Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6,8-Diiodo-4-oxo-4H-chromene-3carbaldehyde

Yoshinobu Ishikawa

School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan

Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Received 16 March 2014; accepted 27 March 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.010 Å; R factor = 0.051; wR factor = 0.147; data-to-parameter ratio = 17.4.

The title compound, $C_{10}H_4I_2O_3$, is an iodinated 3-formylchromone derivative, and the atoms are essentially coplanar [r.m.s. deviation = 0.049 Å, largest deviation from the leastsquares plane = 0.111(9) Å for the CH(=O) C atom]. In the crystal, molecules are linked into a three-dimensional network through halogen bonds [I···O = 3.352 (5) and 3.405 (7) Å, C- $I \cdot \cdot \cdot O = 144.2$ (3) and 154.5 (3)°, and C= $O \cdot \cdot \cdot I = 134.9$ (6) and 146.0 (6)°], and π - π stacking interactions [centroid–centroid distance = 3.527(6) Å].

Related literature

For the preparation of the precursor of the title compound, see: Khansole et al. (2008). For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013).

Experimental

Crystal data $C_{10}H_4I_2O_3$ $M_r = 425.95$

b = 8.779 (5) A	Z = 2
c = 9.767 (4) Å	Mo $K\alpha$ radiation
$\alpha = 63.82 \ (3)^{\circ}$	$\mu = 6.06 \text{ mm}^{-1}$
$\beta = 75.44 \ (3)^{\circ}$	T = 100 K
$\gamma = 68.05 \ (4)^{\circ}$	$0.48 \times 0.30 \times 0.25 \text{ mm}$
V = 517.5 (5) Å ³	
Data collection	
Rigaku AFC-7R diffractometer	2361 reflections with $F^2 > 2\sigma(F^2)$
Absorption correction: ψ scan	$R_{\rm int} = 0.026$
(North et al., 1968)	3 standard reflections every 150
$T_{\rm min} = 0.152, T_{\rm max} = 0.220$	reflections
2933 measured reflections	intensity decay: -1.1%
2383 independent reflections	
*	
Refinement	
110/0/00/00/00	

 $R[F^2 > 2\sigma(F^2)] = 0.051$ 137 parameters $wR(F^2) = 0.147$ H-atom parameters constrained S = 1.23 $\Delta \rho_{\rm max} = 3.56 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -3.01$ e Å⁻³ 2383 reflections

CrossMark

 $2\sigma(F^2)$

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

We acknowledge the University of Shizuoka for instrumental support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZL2583).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789-16794.
- Ishikawa, Y. (2014). Acta Cryst. E70, 0439.
- Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, 01416.
- Khansole, S. V., Mokle, S. S., Sayyed, M. A. & Vibhute, Y. B. (2008). J. Chin. Chem. Soc. 55, 871-874.
- Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38. 386-395
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781-2791.
- Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363-1388.

supporting information

Acta Cryst. (2014). E70, o536 [doi:10.1107/S1600536814006904]

6,8-Diiodo-4-oxo-4H-chromene-3-carbaldehyde

Yoshinobu Ishikawa

S1. Comment

Halogen bonds have been found to occur in organic, inorganic, and biological systems, and have recently attracted much attention in medicinal chemistry, chemical biology and supramolecular chemistry (Auffinger *et al.*, 2004, Metrangolo *et al.*, 2005, Wilcken *et al.*, 2013, Sirimulla *et al.*, 2013). We have recently reported the crystal structures of halogenated 3-formylchromone derivatives, 6,8-dichloro-4-oxochromene-3-carbaldehyde and 6,8-dibromo-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013; Ishikawa, 2014). It was found that these molecules are linked through halogen bonds in a similar fashion in the crystals. As part of our interest in chemical bonding, we herein report the crystal structure of 6,8-diiodo-4-oxochromene-3-carbaldehyde, which was prepared by the Vilsmeier–Haack reaction of 2-hy-droxy-3,5-diiodoacetophenone with *N*,*N*-dimethylformamide (DMF) in the presence of POCl₃ in good yield.

The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0487 Å, and the largest deviations is 0.111 (9) Å for C10. These mean that the atoms are essentially coplanar.

In the crystal, the molecule is assembled through characteristic intermolecular interactions between the I1 atom at the 6position and the O2 atom of the α,β -unsaturated carbonyl group of its inversion-symmetry equivalent [I1…O2; 3.405 (7) Å, C5–I1…O2ⁱ = 154.5 (3)°, I1…O2ⁱ–C3ⁱ = 134.9 (6)° (i): -x + 1, -y + 2, -z + 1, Fig. 1], and between the I2 atom at the 6position and the O2 atom of the α,β -unsaturated carbonyl group of its translation-symmetry equivalent [I2…O2; 3.352 (5) Å, C7–I2…O2ⁱⁱ = 144.2 (3)°, I2…O2ⁱⁱ–C3ⁱⁱ = 146.0 (6)° (i): x, y - 1, z+1, Fig. 2]. The short contact and the geometry of the I…O interactions come within the range of halogen bonding (Auffinger *et al.*, 2004). It is noted that the geometry of the I…O interactions for the title compound is different from that for 6,8-dichloro-4-oxochromene-3-carbaldehyde and 6,8-dibromo-4-oxochromene-3-carbaldehyde. The three-dimensional network *via* the halogen bonds in the crystal of the title compound is more extensive. This is probably due to the larger size of the positive σ -holes of the I1 and I2 atoms (Auffinger *et al.*, 2004, Sirimulla *et al.*, 2013). The intermolecular π - π stacking interaction of the benzene ring of the molecule with that of the inversion-symmetry equivalentⁱⁱⁱ is also observed [centroid–centroid distance = 3.527 (6) Å (iii): -x + 1, -y + 1, -z + 1], as shown in Fig. 2.

S2. Experimental

2-Hydroxy-3,5-diiodoacetophenone was prepared according to the literature method (Khansole *et al.*, 2008). To a solution of 2-hydroxy-3,5-diiodoacetophenone (134 mmol) in DMF (5 ml) was added dropwise POCl₃ (335 mmol) for 5 min at 0 °C. After the mixture was stirred for 15 h at room temperature, water (20 ml) was added. The precipitates were collected, washed with water and dried *in vacuo* (yield: 81.1%). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.31 (d, 1H, *J* = 2.0 Hz), 8.63 (d, 1H, *J* = 2.0 Hz), 9.04 (s, 1H), 10.07 (s, 1H). DART-MS calcd for [C₁₀H₄I₂O₃ + H⁺]: 426.825, found 426.869. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution of the title compound at room temperature.

S3. Refinement

The C(sp^2)-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, $U_{iso}(H) = 1.2U_{eq}(C)$], and refined using a riding model. There are large positive and negative electron densities around the iodine atoms in spite of the good R value. The reflection data were collected separately with a smaller sized crystal, but it is found that the large residual electron densities around the iodine atoms still remained. For most of the disagreeable reflections in the *SHELX*.lst file, F_{obs} is much greater than F_{calc} . This suggests the possibility of non-merohedral twinning. Thus, the large residual electron densities could be derived from non-merohedral twinning. Unfortunately, it is difficult to confirm the possibility on a single point detector diffractometer, Rigaku AFC7R. One reflection (–2 7 3) was omitted because of systematic error. Extinction correction was applied for improvement of large negative electron densities and the R value.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius. The intermolecular interaction of the title compound is represented as dashed lines for I···O.

Figure 2

A view of the intermolecular interactions of the title compound, represented as dashed lines for I…O interactions.

6,8-Diiodo-4-oxo-4H-chromene-3-carbaldehyde

Crystal data

 $\begin{array}{l} C_{10}H_{4}I_{2}O_{3} \\ M_{r} = 425.95 \\ \text{Triclinic, } P\overline{1} \\ \text{Hall symbol: -P 1} \\ a = 7.290 (3) \text{ Å} \\ b = 8.779 (5) \text{ Å} \\ c = 9.767 (4) \text{ Å} \\ a = 63.82 (3)^{\circ} \\ \beta = 75.44 (3)^{\circ} \\ \gamma = 68.05 (4)^{\circ} \\ V = 517.5 (5) \text{ Å}^{3} \end{array}$

Data collection

Rigaku AFC-7R diffractometer ω -2 θ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.152$, $T_{\max} = 0.220$ 2933 measured reflections 2383 independent reflections Z = 2 F(000) = 388.00 $D_x = 2.733$ Mg m⁻³ Mo Ka radiation, $\lambda = 0.71069$ Å Cell parameters from 25 reflections $\theta = 15.2-17.1^{\circ}$ $\mu = 6.06$ mm⁻¹ T = 100 K Block, yellow $0.48 \times 0.30 \times 0.25$ mm

2361 reflections with $F^2 > 2\sigma(F^2)$ $R_{int} = 0.026$ $\theta_{max} = 27.5^{\circ}$ $h = -5 \rightarrow 9$ $k = -10 \rightarrow 11$ $l = -12 \rightarrow 12$ 3 standard reflections every 150 reflections intensity decay: -1.1% Refinement

•	
Refinement on F^2	Hydrogen site location: inferred from
$R[F^2 > 2\sigma(F^2)] = 0.051$	neighbouring sites
$wR(F^2) = 0.147$	H-atom parameters constrained
<i>S</i> = 1.23	$w = 1/[\sigma^2(F_o^2) + (0.0884P)^2 + 4.3985P]$
2383 reflections	where $P = (F_0^2 + 2F_c^2)/3$
137 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
0 restraints	$\Delta \rho_{\rm max} = 3.56 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -3.01 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008)
map	Extinction coefficient: 0.018 (3)

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.32790 (6)	0.83369 (5)	0.74688 (5)	0.0152 (3)
I2	0.74091 (6)	0.06022 (5)	0.85492 (5)	0.0179 (3)
O1	0.9121 (7)	0.2469 (6)	0.5147 (6)	0.0131 (9)
O2	0.8156 (8)	0.7689 (7)	0.2159 (6)	0.0180 (10)
O3	1.2172 (8)	0.3795 (8)	0.0749 (6)	0.0197 (10)
C1	1.0076 (10)	0.2949 (10)	0.3730 (8)	0.0163 (13)
C2	0.9844 (9)	0.4629 (10)	0.2687 (8)	0.0129 (12)
C3	0.8432 (9)	0.6141 (9)	0.3051 (7)	0.0109 (12)
C4	0.6053 (10)	0.6899 (9)	0.5166 (8)	0.0125 (12)
C5	0.5157 (10)	0.6387 (9)	0.6645 (8)	0.0135 (12)
C6	0.5540 (10)	0.4571 (10)	0.7630 (8)	0.0146 (12)
C7	0.6876 (10)	0.3271 (9)	0.7098 (7)	0.0128 (12)
C8	0.7425 (9)	0.5587 (9)	0.4625 (7)	0.0118 (12)
C9	0.7809 (9)	0.3800 (8)	0.5608 (7)	0.0104 (11)
C10	1.1073 (10)	0.4944 (9)	0.1196 (8)	0.0128 (12)
H1	1.1002	0.2020	0.3435	0.0196*
H2	0.5756	0.8124	0.4509	0.0150*
Н3	0.4896	0.4234	0.8646	0.0176*
H4	1.0995	0.6144	0.0536	0.0153*

Atomic a	displacemen	at parameters	$(Å^2)$
----------	-------------	---------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0159 (3)	0.0127 (3)	0.0163 (3)	-0.00142 (18)	0.00485 (17)	-0.0107 (2)
I2	0.0180 (3)	0.0106 (3)	0.0169 (3)	-0.00243 (19)	0.00704 (18)	-0.0045 (2)
01	0.014 (2)	0.010 (2)	0.013 (2)	-0.0006 (17)	0.0030 (17)	-0.0082 (17)
O2	0.019 (3)	0.016 (3)	0.012 (3)	-0.0030 (19)	0.0043 (18)	-0.0046 (19)
03	0.017 (3)	0.026 (3)	0.015 (3)	-0.003 (2)	0.0040 (18)	-0.012 (2)
C1	0.014 (3)	0.021 (4)	0.016 (3)	-0.004 (3)	0.001 (3)	-0.012 (3)

supporting information

C2	0.007 (3)	0.023 (4)	0.015 (3)	-0.006 (3)	0.004 (3)	-0.015 (3)
C3	0.008 (3)	0.016 (3)	0.010 (3)	-0.003 (3)	0.003 (2)	-0.010 (3)
C4	0.015 (3)	0.009 (3)	0.013 (3)	-0.002 (3)	-0.005 (3)	-0.004 (3)
C5	0.011 (3)	0.016 (3)	0.018 (3)	-0.005 (3)	0.002 (3)	-0.011 (3)
C6	0.014 (3)	0.026 (4)	0.010 (3)	-0.010 (3)	0.006 (2)	-0.012 (3)
C7	0.014 (3)	0.016 (3)	0.011 (3)	-0.006 (3)	0.002 (3)	-0.007 (3)
C8	0.013 (3)	0.015 (3)	0.009 (3)	-0.007 (3)	0.003 (3)	-0.006 (3)
C9	0.013 (3)	0.010 (3)	0.011 (3)	-0.003 (3)	0.002 (3)	-0.008 (3)
C10	0.012 (3)	0.015 (3)	0.010 (3)	-0.001 (3)	0.001 (3)	-0.008 (3)

Geometric parameters (Å, °)

I1—C5	2.088 (8)	C4—C5	1.373 (9)
I2—C7	2.077 (7)	C4—C8	1.420 (10)
01—C1	1.340 (8)	C5—C6	1.412 (9)
O1—C9	1.377 (9)	C6—C7	1.399 (11)
О2—С3	1.219 (8)	С7—С9	1.392 (9)
O3—C10	1.208 (10)	C8—C9	1.392 (8)
C1—C2	1.348 (9)	C1—H1	0.950
C2—C3	1.470 (10)	C4—H2	0.950
C2-C10	1.474 (9)	С6—Н3	0.950
C3—C8	1.476 (9)	C10—H4	0.950
I2…O1	3.150 (5)	C9…C5 ^v	3.539 (13)
O1…C3	2.884 (8)	C10····O3 ^{vii}	2.980 (10)
O2…C1	3.566 (9)	C10…C5 ⁱⁱ	3.421 (11)
O2…C4	2.862 (8)	C10…C6 ⁱⁱ	3.199 (13)
O2…C10	2.895 (9)	C10…C7 ⁱⁱ	3.574 (14)
O3…C1	2.840 (8)	C10····C10 ^{vii}	3.072 (13)
C1…C7	3.579 (10)	I1…H2	3.0418
C1…C8	2.730 (11)	I1…H3	3.0886
C2…C9	2.778 (9)	I2…H3	3.0562
C4…C7	2.811 (9)	O2…H2	2.5939
С5…С9	2.772 (10)	O2…H4	2.6052
C6…C8	2.806 (9)	O3…H1	2.5096
I1…O2 ⁱ	3.405 (7)	C1…H4	3.2682
I1…O3 ⁱⁱ	3.594 (6)	C3…H1	3.2906
I2…O2 ⁱⁱⁱ	3.352 (5)	С3…Н2	2.6671
I2…O3 ^{iv}	3.514 (7)	C3…H4	2.6866
O1…C3 ⁱⁱ	3.587 (12)	C4…H3	3.2790
O1…C5 ^v	3.557 (10)	C6…H2	3.2839
O2…I1 ⁱ	3.405 (7)	С9…Н1	3.1762
O2…I2 ^{vi}	3.352 (5)	С9…Н2	3.2812
O2···C7 ⁱⁱ	3.585 (10)	С9…Н3	3.2682
O2…C9 ⁱⁱ	3.599 (10)	C10…H1	2.5423
O3…I1 ⁱⁱ	3.594 (6)	H1…H4	3.4744
O3…I2 ^{iv}	3.514 (7)	I1····H2 ⁱ	3.0877
O3…O3 ^{vii}	3.353 (8)	I1…H4 ^{ix}	3.2019

O3····C2 ^{vii}	3.493 (10)	I2…H1 ^{iv}	3.3483
O3…C5 ⁱⁱ	3.492 (12)	O1…H1 ^{iv}	3.5832
O3····C6 ^{viii}	3.381 (8)	O3····H3 ^{viii}	2.4768
O3…C6 ⁱⁱ	3.531 (13)	O3…H3 ⁱⁱ	3.4952
O3····C10 ^{vii}	2.980 (10)	O3····H4 ^{vii}	2.8657
C1···C4 ⁱⁱ	3.329 (13)	C1···H2 ⁱⁱ	3.4833
C1···C8 ⁱⁱ	3.548 (14)	C3…H3 ^v	3.4417
C2…O3 ^{vii}	3.493 (10)	C4…H1 ⁱⁱ	3.3938
C2···C4 ⁱⁱ	3.580 (11)	C5…H1 ⁱⁱ	3.5387
C2···C5 ⁱⁱ	3.571 (11)	C6…H4 ⁱⁱ	3.1756
C2…C8 ⁱⁱ	3.577 (12)	C7…H2 ^v	3.5512
C2…C9 ⁱⁱ	3.581 (14)	C7···H4 ⁱⁱ	3.3859
C3…O1 ⁱⁱ	3.587 (12)	C10···H3 ^{viii}	3.3078
C3···C6 ^v	3.451 (13)	C10H3 ⁱⁱ	3.3304
C3···C9 ⁱⁱ	3.346 (12)	C10···H4 ^{vii}	3.1352
C4…C1 ⁱⁱ	3 329 (13)	H1···I2 ^{iv}	3 3483
$C4\cdots C2^{ii}$	3 580 (11)	H1···O1 ^{iv}	3 5832
$C4\cdots C7^{v}$	3 518 (13)	H1···C4 ⁱⁱ	3 3938
$C4\cdots C9^{v}$	3,310(13) 3,413(12)	H1···C5 ⁱⁱ	3 5387
$C_{2} = C_{2}$	3,415(12) 3,557(10)	H1H2 ⁱⁱ	3 /018
$C5O3^{ii}$	3.492(12)	H1 H2	3.0877
C5C2 ⁱⁱ	3.492(12)	$H2C1^{ii}$	3 1833
C_{2}^{C}	3.571 (11)	$H^2 = C^T$ $H^2 = C^T$	3 5512
C5C10 ⁱⁱ	3.339(13) 3.421(11)		3.0018
C6O3 ^{ix}	3.421(11) 3.381(8)	$H_2 = H_1$ $H_2 = H_2^i$	3 5303
C6O3 ⁱⁱ	3.531(0)	$H_2 = H_2$ $H_3 \dots O_3^{i_X}$	2.2393 2.4768
C6C3 ^v	3.551(13)	H3O3 ⁱⁱ	2.4708
C6···C8 ^v	3.431(13)	H3C3v	3.4932
	3.520(13) 3.100(13)	$H_{2} = C_{10} I_{10}$	3.4417
	5.199(15)		2.2204
C7C4x	5.565(10) 2 518(12)	H3L12x	2.5304
$C7 \cdots C4^{n}$	3.318(13)		2 2016
C7C8 ¹	5.555(11)		5.2910 2.1545
	3.374(14)		3.1545
	3.548 (14)		3.2019
C8C2"	3.577(12)		2.805/
C_{8}	5.520 (15) 2.522 (11)		5.1/50 2.2950
	3.533 (11)		3.3859
C902"	3.599 (10)		3.1352
C9C2"	3.581 (14)		3.2916
C9C3"	3.346 (12)		3.1545
C9C4 ^v	3.413 (12)	H4····H4 ^{vii}	3.4680
C1—O1—C9	117.8 (5)	C3—C8—C4	119.6 (6)
O1—C1—C2	126.0 (7)	C3—C8—C9	121.5 (6)
C1—C2—C3	120.3 (6)	C4—C8—C9	118.9 (6)
C1—C2—C10	119.5 (7)	O1—C9—C7	116.8 (6)
C3—C2—C10	120.2 (6)	O1—C9—C8	121.5 (6)
O2—C3—C2	123.5 (6)	C7—C9—C8	121.7 (6)

O2—C3—C8	123.7 (7)	O3—C10—C2	125.0 (7)
C2—C3—C8	112.8 (5)	O1—C1—H1	116.984
C5—C4—C8	119.7 (6)	C2—C1—H1	116.981
I1—C5—C4	119.2 (5)	С5—С4—Н2	120.173
I1—C5—C6	119.6 (5)	C8—C4—H2	120.164
C4—C5—C6	121.1 (7)	С5—С6—Н3	120.281
C5—C6—C7	119.4 (6)	С7—С6—Н3	120.280
I2—C7—C6	119.1 (5)	O3—C10—H4	117.476
I2—C7—C9	121.7 (5)	С2—С10—Н4	117.479
С6—С7—С9	119.2 (6)		
C1 O1 C0 C7	178 2 (7)	C9 C4 C5 11	17(2(7))
C1 = 01 = C9 = C7	-1/8.3(/)		1/6.2 (/)
C1 = 01 = C9 = C8	2.2 (11)		-1.5 (13)
C9—01—C1—C2	-1.6 (13)	$H_2 - C_4 - C_5 - I_1$	-3.8
C9—OI—CI—HI	1/8.5	H2-C4-C5-C6	178.5
01	-0.3 (14)	H2—C4—C8—C3	1.8
01-C1-C2-C10	177.4 (8)	H2—C4—C8—C9	-179.1
H1—C1—C2—C3	179.7	11—C5—C6—C7	-176.9 (5)
H1—C1—C2—C10	-2.6	I1—C5—C6—H3	3.1
C1—C2—C3—O2	179.9 (8)	C4—C5—C6—C7	0.9 (13)
C1—C2—C3—C8	1.4 (12)	C4—C5—C6—H3	-179.1
C1—C2—C10—O3	7.6 (14)	C5—C6—C7—I2	-179.4 (7)
C1—C2—C10—H4	-172.4	C5—C6—C7—C9	0.4 (13)
C3—C2—C10—O3	-174.7 (8)	H3—C6—C7—I2	0.6
C3—C2—C10—H4	5.3	Н3—С6—С7—С9	-179.6
C10—C2—C3—O2	2.3 (13)	I2—C7—C9—O1	-0.7 (11)
C10—C2—C3—C8	-176.3 (7)	I2—C7—C9—C8	178.8 (5)
O2—C3—C8—C4	-0.2 (13)	C6-C7-C9-O1	179.5 (7)
O2—C3—C8—C9	-179.3 (8)	C6—C7—C9—C8	-1.0 (13)
C2—C3—C8—C4	178.4 (7)	C3—C8—C9—O1	-1.1 (12)
C2—C3—C8—C9	-0.7 (11)	C3—C8—C9—C7	179.5 (7)
C5—C4—C8—C3	-178.2 (7)	C4—C8—C9—O1	179.8 (7)
C5—C4—C8—C9	0.9 (12)	C4—C8—C9—C7	0.3 (12)

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+1, -z+1; (iii) x, y-1, z+1; (iv) -x+2, -y, -z+1; (v) -x+1, -y+1, -z+1; (vi) x, y+1, z-1; (vii) -x+2, -y+1, -z; (viii) x+1, y, z-1; (ix) x-1, y, z+1; (x) -x+1, -y+1, -z+2.