

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1:1 Co-crystal of 4,4'-(ethene-1,2-diyl)dipyridin-1-ium sulfate and hexaaquairon(II) sulfate monohydrate

Dan Yang* and Fei-Lin Yang

School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China Correspondence e-mail: aihua.yuan@just.edu.cn

Received 27 March 2014; accepted 30 March 2014

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.072; data-to-parameter ratio = 14.2.

In the title hydrated double salt, 4,4'-(ethene-1,2-diyl)dipyridin-1-ium hexaaquairon(II) bis(sulfate) monohydrate, $(C_{12}H_{12}N_2)$ [Fe(H₂O)₆](SO₄)₂·H₂O, the Fe^{II} cation is coordinated by six water molecules in a slightly distorted octahedral geometry; the two pyridine rings of the 4,4'-(ethene-1,2diyl)dipyridin-1-ium cation are twisted to each other by a dihedral angle of 11.84 (10)°. In the crystal, the cations, sulfate anions and water molecules of crystallization are linked by $O-H\cdots O$, $N-H\cdots O$ and weak $C-H\cdots O$ hydrogen bonds, forming a three-dimensional supramolecular network.

Related literature

For a related structure, see: Prakash *et al.* (2012). For the synthesis, see: Bok *et al.* (1975).

Experimental

Crystal data

 $\begin{array}{c} (C_{12}H_{12}N_2)[Fe(H_2O)_6](SO_4)_2 \cdot H_2O & p \\ M_r = 558.32 & M \\ Triclinic, \ \ensuremath{\mathcal{P}\overline{1}} & 2 \\ a = 6.772 \ (1) \ \ensuremath{\mathring{A}} & M \\ b = 12.5006 \ (18) \ \ensuremath{\mathring{A}} & p \\ c = 14.187 \ (2) \ \ensuremath{\mathring{A}} & m \\ \alpha = 68.991 \ (2)^\circ & 0 \\ \beta = 81.829 \ (2)^\circ \end{array}$

$$\begin{split} \gamma &= 87.925 \ (2)^{\circ} \\ V &= 1109.6 \ (3) \ \text{\AA}^3 \\ Z &= 2 \\ \text{Mo } & \kappa \alpha \text{ radiation} \\ \mu &= 0.94 \ \text{mm}^{-1} \\ T &= 173 \ \text{K} \\ 0.26 \times 0.23 \times 0.08 \ \text{mm} \end{split}$$

 $R_{\rm int} = 0.014$

8479 measured reflections

4117 independent reflections

3601 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART APEXII diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) T_{min} = 0.79, T_{max} = 0.93

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	289 parameters
$wR(F^2) = 0.072$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
4117 reflections	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1X···O13	0.89	1.74	2.622 (2)	173
$N2 - H2X \cdot \cdot \cdot O10^{i}$	0.89	1.75	2.631 (2)	170
$O1 - H1WB \cdots O7$	0.85	1.89	2.733 (2)	175
$O1 - H1WA \cdots O9^{ii}$	0.85	1.90	2.741 (2)	170
$O2 - H2WA \cdots O8$	0.85	1.90	2.719 (2)	161
$O2 - H2WB \cdots O12$	0.85	1.86	2.711 (2)	175
$O3-H3WA\cdots O8^{ii}$	0.85	1.91	2.751 (2)	169
O3−H3WB···O11	0.85	1.88	2.726 (2)	174
O4−H4WA···O11 ⁱⁱⁱ	0.85	1.85	2.696 (2)	171
$O4-H4WB\cdots O12^{iv}$	0.85	1.86	2.710 (2)	175
$O5-H5WA\cdots O15$	0.85	1.90	2.742 (2)	169
O5-H5WB···O14 ⁱⁱⁱ	0.85	1.90	2.750 (2)	175
$O6-H6WA\cdots O15^{v}$	0.85	1.93	2.763 (2)	165
$O6-H6WB\cdots O14^{iv}$	0.85	1.89	2.739 (2)	180
$O15-H15A\cdots O9^{ii}$	0.85	1.97	2.780 (2)	159
$O15-H15B\cdots O7^{vi}$	0.85	1.92	2.7628 (19)	174
$C1 - H1 \cdots O8^{vii}$	0.95	2.48	3.339 (3)	150
$C1 - H1 \cdots O10^{vii}$	0.95	2.31	3.172 (2)	150
C11−H11···O13 ^{viii}	0.95	2.34	3.189 (2)	149
C11−H11···O14 ^{viii}	0.95	2.43	3.291 (3)	151

Symmetry codes: (i) -x, -y, -z; (ii) x + 1, y, z; (iii) -x + 1, -y + 1, -z + 1; (iv) -x, -y + 1, -z + 1; (v) x - 1, y, z; (vi) -x + 1, -y + 1, -z; (vii) -x, -y, -z + 1; (viii) x, y, z - 1.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5782).

References

Bok, L. D. C., Leipoldt, J. G. & Basson, S. S. (1975). Z. Anorg. Allg. Chem. 415, 81–83.

- Brandenburg, K. (2006). *DIAMOND*. Crystal ImpactGbR, Bonn, Germany. Bruker (2001). *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Prakash, M. J., Oliver, A. G. & Sevov, S. C. (2012). Cryst. Growth Des. 12, 2684–2690.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2014). E70, m169 [doi:10.1107/S1600536814007053]

1:1 Co-crystal of 4,4'-(ethene-1,2-diyl)dipyridin-1-ium sulfate and hexaaquairon(II) sulfate monohydrate

Dan Yang and Fei-Lin Yang

S1. Comment

In this paper, we used $[Mo(CN)_8]^{3-}$ as building block to react with transition metal Fe²⁺ ions and 1,2-di(pyridin-4-yl)ethylene ligand (dpe), in order to obtain octacyanometalate-based bimetallic compound. Unfortunately, the title ion-type compound was obtained. The asymmetric unit of the title compound contains one 1,2-bis-(4-pyridyl)ethylene cation, $[H_2dpe]^{2+}$, two sulfate anions, one hexaaqua-iron(II) cation, and one crystallized water molecule (Fig. 1). In the structure, the Fe atom adopts a distorted slightly octahedral geometry, in which the average distance of Fe—O bonds is about 2.118 Å. The $[Fe(H_2O)_6]^{2+}$ cations, sulfate anions, and guest water molecules are linked by O—H…O hydrogen bonds, forming a two-dimensional (2-D) layered structure. The N—H…O hydrogen bonds between adjacent layers generate a 3-D supramolecular network (Fig. 2). The structure of the title compound is comparable to that observed in related compound (Prakash *et al.*, 2012).

S2. Experimental

The title compound was prepared at room temperature by slow diffusion between a CH_3CH_2OH/H_2O (V/V = 2:1) solution containing FeSO₄.7H₂O (0.05 mmol) and dpe ligand (0.10 mmol), and a CH_3CH_2OH/H_2O (V:V = 2:1) solution of [HN(*n*-C₄H₉)₃]₃[Mo(CN)₈].4H₂O (0.025 mmol) (Bok *et al.*, 1975). After two weeks, brown plate crystals were obtained.

S3. Refinement

All non-H atoms were refined anisotropically. The (C)H atoms of dpe were calculated at idealized positions and included in the refinement in a riding mode. The (N)H of dpe and (O)H atoms of water molecules were located from a difference Fourier map and refined as riding [N—H = 0.89 Å, $U(H) = 1.2U_{eq}(N)$; O—H = 0.85 Å, $U(H) = 1.5U_{eq}(O)$].

Figure 1

The molecular structure of the title compound with thermal ellipsoids at the 30% probability level. All H atoms were omitted for clarity.

Figure 2

The three-dimensional supramolecular network of the title compound.

4,4'-(Ethene-1,2-diyl)dipyridin-1-ium hexaaquairon(II) bis(sulfate) monohydrate

= 12.5006 (18) Å
= 14.187 (2) Å
= 68.991 (2)°
= 81.829 (2)°
= 87.925 (2)°

V = 1109.6 (3) Å³ Z = 2 F(000) = 580 $D_x = 1.671$ Mg m⁻³ Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 4117 reflections

Data collection

Bruker SMART APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.79, T_{\max} = 0.93$

Refinement

Refinement on F^2

 $wR(F^2) = 0.072$

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.027$

ealed tube ealed tube 3601 reflections with $I > 2\sigma(I)$ $R_{int} = 0.014$ $\theta_{max} = 25.6^{\circ}, \theta_{min} = 3.0^{\circ}$ $h = -8 \rightarrow 8$ $k = -15 \rightarrow 15$ $l = -17 \rightarrow 17$ Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

 $\theta = 3.0 - 25.6^{\circ}$

 $\mu = 0.94 \text{ mm}^{-1}$

T = 173 K

Plate, brown

 $0.26 \times 0.23 \times 0.08 \text{ mm}$

8479 measured reflections

S = 1.04H-atom parameters constrained4117 reflections $w = 1/[\sigma^2(F_o^2) + (0.0384P)^2 + 0.3901P]$ 289 parameters $where P = (F_o^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{max} = 0.001$ Primary atom site location: structure-invariant
direct methods $\Delta \rho_{min} = -0.42 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Fe1	0.30537 (4)	0.51818 (2)	0.268630 (19)	0.02402 (9)	
S1	-0.15024 (7)	0.27787 (4)	0.19605 (3)	0.02389 (11)	
S2	0.25179 (7)	0.26222 (4)	0.62987 (3)	0.02462 (11)	
N1	0.2643 (2)	0.05496 (15)	0.51392 (12)	0.0323 (4)	
H1X	0.2705	0.0772	0.5664	0.039*	
N2	0.2490 (2)	-0.07642 (15)	-0.08553 (12)	0.0319 (4)	
H2X	0.2430	-0.0967	-0.1392	0.038*	
01	0.3515 (2)	0.42427 (13)	0.17016 (12)	0.0423 (4)	
H1WA	0.4625	0.4022	0.1478	0.063*	
H1WB	0.2660	0.3818	0.1614	0.063*	
O2	0.0864 (2)	0.40216 (14)	0.36832 (11)	0.0489 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H2WA	0.0035	0.3615	0.3555	0.073*
H2WB	0.0820	0.3740	0.4327	0.073*
O3	0.5165 (2)	0.42177 (14)	0.35920 (11)	0.0455 (4)
H3WA	0.6108	0.3812	0.3446	0.068*
H3WB	0.4920	0.3939	0.4239	0.068*
O4	0.2662 (2)	0.63014 (14)	0.35026 (12)	0.0444 (4)
H4WA	0.3541	0.6413	0.3831	0.067*
H4WB	0.1579	0.6494	0.3778	0.067*
05	0.53157 (19)	0.63820 (11)	0.17344 (10)	0.0319 (3)
H5WA	0.6162	0.6194	0.1321	0.048*
H5WB	0.6023	0.6616	0.2073	0.048*
06	0.0777(2)	0.61071 (12)	0.18625 (10)	0.0333(3)
H6WA	0.0236	0 5954	0 1419	0.050*
H6WB	-0.0144	0.6420	0 2141	0.050*
07	0.0587(2)	0.29477(12)	0.14664 (10)	0.0339(3)
08	-0.1730(2)	0.227177(12) 0.31232(12)	0.28575(10)	0.0355(3)
08	-0.2785(2)	0.31232(12) 0.34627(13)	0.20373(10) 0.12172(11)	0.0355(3)
010	-0.2769(2)	0.34027(13) 0.15596(11)	0.12172(11) 0.22004(10)	0.0378(3)
010	0.2039(2) 0.4357(2)	0.13390(11) 0.21751(15)	0.22994(10)	0.0388(4)
012	0.4337(2)	0.31731(13) 0.20086(14)	0.50501(11) 0.57251(10)	0.0437(4)
012	0.0823(2)	0.29960(14) 0.12740(12)	0.57231(10) 0.65042(11)	0.0400(4)
013	0.2703(3)	0.13740(12) 0.28988(12)	0.03942(11) 0.72268(10)	0.0481(4)
014	0.2198(2)	0.20000 (12)	0.72308(10)	0.0323(3)
015	0.8392 (2)	0.57495 (12)	0.05726 (10)	0.0363 (3)
HISA	0.8100	0.5079	0.0608	0.054*
HISB	0.8754	0.6109	-0.0059	0.054*
Cl	0.2380 (3)	-0.05528 (18)	0.52884 (14)	0.0326 (4)
H1	0.2182	-0.1102	0.5962	0.039*
C2	0.2395 (3)	-0.08957 (17)	0.44725 (14)	0.0312 (4)
H2	0.2230	-0.1684	0.4581	0.037*
C3	0.2651 (3)	-0.00942 (16)	0.34859 (13)	0.0255 (4)
C4	0.2926 (3)	0.10517 (17)	0.33679 (15)	0.0340 (5)
H4	0.3117	0.1624	0.2705	0.041*
C5	0.2919 (3)	0.13460 (18)	0.42025 (16)	0.0364 (5)
H5	0.3112	0.2125	0.4119	0.044*
C6	0.2634 (3)	-0.04685 (16)	0.26238 (14)	0.0303 (4)
H6	0.2730	-0.1267	0.2750	0.036*
C7	0.2494 (3)	0.02256 (16)	0.16764 (14)	0.0273 (4)
H7	0.2379	0.1022	0.1554	0.033*
C8	0.2502 (3)	-0.01417 (15)	0.08059 (13)	0.0249 (4)
C9	0.2601 (3)	-0.12954 (16)	0.08962 (14)	0.0297 (4)
Н9	0.2673	-0.1878	0.1542	0.036*
C10	0.2595 (3)	-0.15785 (17)	0.00524 (15)	0.0326 (4)
H10	0.2666	-0.2360	0.0112	0.039*
C11	0.2405 (3)	0.03440 (17)	-0.09822 (14)	0.0321 (4)
H11	0.2340	0.0902	-0.1640	0.038*
C12	0.2412 (3)	0.06773 (16)	-0.01616 (14)	0.0290 (4)
H12	0.2356	0.1468	-0.0252	0.035*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.02364 (15)	0.02605 (15)	0.02441 (15)	0.00119 (11)	-0.00470 (11)	-0.01102 (11)
S 1	0.0272 (2)	0.0257 (2)	0.0205 (2)	-0.00155 (18)	-0.00298 (18)	-0.01036 (18)
S2	0.0258 (2)	0.0328 (2)	0.0187 (2)	0.00145 (19)	-0.00384 (17)	-0.01322 (19)
N1	0.0343 (9)	0.0449 (10)	0.0267 (9)	0.0050 (8)	-0.0070 (7)	-0.0228 (8)
N2	0.0331 (9)	0.0448 (10)	0.0233 (8)	-0.0038 (8)	-0.0019 (7)	-0.0191 (7)
O1	0.0308 (8)	0.0552 (9)	0.0579 (10)	0.0007 (7)	-0.0048 (7)	-0.0413 (8)
O2	0.0513 (10)	0.0627 (10)	0.0264 (8)	-0.0277 (8)	-0.0064 (7)	-0.0051 (7)
O3	0.0424 (9)	0.0622 (10)	0.0300 (8)	0.0226 (8)	-0.0101 (7)	-0.0144 (7)
O4	0.0270 (8)	0.0698 (11)	0.0579 (10)	0.0054 (7)	-0.0072 (7)	-0.0486 (9)
O5	0.0273 (7)	0.0379 (8)	0.0338 (7)	-0.0032 (6)	-0.0007 (6)	-0.0177 (6)
O6	0.0294 (7)	0.0426 (8)	0.0345 (8)	0.0093 (6)	-0.0119 (6)	-0.0198 (6)
O7	0.0279 (7)	0.0415 (8)	0.0301 (7)	0.0005 (6)	-0.0014 (6)	-0.0111 (6)
08	0.0384 (8)	0.0436 (8)	0.0344 (8)	0.0005 (6)	-0.0042 (6)	-0.0263 (7)
09	0.0337 (8)	0.0450 (9)	0.0342 (8)	0.0066 (6)	-0.0112 (6)	-0.0118 (7)
O10	0.0636 (10)	0.0299 (7)	0.0232 (7)	-0.0138 (7)	-0.0015 (7)	-0.0104 (6)
O11	0.0299 (8)	0.0764 (12)	0.0274 (8)	-0.0122 (8)	0.0002 (6)	-0.0150 (8)
O12	0.0278 (8)	0.0661 (10)	0.0281 (7)	0.0064 (7)	-0.0081 (6)	-0.0181 (7)
O13	0.0878 (13)	0.0342 (8)	0.0298 (8)	0.0099 (8)	-0.0152 (8)	-0.0185 (7)
O14	0.0366 (8)	0.0414 (8)	0.0274 (7)	0.0038 (6)	-0.0050 (6)	-0.0218 (6)
O15	0.0439 (9)	0.0407 (8)	0.0249 (7)	-0.0010 (7)	-0.0013 (6)	-0.0137 (6)
C1	0.0354 (11)	0.0403 (11)	0.0201 (9)	-0.0005 (9)	-0.0024 (8)	-0.0088 (8)
C2	0.0416 (12)	0.0284 (10)	0.0250 (10)	0.0002 (9)	-0.0062 (8)	-0.0105 (8)
C3	0.0270 (10)	0.0288 (10)	0.0227 (9)	0.0022 (8)	-0.0042 (7)	-0.0114 (8)
C4	0.0509 (13)	0.0268 (10)	0.0251 (10)	-0.0001 (9)	-0.0075 (9)	-0.0093 (8)
C5	0.0487 (13)	0.0309 (11)	0.0361 (11)	0.0030 (9)	-0.0109 (10)	-0.0182 (9)
C6	0.0434 (12)	0.0269 (10)	0.0242 (10)	0.0004 (8)	-0.0047 (8)	-0.0134 (8)
C7	0.0336 (11)	0.0266 (9)	0.0260 (10)	0.0036 (8)	-0.0072 (8)	-0.0139 (8)
C8	0.0255 (10)	0.0285 (9)	0.0218 (9)	0.0008 (8)	-0.0043 (7)	-0.0101 (8)
C9	0.0413 (12)	0.0267 (10)	0.0223 (9)	0.0018 (8)	-0.0075 (8)	-0.0091 (8)
C10	0.0404 (12)	0.0314 (10)	0.0302 (10)	-0.0005 (9)	-0.0045 (9)	-0.0163 (9)
C11	0.0355 (11)	0.0372 (11)	0.0195 (9)	-0.0052 (9)	-0.0039 (8)	-0.0046 (8)
C12	0.0337 (11)	0.0281 (10)	0.0246 (9)	-0.0025 (8)	-0.0054 (8)	-0.0079 (8)

Geometric parameters (Å, °)

Fe1—O2	2.0954 (14)	O5—H5WA	0.8500
Fe1—O4	2.1019 (14)	O5—H5WB	0.8500
Fe1—O3	2.1059 (14)	O6—H6WA	0.8502
Fe1—O1	2.1101 (14)	O6—H6WB	0.8498
Fe1—O6	2.1199 (13)	O15—H15A	0.8499
Fe1—O5	2.1323 (13)	O15—H15B	0.8498
S1—O9	1.4690 (14)	C1—C2	1.370 (3)
S1—O10	1.4698 (14)	C1—H1	0.9500
S1—O8	1.4700 (13)	C2—C3	1.390 (3)
S1—O7	1.4738 (14)	C2—H2	0.9500

S2—O11	1.4656 (15)	C3—C4	1.397 (3)
S2—O12	1.4663 (14)	C3—C6	1.459 (2)
S2—O13	1.4690 (15)	C4—C5	1.359 (3)
S2—O14	1.4696 (13)	C4—H4	0.9500
N1—C1	1.332 (3)	С5—Н5	0.9500
N1—C5	1.336 (3)	C6—C7	1.328 (3)
N1—H1X	0.8902	С6—Н6	0.9500
N2—C11	1.332 (3)	C7—C8	1.463 (2)
N2—C10	1.334 (3)	С7—Н7	0.9500
N2—H2X	0.8901	C8—C12	1.396 (3)
O1—H1WA	0.8500	C8—C9	1.401 (3)
O1—H1WB	0.8500	C9—C10	1.365 (2)
O2—H2WA	0.8499	С9—Н9	0.9500
O2—H2WB	0.8499	C10—H10	0.9500
O3—H3WA	0.8499	C11—C12	1.371 (3)
O3—H3WB	0.8506	C11—H11	0.9500
O4—H4WA	0.8500	C12—H12	0.9500
O4—H4WB	0.8500		
O2—Fe1—O4	93.26 (6)	H4WA—O4—H4WB	104.0
O2—Fe1—O3	87.76 (6)	Fe1—O5—H5WA	119.6
O4—Fe1—O3	92.10 (6)	Fe1—O5—H5WB	112.5
O2—Fe1—O1	92.61 (6)	H5WA—O5—H5WB	104.2
O4—Fe1—O1	172.85 (6)	Fe1—O6—H6WA	127.3
O3—Fe1—O1	92.22 (6)	Fe1—O6—H6WB	120.8
O2—Fe1—O6	88.65 (6)	H6WA—O6—H6WB	104.1
O4—Fe1—O6	86.54 (6)	H15A—O15—H15B	104.2
O3—Fe1—O6	176.09 (5)	N1—C1—C2	120.11 (18)
O1—Fe1—O6	89.51 (6)	N1—C1—H1	119.9
O2—Fe1—O5	177.16 (5)	C2—C1—H1	119.9
O4—Fe1—O5	84.35 (6)	C1—C2—C3	120.25 (18)
O3—Fe1—O5	90.80 (6)	C1—C2—H2	119.9
O1—Fe1—O5	89.89 (6)	С3—С2—Н2	119.9
O6—Fe1—O5	92.72 (5)	C2—C3—C4	117.53 (16)
O9—S1—O10	109.65 (9)	C2—C3—C6	119.71 (16)
O9—S1—O8	110.74 (9)	C4—C3—C6	122.76 (17)
O10—S1—O8	108.44 (8)	C5—C4—C3	119.92 (18)
O9—S1—O7	108.66 (8)	C5—C4—H4	120.0
O10—S1—O7	109.39 (9)	C3—C4—H4	120.0
O8—S1—O7	109.95 (8)	N1—C5—C4	120.65 (18)
O11—S2—O12	109.56 (9)	N1—C5—H5	119.7
O11—S2—O13	108.96 (10)	C4—C5—H5	119.7
O12—S2—O13	109.22 (9)	С7—С6—С3	124.73 (17)
O11—S2—O14	110.64 (8)	С7—С6—Н6	117.6
O12—S2—O14	110.64 (8)	С3—С6—Н6	117.6
O13—S2—O14	107.78 (8)	C6—C7—C8	125.04 (17)
C1—N1—C5	121.54 (16)	С6—С7—Н7	117.5
C1—N1—H1X	120.5	С8—С7—Н7	117.5

C5—N1—H1X	117.9	C12—C8—C9	117.67 (16)
C11—N2—C10	122.22 (16)	C12—C8—C7	119.59 (16)
C11—N2—H2X	118.6	C9—C8—C7	122.74 (16)
C10—N2—H2X	119.1	С10—С9—С8	119.68 (18)
Fe1—O1—H1WA	126.9	С10—С9—Н9	120.2
Fe1—O1—H1WB	126.3	С8—С9—Н9	120.2
H1WA—O1—H1WB	103.8	N2—C10—C9	120.40 (18)
Fe1—O2—H2WA	129.5	N2—C10—H10	119.8
Fe1—O2—H2WB	124.8	С9—С10—Н10	119.8
H2WA—O2—H2WB	104.3	N2—C11—C12	119.85 (17)
Fe1—O3—H3WA	129.3	N2—C11—H11	120.1
Fe1—O3—H3WB	122.0	C12—C11—H11	120.1
H3WA—O3—H3WB	104.3	C11—C12—C8	120.17 (18)
Fe1—O4—H4WA	123.2	C11—C12—H12	119.9
Fe1—O4—H4WB	128.2	C8—C12—H12	119.9

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
N1—H1 <i>X</i> ···O13	0.89	1.74	2.622 (2)	173
$N2-H2X\cdots O10^{i}$	0.89	1.75	2.631 (2)	170
O1—H1 <i>WB</i> ···O7	0.85	1.89	2.733 (2)	175
O1—H1 <i>WA</i> ···O9 ⁱⁱ	0.85	1.90	2.741 (2)	170
O2—H2 <i>WA</i> ···O8	0.85	1.90	2.719 (2)	161
O2—H2 <i>WB</i> ···O12	0.85	1.86	2.711 (2)	175
O3—H3 <i>WA</i> ···O8 ⁱⁱ	0.85	1.91	2.751 (2)	169
O3—H3 <i>WB</i> ···O11	0.85	1.88	2.726 (2)	174
O4—H4 <i>WA</i> ···O11 ⁱⁱⁱ	0.85	1.85	2.696 (2)	171
$O4$ — $H4WB$ ···O 12^{iv}	0.85	1.86	2.710 (2)	175
O5—H5 <i>WA</i> ···O15	0.85	1.90	2.742 (2)	169
O5—H5 <i>WB</i> ···O14 ⁱⁱⁱ	0.85	1.90	2.750 (2)	175
O6—H6 <i>WA</i> ···O15 ^v	0.85	1.93	2.763 (2)	165
O6—H6 <i>WB</i> ···O14 ^{iv}	0.85	1.89	2.739 (2)	180
O15—H15A···O9 ⁱⁱ	0.85	1.97	2.780 (2)	159
O15—H15 <i>B</i> ···O7 ^{vi}	0.85	1.92	2.7628 (19)	174
C1—H1···O8 ^{vii}	0.95	2.48	3.339 (3)	150
C1—H1···O10 ^{vii}	0.95	2.31	3.172 (2)	150
C11—H11…O13 ^{viii}	0.95	2.34	3.189 (2)	149
C11—H11···O14 ^{viii}	0.95	2.43	3.291 (3)	151

Symmetry codes: (i) -*x*, -*y*, -*z*; (ii) *x*+1, *y*, *z*; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*, -*y*+1, -*z*+1; (v) *x*-1, *y*, *z*; (vi) -*x*+1, -*y*+1, -*z*; (vii) -*x*, -*y*, -*z*+1; (viii) *x*, *y*, *z*-1.