by rows) and the domain volume ratio approx. 0.6:0.4. The structure was solved and refined from detwinned HKLF 4 data, however, due to approximately equal domain volume ratio, some reflections were strongly affected (typically $F_o >> F_c$) by twinning; these reflections were omitted in the final stages of the refinement.

The H atoms bound to the C atoms of the cations were placed in geometrically idealized positions (C–H = 0.93 Å) and constrained to ride on their parent atoms [$U_{iso}(H) = 1.2 U_{eq}(C)$] with the exception of the methyl groups, which were treated as rigid rotors [C–H = 0.96 Å, $U_{iso}(H) = 1.5 U_{eq}(C)$]. The H atoms bound to N atoms were refined semi-freely using distance restraint (N–H = 0.86 (2) Å) and with $U_{iso}(H) = 1.5 U_{eq}(N)$. The H atoms of the anion and water molecule were located in a difference map and refined with d(O-H) = 0.82 (2) Å and $d(H \cdots H) = 1.36$ (2) Å for water molecule.

Figure 1

The structure of the title compound, showing the atom labelling scheme and hydrogen bonding interactions (dashed lines). Displacement ellipsoids are drawn ar the 30% probability level. The symmetry operation: (i) 3/2 - x, 3/2 - y, 1 - z.

Figure 2

A view of the cell packing of (I) along the b axis. Supramolecular chains are running in the b axis direction, N–H···O and O–H···O hydrogen bonds are drawn as red dashed lines. Carbon-bound hydrogen atoms are omitted for clarity.

Tetrakis(2,6-dimethylpyridinium) dihydrogen decavanadate dihydrate

Crystal data

 $(C_7H_{10}N)_4[H_2V_{10}O_{28}]\cdot 2H_2O$ $M_r = 1428.09$ Monoclinic, C2/c Hall symbol: -C 2yc a = 24.7777 (5) Å b = 8.35654 (16) Å c = 25.0089 (6) Å $\beta = 113.878$ (3)° V = 4735.0 (2) Å³ Z = 4

Data collection

Oxford Diffraction Gemini R diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 10.4340 pixels mm⁻¹ ω -scans Absorption correction: gaussian (*CrysAlis PRO*; Agilent, 2014) $T_{min} = 0.575, T_{max} = 0.873$ F(000) = 2848 $D_x = 2.003 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 27323 reflections $\theta = 3.6-28.7^{\circ}$ $\mu = 1.98 \text{ mm}^{-1}$ T = 293 KPlate, orange $0.41 \times 0.22 \times 0.08 \text{ mm}$

59285 measured reflections 5867 independent reflections 5086 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 28.9^{\circ}, \theta_{min} = 3.5^{\circ}$ $h = -33 \rightarrow 33$ $k = -11 \rightarrow 11$ $l = -33 \rightarrow 33$ Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.084$ S = 1.08	Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H atoms treated by a mixture of independent and constrained refinement
5867 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0401P)^2 + 8.437P]$
344 parameters	where $P = (F_o^2 + 2F_c^2)/3$
6 restraints	$(\Delta/\sigma)_{\text{max}} = 0.001$
direct methods	$\Delta \rho_{\rm min} = -0.39 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
V1	0.81781 (2)	0.47465 (4)	0.51737 (2)	0.02165 (9)
V2	0.70304 (2)	0.55586 (4)	0.40183 (2)	0.02228 (9)
V3	0.60060 (2)	0.74652 (5)	0.41309 (2)	0.02433 (9)
V4	0.68019 (2)	0.91657 (5)	0.36342 (2)	0.02475 (9)
V5	0.79281 (2)	0.82080 (4)	0.47073 (2)	0.01834 (8)
01	0.82181 (7)	0.30171 (19)	0.49035 (7)	0.0303 (3)
O2	0.70776 (8)	0.3908 (2)	0.37228 (7)	0.0342 (4)
O3	0.53181 (7)	0.7150 (2)	0.39512 (8)	0.0374 (4)
O4	0.67212 (8)	1.0004 (2)	0.30321 (7)	0.0371 (4)
O5	0.60486 (6)	0.8555 (2)	0.35266 (6)	0.0281 (3)
O6	0.76907 (6)	0.91441 (18)	0.40574 (6)	0.0237 (3)
O7	0.86611 (6)	0.84722 (18)	0.50288 (6)	0.0238 (3)
O8	0.62630 (6)	0.55718 (18)	0.39335 (6)	0.0254 (3)
O9	0.69435 (7)	0.69902 (19)	0.34630 (6)	0.0258 (3)
O10	0.88874 (6)	0.55388 (19)	0.54352 (7)	0.0254 (3)
011	0.81944 (7)	0.41941 (18)	0.58919 (7)	0.0261 (3)
012	0.78823 (6)	0.60759 (17)	0.44582 (6)	0.0204 (3)
O13	0.72489 (6)	0.48316 (17)	0.48854 (6)	0.0203 (3)
O14	0.70334 (6)	0.78365 (17)	0.45323 (6)	0.0192 (3)
H13	0.7096 (11)	0.407 (3)	0.4957 (11)	0.029*
N1	0.66681 (9)	0.6432 (3)	0.23502 (8)	0.0326 (4)
H1	0.6763 (13)	0.660 (4)	0.2699 (8)	0.049*
C11	0.57585 (15)	0.5319 (5)	0.23387 (15)	0.0640 (10)
H11A	0.5905	0.4366	0.2566	0.096*
H11B	0.5364	0.5137	0.2055	0.096*
H11C	0.5758	0.6181	0.2592	0.096*
C12	0.61462 (12)	0.5743 (3)	0.20330 (11)	0.0395 (6)
C13	0.60049 (13)	0.5490 (4)	0.14473 (12)	0.0488 (7)

H13A	0.5644	0.5035	0.1212	0.059*
C14	0.63984 (13)	0.5913 (4)	0.12099 (11)	0.0498 (8)
H14	0.6309	0.5702	0.0818	0.060*
C15	0.69227 (13)	0.6644 (3)	0.15484 (12)	0.0420 (6)
H15	0.7182	0.6963	0.1385	0.050*
C16	0.70592 (11)	0.6900 (3)	0.21315 (11)	0.0344 (5)
C17	0.76196 (14)	0.7645 (4)	0.25454 (15)	0.0542 (8)
H17A	0.7806	0.6952	0.2876	0.081*
H17B	0.7535	0.8656	0.2676	0.081*
H17C	0.7879	0.7806	0.2351	0.081*
N2	0.49294 (9)	0.1465 (3)	0.38718 (9)	0.0333 (4)
H2	0.5234 (10)	0.170 (4)	0.3827 (13)	0.050*
C21	0.46457 (12)	0.0171 (4)	0.29325 (12)	0.0489 (7)
H21A	0.4366	-0.0615	0.2702	0.073*
H21B	0.5038	-0.0253	0.3058	0.073*
H21C	0.4610	0.1115	0.2702	0.073*
C22	0.45261 (10)	0.0582 (3)	0.34534 (11)	0.0353 (5)
C23	0.40287 (13)	0.0113 (4)	0.35294 (15)	0.0536 (8)
H23	0.3737	-0.0482	0.3242	0.064*
C24	0.39681 (16)	0.0534 (5)	0.40350 (18)	0.0674 (10)
H24	0.3634	0.0221	0.4091	0.081*
C25	0.43990 (16)	0.1415 (5)	0.44557 (15)	0.0629 (10)
H25	0.4361	0.1680	0.4800	0.075*
C26	0.48857 (13)	0.1904 (4)	0.43713 (12)	0.0453 (7)
C27	0.53721 (15)	0.2890 (5)	0.47929 (15)	0.0758 (12)
H27A	0.5409	0.3863	0.4606	0.114*
H27B	0.5736	0.2303	0.4920	0.114*
H27C	0.5286	0.3140	0.5125	0.114*
O1W	0.57679 (8)	0.2656 (2)	0.35592 (9)	0.0425 (4)
H1W	0.6068 (11)	0.208 (3)	0.3669 (15)	0.064*
H2W	0.5882 (14)	0.357 (2)	0.3674 (15)	0.064*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
V1	0.02131 (17)	0.01978 (18)	0.02536 (18)	0.00097 (13)	0.01099 (14)	0.00127 (13)
V2	0.02531 (18)	0.02300 (18)	0.01948 (17)	-0.00306 (14)	0.01005 (14)	-0.00278 (13)
V3	0.01854 (17)	0.0285 (2)	0.02501 (19)	-0.00254 (13)	0.00786 (14)	0.00077 (14)
V4	0.02526 (18)	0.0288 (2)	0.02013 (18)	-0.00009 (14)	0.00916 (14)	0.00546 (14)
V5	0.01910 (16)	0.01996 (17)	0.01882 (17)	-0.00175 (12)	0.01063 (13)	0.00133 (12)
01	0.0325 (8)	0.0226 (8)	0.0393 (9)	0.0017 (6)	0.0182 (7)	-0.0010 (7)
O2	0.0425 (9)	0.0288 (9)	0.0352 (9)	-0.0049 (7)	0.0196 (8)	-0.0096 (7)
03	0.0220 (8)	0.0459 (10)	0.0418 (10)	-0.0054 (7)	0.0104 (7)	0.0006 (8)
04	0.0378 (9)	0.0459 (10)	0.0265 (8)	-0.0009 (8)	0.0119 (7)	0.0116 (8)
05	0.0229 (7)	0.0341 (9)	0.0238 (7)	-0.0007 (6)	0.0058 (6)	0.0046 (6)
06	0.0256 (7)	0.0263 (8)	0.0223 (7)	-0.0023 (6)	0.0130 (6)	0.0047 (6)
07	0.0211 (7)	0.0271 (8)	0.0261 (7)	-0.0026 (6)	0.0125 (6)	-0.0002 (6)
08	0.0244 (7)	0.0260 (8)	0.0249 (7)	-0.0059 (6)	0.0089 (6)	-0.0028 (6)

09	0.0289 (8)	0.0316 (8)	0.0180 (7)	-0.0034 (6)	0.0107 (6)	-0.0008 (6)
O10	0.0208 (7)	0.0278 (8)	0.0297 (8)	0.0021 (6)	0.0122 (6)	0.0019 (6)
011	0.0263 (7)	0.0243 (8)	0.0279 (8)	0.0011 (6)	0.0113 (6)	0.0064 (6)
012	0.0230 (7)	0.0214 (7)	0.0203 (7)	-0.0012 (5)	0.0125 (5)	-0.0010 (5)
013	0.0226 (7)	0.0181 (7)	0.0225 (7)	-0.0039 (5)	0.0117 (6)	-0.0003 (5)
O14	0.0201 (6)	0.0216 (7)	0.0179 (6)	-0.0006 (5)	0.0097 (5)	0.0013 (5)
N1	0.0405 (11)	0.0356 (11)	0.0211 (9)	0.0010 (9)	0.0118 (8)	-0.0025 (8)
C11	0.0545 (19)	0.087 (3)	0.0526 (19)	-0.0222 (18)	0.0243 (15)	-0.0066 (18)
C12	0.0385 (13)	0.0433 (15)	0.0332 (13)	-0.0004 (11)	0.0109 (10)	-0.0037 (11)
C13	0.0405 (15)	0.063 (2)	0.0323 (14)	0.0043 (13)	0.0034 (11)	-0.0131 (13)
C14	0.0530 (16)	0.069 (2)	0.0234 (12)	0.0252 (15)	0.0117 (11)	-0.0029 (12)
C15	0.0517 (16)	0.0445 (15)	0.0386 (14)	0.0181 (12)	0.0275 (12)	0.0038 (12)
C16	0.0406 (13)	0.0294 (12)	0.0362 (13)	0.0050 (10)	0.0186 (10)	-0.0030 (10)
C17	0.0502 (17)	0.0553 (19)	0.063 (2)	-0.0145 (14)	0.0293 (15)	-0.0199 (16)
N2	0.0273 (10)	0.0437 (12)	0.0305 (10)	0.0029 (9)	0.0134 (8)	-0.0008 (9)
C21	0.0386 (14)	0.075 (2)	0.0339 (14)	-0.0052 (14)	0.0153 (11)	-0.0131 (14)
C22	0.0291 (11)	0.0425 (14)	0.0365 (13)	-0.0005 (10)	0.0155 (10)	-0.0022 (11)
C23	0.0396 (15)	0.0593 (19)	0.070 (2)	-0.0120 (14)	0.0303 (15)	-0.0107 (16)
C24	0.057 (2)	0.083 (3)	0.087 (3)	-0.0003 (19)	0.056 (2)	0.004 (2)
C25	0.069 (2)	0.087 (3)	0.0500 (18)	0.023 (2)	0.0415 (17)	0.0048 (18)
C26	0.0453 (15)	0.0560 (18)	0.0327 (13)	0.0176 (13)	0.0139 (11)	-0.0036 (12)
C27	0.057 (2)	0.100 (3)	0.053 (2)	0.016 (2)	0.0038 (16)	-0.038 (2)
O1W	0.0294 (9)	0.0320 (10)	0.0617 (13)	-0.0050 (7)	0.0139 (9)	-0.0002 (9)

Geometric parameters (Å, °)

V1-01	1.6153 (16)	C11—H11B	0.9600
V1-010	1.7390 (15)	C11—H11C	0.9600
V1-011	1.8391 (15)	C11—C12	1.492 (4)
V1—012	1.9776 (14)	C12—C13	1.378 (4)
V1—013	2.1170 (14)	C13—H13A	0.9300
V1-014 ⁱ	2.2818 (14)	C13—C14	1.377 (4)
V2—O2	1.5916 (17)	C14—H14	0.9300
V2—O8	1.8261 (15)	C14—C15	1.374 (4)
V2—O9	1.7788 (15)	C15—H15	0.9300
V2—O12	1.9931 (14)	C15—C16	1.374 (3)
V2—O13	2.1009 (15)	C16—C17	1.491 (4)
V2—O14	2.2952 (14)	C17—H17A	0.9600
V3—O3	1.5990 (16)	C17—H17B	0.9600
V3—O5	1.8035 (16)	C17—H17C	0.9600
V3—07 ⁱ	2.0752 (15)	N2—H2	0.830 (17)
V3—O8	1.8458 (16)	N2—C22	1.338 (3)
V3-010 ⁱ	1.9487 (16)	N2—C26	1.348 (3)
V3—014	2.3486 (14)	C21—H21A	0.9600
V4—O4	1.5983 (16)	C21—H21B	0.9600
V4—O5	1.8468 (15)	C21—H21C	0.9600
V4—O6	2.0208 (15)	C21—C22	1.488 (3)
V4—O9	1.9321 (16)	C22—C23	1.378 (4)

V4—011 ¹	1.8097 (16)	С23—Н23	0.9300
V4—O14	2.3588 (14)	C23—C24	1.378 (5)
V5—O6	1.6810 (14)	C24—H24	0.9300
V5—07	1.6768 (14)	C24—C25	1.371 (5)
V5 012	1 8757 (15)	C25 H25	0.0300
V5_012	2.0(79.(15))	C25_C26	1.2(9.(5)
V5-015	2.06/8 (15)	C25—C26	1.308 (5)
V5—014 ¹	2.0592 (13)	C26—C27	1.488 (5)
V5—014	2.1015 (13)	С27—Н27А	0.9600
O13—H13	0.796 (17)	С27—Н27В	0.9600
N1—H1	0.817 (17)	С27—Н27С	0.9600
N1—C12	1.343 (3)	O1W—H1W	0.832 (17)
N1-C16	1 349 (3)	O1W—H2W	0.825(17)
	0.9600		0.020 (17)
	0.9000		
01—V1—010	105 91 (8)	V5-012-V2	107 31 (7)
01 V1 011	101.72(8)	V1 013 H13	107.51(7)
	101.72(8)	V1-013-1115	110.0(19)
01-012	100.78(7)	V2-013-V1	98.72(6)
01—V1—013	97.47 (7)	V2—O13—H13	121.1 (19)
$O1-V1-O14^{i}$	171.01 (7)	V5 ⁱ —O13—V1	106.09 (6)
O10-V1-011	96.25 (7)	V5 ⁱ —O13—V2	105.18 (6)
O10—V1—O12	94.27 (7)	V5 ⁱ —O13—H13	107.7 (19)
O10-V1-O13	155.43 (7)	V1 ⁱ	164.90 (7)
O10-V1-014 ⁱ	82.58 (6)	V1 ⁱ —O14—V3	84.49 (5)
011—V1—012	151.43 (6)	V1 ⁱ 014V4	83.74 (5)
011 - V1 - 013	86 10 (6)	V2-014-V3	83.90 (5)
$011 - V1 - 014^{i}$	79.89(6)	V2014V4	85.00 (5)
012 V1 012	77.07(0)	$V_2 = 014 = V4$	83.00(3)
012 - V1 - 013	75.70 (0)	V5-014-V4	01.40 (4)
$012 - V1 - 014^{4}$	75.23 (5)		99.36 (6)
013—V1—014 ¹	/3./4 (5)	V5 ¹ —014—V1 ¹	90.48 (5)
O2—V2—O8	102.71 (8)	V5 ¹ —O14—V2	98.86 (6)
O2—V2—O9	103.22 (8)	V5—O14—V2	90.18 (5)
O2—V2—O12	100.59 (8)	V5—O14—V3	167.97 (7)
O2—V2—O13	101.07 (8)	V5 ⁱ —O14—V3	88.61 (5)
O2—V2—O14	174.13 (8)	V5—O14—V4	87.61 (5)
O8—V2—O12	152.03 (6)	V5 ⁱ —O14—V4	168.93 (7)
O8—V2—O13	86.72 (6)	V5 ⁱ —O14—V5	102.69 (6)
08—V2—014	80.05 (6)	C12—N1—H1	120 (2)
09-V2-08	96.54 (7)	C12—N1—C16	124.2 (2)
09—V2—012	92.96 (6)	C16—N1—H1	116 (2)
09—V2—013	154.09 (7)	H11A—C11—H11B	109.5
09—V2—014	81.46 (6)	H11A—C11—H11C	109.5
012 - V2 - 013	73 75 (6)	H11B-C11-H11C	109.5
012 - V2 = 013	75 43 (5)	C12— $C11$ — $H11A$	109.5
012 12 014	73 78 (5)	C_{12} C_{11} H_{11}	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	105 26 (9)	$C_{12} = C_{11} = H_{11} C_{12}$	109.5
$03 - v_3 - 03$	103.30(8)		109.3
$03 - V3 - 0/^{2}$	99.44 (ð)	NI = CI2 = CI2	117.7 (2)
03-08	103.16 (8)	N1—C12—C13	117.6(3)
$O3-V3-O10^{1}$	100.73 (8)	C13—C12—C11	124.7 (3)

O3—V3—O14	171.75 (7)	C12—C13—H13A	120.0
O5—V3—O7 ⁱ	154.82 (6)	C14—C13—C12	120.0 (3)
O5—V3—O8	93.73 (7)	C14—C13—H13A	120.0
O5-V3-O10 ⁱ	89.65 (7)	C13—C14—H14	119.8
O5—V3—O14	82.56 (6)	C15—C14—C13	120.4 (2)
07 ⁱ —V3—014	72.50 (5)	C15—C14—H14	119.8
08—V3—07 ⁱ	84.75 (6)	C14—C15—H15	120.4
O8—V3—O10 ⁱ	154.02 (6)	C16—C15—C14	119.2 (3)
08—V3—014	78.23 (6)	С16—С15—Н15	120.4
$010^{i} V_{3} 07^{i}$	81.40 (6)	N1-C16-C15	118.5 (2)
010^{i} V3 014	76.69 (6)	N1-C16-C17	117.3 (2)
04—V4—05	104.49 (8)	C_{15} C_{16} C_{17}	124.2(3)
04—V4—06	101.04 (8)	C16—C17—H17A	109.5
04—V4—09	99.69 (8)	C16—C17—H17B	109.5
$04-V4-011^{i}$	104.52 (9)	C16—C17—H17C	109.5
04—V4—014	173 18 (8)	H17A—C17—H17B	109.5
05V406	153 74 (6)	H17A - C17 - H17C	109.5
05-V4-09	88.34 (7)	H17B-C17-H17C	109.5
05-V4-014	81 40 (6)	C^{22} N2 H2	117 (2)
06—V4—014	72,76 (5)	$C_{22} = N_2 = C_{26}$	1240(2)
09—V4—06	81 40 (6)	C26—N2—H2	121.0(2) 119(2)
09—V4—014	76.82 (6)	$H_{21}A - C_{21} - H_{21}B$	109.5
$011^{i} V4 05$	92, 39 (7)	H_{21A} $-C_{21}$ $-H_{21C}$	109.5
$011^{i} V4 06$	87.03 (7)	H_{21B} C_{21} H_{21C}	109.5
011 ⁱ V409	154.77 (7)	C_{22} C_{21} H_{21A}	109.5
$011^{i} V4 014$	78 36 (6)	$C_{22} = C_{21} = H_{21B}$	109.5
06-V5-012	99.81 (7)	$C_{22} = C_{21} = H_{21}C_{22}$	109.5
$06-V5-013^{i}$	92.68 (7)	N_{2} C_{22} C_{21} C_{21}	117.5(2)
$06-V5-014^{i}$	163 23 (6)	$N_2 = C_{22} = C_{23}$	117.3(2) 1184(2)
06—V5—014	86 60 (6)	C^{23} C^{22} C^{21}	1241(3)
07—V5—06	106 83 (7)	C22—C23—H23	1203
07 - V5 - 012	101.10(7)	$C_{22} = C_{23} = C_{24}$	119.3 (3)
$07 - V5 - 013^{i}$	93.67 (7)	C24—C23—H23	120.3
$07 - V5 - 014^{i}$	88.66 (6)	C23—C24—H24	120.0
07—V5—014	164.97 (6)	C_{25} C_{24} C_{23}	120.1(3)
$012 - V5 - 013^{i}$	156.90 (6)	C25—C24—H24	120.0
$012 - V5 - 014^{i}$	83.00 (6)	C24—C25—H25	119.9
012	82.74 (6)	C26—C25—C24	120.2 (3)
013^{i} V5 014	78.66 (6)	C26—C25—H25	119.9
014^{i} V5 -013^{i}	79.67 (6)	N2—C26—C25	117.9 (3)
O14 ⁱ —V5—O14	77.31 (6)	N2—C26—C27	117.5 (3)
V3-05-V4	114.58 (8)	C25—C26—C27	124.6 (3)
V5—O6—V4	113.02 (7)	C26—C27—H27A	109.5
V5—07—V3 ⁱ	110.20 (7)	С26—С27—Н27В	109.5
V2—O8—V3	115.45 (8)	С26—С27—Н27С	109.5
V2—09—V4	115.80 (8)	H27A—C27—H27B	109.5
V1-010-V3 ⁱ	115.08 (8)	H27A—C27—H27C	109.5
V4 ⁱ —O11—V1	116.22 (8)	H27B—C27—H27C	109.5

supporting information

V1—012—V2	107.42 (7)	H1W—O1W—H2W	107 (2)
V5—O12—V1	106.42 (7)		

Symmetry code: (i) -x+3/2, -y+3/2, -z+1.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
013—H13…O1 ⁱⁱ	0.80 (2)	2.00 (2)	2.789 (2)	172 (3)
N1—H1…O9	0.82 (2)	1.81 (2)	2.625 (2)	178 (3)
C15—H15…O2 ⁱⁱⁱ	0.93	2.54	3.396 (3)	152
N2—H2···O1 <i>W</i>	0.83 (2)	1.89 (2)	2.689 (3)	163 (3)
C21—H21A····O4 ^{iv}	0.96	2.62	3.270 (3)	125
C21—H21 <i>B</i> ····O5 ^v	0.96	2.50	3.454 (3)	171
C24—H24…O12 ^{vi}	0.93	2.49	3.297 (3)	145
C25—H25…O7 ^{vi}	0.93	2.53	3.237 (3)	134
C25—H25…O10 ^{vi}	0.93	2.51	3.264 (3)	138
C27—H27 <i>B</i> ····O1 ⁱⁱ	0.96	2.46	3.347 (4)	153
O1 <i>W</i> —H1 <i>W</i> ···O11 ⁱⁱ	0.83 (2)	2.02 (2)	2.833 (2)	168 (3)
O1 <i>W</i> —H2 <i>W</i> ···O8	0.83 (2)	1.90 (2)	2.718 (2)	171 (3)

Symmetry codes: (ii) -x+3/2, -y+1/2, -z+1; (iii) -x+3/2, y+1/2, -z+1/2; (iv) -x+1, y-1, -z+1/2; (v) x, y-1, z; (vi) x-1/2, y-1/2, z.