Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368
 Diethyl 2,2'-(ethane-1,2-diyldioxy)dibenzoate

Huaduan Shi, Haisha Qin and Zhen Ma*
School of Chemistry and Chemical Engeneering, Guangxi University, Guangxi 530004, People's Republic of China
Correspondence e-mail: mzmz2009@sohu.com

Received 20 March 2014; accepted 6 April 2014

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; disorder in main residue; R factor $=0.041 ; w R$ factor $=0.132$; data-to-parameter ratio $=15.7$.

The molecular title compound, $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6}$, was obtained by the reaction of ethyl 2-hydroxybenzoate with 1,2-dichloroethane. The molecule lies on a twofold rotation axis which passes through the middle of the central ethylene bridge. This group exhibits a gauche conformation with the corresponding $\mathrm{O}-$ $\mathrm{C}-\mathrm{C}-\mathrm{O}$ torsion angle being $73.2(2)^{\circ}$. The C atoms of the carboxyl group, the aryl and the $\mathrm{O}-\mathrm{CH}_{2}$ group are coplanar, with an r.m.s. deviation of $0.01 \AA$. The two aryl rings form a dihedral angle of $67.94(4)^{\circ}$. The ester ethyl group is disordered over two sets of sites with an occupancy ratio of 0.59 (2):0.41 (2). The crystal packing is dominated by van der Waals forces.

Related literature

For synthesis and structures of diesters, see: Ma et al. (2012); Hou \& Kan (2007). For properties and applications of diesters, see: Chen \& Liu (2002). For the synthesis of the title compound, see: Ma \& Liu (2002). For standard bond lengths, see: Allen et al. (1987). For background to the applications of organic acids and esters, see: Chanthapally et al. (2012); Yan et al. (2012).

Experimental

Crystal data
$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6}$
$M_{r}=358.38$

$$
Z=4
$$

Orthorhombic, Pbcn
$a=21.805$ (4) \AA
$b=9.871$ (2) \AA
$c=8.8646(18) \AA$

Data collection

Bruker SMART CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.858, T_{\text {max }}=1.000$

$$
V=1908.0(6) \AA^{3}
$$

Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
$0.35 \times 0.31 \times 0.28 \mathrm{~mm}$

11280 measured reflections 2192 independent reflections 1543 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.023$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041 \quad 24$ restraints
$w R\left(F^{2}\right)=0.132 \quad \mathrm{H}$-atom parameters constrained
$S=1.04$
2192 reflections
140 parameters
$\Delta \rho_{\text {max }}=0.17 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.14 \mathrm{e}^{-3}$

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors are grateful for financial support from the National Fundation of China (21261002).

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5015).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1-19.

Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin,USA.
Chanthapally, A., Kole, G. K., Qian, K., Tan, G. K., Gao, S. \& Vittal, J. J. (2012). Chem. Eur. J. 8, 7869-7877.
Chen, X. \& Liu, G. (2002). Chem. Eur. J. 8, 4811-4817.
Hou, L.-M. \& Kan, Y.-H. (2007). Acta Cryst. E63, o2157-o2158.
Ma, Z., Liang, B. \& Lu, W. (2012). Acta Cryst. E68, m370.
Ma, Z. \& Liu, S.-X. (2002). Chin. J. Struct. Chem. 21, 533-537.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Yan, C., Li, K., Wei, S.-C., Wang, H.-P., Fu, L., Pan, M. \& Su, C.-Y. (2012). J. Mater. Chem. 22, 9846-9852.

supporting information

Acta Cryst. (2014). E70, o552 [doi:10.1107/S1600536814007673]

Diethyl 2,2'-(ethane-1,2-diyldioxy)dibenzoate

Huaduan Shi, Haisha Qin and Zhen Ma

S1. Comment

In recent years the chemistry of carboxylic compounds has been the subject of intense studies because of the potential applications of these compounds as ligands for metal complexes or of potential applications as luminescent, non-linear optical, electrical conductive and liquid-crystalline materials (Yan et al., 2012. Chanthapally et al., 2012). Esters are also very important since these compounds are commodity chemicals used as intermediates in the manufacture of acids and in the production of numerous important industrial products. Hence, the current work aims to synthesize new esters for acid production and for investigation of their coordination behaviors with metal ions (Ma et al., 2012; Chen \& Liu, 2002). Here, we report the crystal structure of a new diester, $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6}$, which was obtained by reaction of ethyl 2-hydroxybenzoate with 1,2-dichloroethane.
The structure of $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6}$ consists of a neutral molecular unit (Fig. 1). The molecule lies on a twofold rotation axis which passes through the middle of the central ethylene bridge that has a gauche conformation with the corresponding O $-\mathrm{C}-\mathrm{C}-\mathrm{O}$ torsion angle being 73.2 (2) ${ }^{\circ}$. All bond lengths and angles are within normal ranges (Allen et al., 1987). The carbon atom of the carboxyl group, and the aryl and $\mathrm{O}-\mathrm{CH}_{2}$ moeities of one half molecule are coplanar with an r.m.s. deviation of $0.01 \AA$. The two aryl rings form a dihedral angle of 67.94 (4) ${ }^{\circ}$. The ester ethyl group is disordered over two sets of sites in a 0.59 (2):0.41 (2) occupancy ratio. The packing of the molecules in the crystal structure is shown in Fig. 2.

S2. Experimental

The title compound was obtained by the reaction of ethyl 2- hydroxybenzoate with 1,2-dichloroethane in N, N^{\prime} - dimethylformamide (DMF) according to a reported procedure (Ma \& Liu, 2002). In a $100 \mathrm{~cm}^{3}$ flask fitted with a funnel, ethyl 2hydroxybenzoate ($8.3 \mathrm{~g}, 50 \mathrm{~m} M$) and potassium carbonate were mixed in $50 \mathrm{~cm}^{3}$ of DMF. To this solution was added dropwise a stoichiometric quantity of 1,2-dichloroethane ($2.5 \mathrm{~g}, 25 \mathrm{mM}$) dissolved in $20 \mathrm{~cm}^{3}$ of DMF for a period of an hour under stirring. The mixture was further stirred for 24 h at 353 K . The solution was concentrated under reduced pressure and the white solid precipitated by adding a large quantity of water ($200 \mathrm{~cm}^{3}$) was filtered off and recrystallized from ethanol and decolored with activated carbon. A colorless solid was finally obtained (yield 81%, m.p: 417-419 K). Slow evaporation of a solution of the title compound in ethanol and dichloromethane (1:1) led to the formation of colorless crystals, which were suitable for X-ray characterization.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and with $U_{\mathrm{iso}}(\mathrm{H})$ $=1.2$ times $U_{\mathrm{cq}}(\mathrm{C})$ or 1.5 times U_{eq} (methyl C). The two carbon atoms of the ethyl group are disordered over two sets of sites with an occupancy ratio of 0.59 (2):0.41 (2). The C atoms of this group were additionally refined with the ISOR command in SHELXL.

Figure 1
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius. [symmetry code: (A) $1-x, y, 1 / 2-z$]

Figure 2
A view of the crystal packing along the c axis.

Diethyl 2,2'-(ethane-1,2-diyldioxy)dibenzoate

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{6}$
$M_{r}=358.38$
Orthorhombic, Pbcn
Hall symbol: -P 2n 2ab
$a=21.805$ (4) \AA
$b=9.871$ (2) \AA
$c=8.8646(18) \AA$
$V=1908.0(6) \AA^{3}$
$Z=4$
$F(000)=760$
$D_{\mathrm{x}}=1.248 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 11280 reflections
$\theta=1.9-27.6^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Prism, colourless
$0.35 \times 0.31 \times 0.28 \mathrm{~mm}$

Data collection

Bruker SMART CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 0 pixels mm^{-1}
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)

> 11280 measured reflections
> 2192 independent reflections
> 1543 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.023$
> $\theta_{\max }=27.6^{\circ}, \theta_{\min }=1.9^{\circ}$
> $h=-28 \rightarrow 27$
> $k=-10 \rightarrow 12$
> $l=-10 \rightarrow 11$
$T_{\text {min }}=0.858, T_{\text {max }}=1.000$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.132$
$S=1.04$
2192 reflections
140 parameters
24 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> Hydrogen site location: inferred from \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0606 P)^{2}+0.335 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.14 \mathrm{e} \AA^{-3}$
> Extinction correction: $S H E L X L 97($ Sheldrick, \quad 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
> Extinction coefficient: $0.0102(19)$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$	Occ. (<1)
O1	$0.36609(7)$	$0.94335(11)$	$0.09160(14)$	$0.0784(4)$	
O2	$0.41410(7)$	$0.77861(13)$	$-0.03024(15)$	$0.0880(5)$	
O3	$0.43658(5)$	$0.59258(11)$	$0.20505(13)$	$0.0632(3)$	
C1	$0.38057(7)$	$0.81417(15)$	$0.06775(17)$	$0.0570(4)$	
C02A	$0.3859(9)$	$1.0477(15)$	$-0.0051(11)$	$0.075(3)$	$0.41(2)$
H02A	0.4024	1.0099	-0.0976	0.090^{*}	$0.41(2)$
H02B	0.3518	1.1066	-0.0307	0.090^{*}	$0.41(2)$
C02B	$0.4008(7)$	$1.0397(13)$	$-0.0105(13)$	$0.114(4)$	$0.59(2)$
H02C	0.4421	1.0064	-0.0273	0.137^{*}	$0.59(2)$
H02D	0.3804	1.0466	-0.1074	0.137^{*}	$0.59(2)$
C2	$0.34747(7)$	$0.72278(14)$	$0.17329(15)$	$0.0522(4)$	
C01A	$0.4309(8)$	$1.120(2)$	$0.0708(15)$	$0.127(4)$	$0.41(2)$
H01A	0.4127	1.1683	0.1536	0.191^{*}	$0.41(2)$
H01B	0.4497	1.1835	0.0029	0.191^{*}	$0.41(2)$

H01C	0.4614	1.0587	0.1084	0.191^{*}	$0.41(2)$
C01B	$0.4030(7)$	$1.1719(7)$	$0.0618(8)$	$0.119(3)$	$0.59(2)$
H01D	0.3620	1.2059	0.0738	0.179^{*}	$0.59(2)$
H01E	0.4262	1.2333	0.0004	0.179^{*}	$0.59(2)$
H01F	0.4220	1.1637	0.1590	0.179^{*}	$0.59(2)$
C3	$0.28631(8)$	$0.74645(17)$	$0.20651(18)$	$0.0654(4)$	
H3A	0.2668	0.8215	0.1650	0.078^{*}	
C4	$0.25382(8)$	$0.6610(2)$	$0.3000(2)$	$0.0766(5)$	
H4A	0.2126	0.6773	0.3198	0.092^{*}	
C5	$0.28283(8)$	$0.55161(18)$	$0.3634(2)$	$0.0730(5)$	
H5A	0.2611	0.4946	0.4275	0.088^{*}	
C6	$0.34359(7)$	$0.52495(15)$	$0.33381(19)$	$0.0634(4)$	0.076^{*}
H6A	0.3627	0.4505	0.3778	$0.0518(4)$	
C7	$0.37642(7)$	$0.60994(14)$	$0.23769(16)$	$0.0609(4)$	
C8	$0.46777(7)$	$0.48215(15)$	$0.27597(19)$	0.073^{*}	
H8A	0.4482	0.3972	0.2493	0.073^{*}	
H8B	0.4662	0.4922	0.3848		

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.1251(11)$	$0.0471(6)$	$0.0631(7)$	$0.0001(6)$	$0.0089(7)$	$0.0031(5)$
O2	$0.1222(11)$	$0.0685(8)$	$0.0732(8)$	$0.0098(7)$	$0.0363(8)$	$0.0084(6)$
O3	$0.0597(6)$	$0.0607(6)$	$0.0692(7)$	$0.0009(5)$	$0.0008(5)$	$0.0183(5)$
C1	$0.0753(9)$	$0.0505(8)$	$0.0451(7)$	$0.0019(7)$	$-0.0047(7)$	$-0.0018(6)$
C02A	$0.128(7)$	$0.054(4)$	$0.043(3)$	$-0.014(4)$	$-0.014(4)$	$0.008(3)$
C02B	$0.174(9)$	$0.065(4)$	$0.104(6)$	$-0.006(4)$	$0.034(5)$	$0.020(4)$
C2	$0.0654(9)$	$0.0485(7)$	$0.0425(7)$	$-0.0015(6)$	$-0.0024(6)$	$-0.0060(6)$
C01A	$0.146(10)$	$0.103(9)$	$0.133(7)$	$-0.059(7)$	$0.022(6)$	$0.010(7)$
C01B	$0.228(10)$	$0.057(3)$	$0.073(3)$	$-0.031(4)$	$-0.001(4)$	$0.003(2)$
C3	$0.0717(10)$	$0.0647(9)$	$0.0597(9)$	$0.0118(8)$	$0.0008(8)$	$-0.0057(8)$
C4	$0.0655(10)$	$0.0869(12)$	$0.0774(12)$	$-0.0004(9)$	$0.0129(9)$	$-0.0070(10)$
C5	$0.0767(11)$	$0.0687(10)$	$0.0735(11)$	$-0.0147(9)$	$0.0173(9)$	$0.0001(9)$
C6	$0.0733(10)$	$0.0530(8)$	$0.0640(9)$	$-0.0065(7)$	$0.0039(8)$	$0.0054(7)$
C7	$0.0580(8)$	$0.0487(7)$	$0.0488(8)$	$-0.0043(6)$	$-0.0011(6)$	$-0.0018(6)$
C8	$0.0677(8)$	$0.0487(8)$	$0.0662(9)$	$-0.0034(7)$	$-0.0087(7)$	$0.0060(7)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 1$	$1.3306(18)$	$\mathrm{C} 01 \mathrm{~A}-\mathrm{H} 01 \mathrm{~B}$	0.9600
$\mathrm{O} 1-\mathrm{C} 02 \mathrm{~A}$	$1.408(14)$	$\mathrm{C} 01 \mathrm{~A}-\mathrm{H} 01 \mathrm{C}$	0.9600
$\mathrm{O} 1-\mathrm{C} 02 \mathrm{~B}$	$1.516(14)$	$\mathrm{C} 01 \mathrm{~B}-\mathrm{H} 01 \mathrm{D}$	0.9600
$\mathrm{O} 2-\mathrm{C} 1$	$1.1884(19)$	$\mathrm{C} 01 \mathrm{~B}-\mathrm{H} 01 \mathrm{E}$	0.9600
$\mathrm{O} 3-\mathrm{C} 7$	$1.3541(18)$	$\mathrm{C} 01 \mathrm{~B}-\mathrm{H} 01 \mathrm{~F}$	0.9600
$\mathrm{O} 3-\mathrm{C} 8$	$1.4304(17)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.379(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.487(2)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9300
$\mathrm{C} 02 \mathrm{~A}-\mathrm{C} 01 \mathrm{~A}$	$1.39(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.372(3)$
C02A-H02A	0.9700	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9300

C02A-H02B	0.9700	C5-C6	1.376 (2)
C02B-C01B	1.455 (15)	C5-H5A	0.9300
C02B-H02C	0.9700	C6-C7	1.394 (2)
C02B-H02D	0.9700	C6-H6A	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	1.386 (2)	C8-C8 ${ }^{\text {i }}$	1.479 (3)
C2-C7	1.402 (2)	C8-H8A	0.9700
C01A-H01A	0.9600	C8-H8B	0.9700
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 02 \mathrm{~A}$	122.1 (7)	C02B-C01B-H01F	109.5
C1-O1-C02B	112.8 (5)	H01D-C01B-H01F	109.5
C02A-O1-C02B	12.6 (12)	H01E-C01B-H01F	109.5
C7-O3-C8	117.59 (11)	C4-C3-C2	121.27 (16)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	123.04 (15)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.4
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	125.41 (14)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.4
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	111.49 (13)	C5-C4-C3	119.41 (16)
C01A-C02A-O1	107.4 (10)	C5-C4-H4A	120.3
C01A-C02A-H02A	110.2	C3-C4-H4A	120.3
$\mathrm{O} 1-\mathrm{C} 02 \mathrm{~A}-\mathrm{H} 02 \mathrm{~A}$	110.2	C4-C5-C6	121.09 (16)
C01A-C02A-H02B	110.2	C4-C5-H5A	119.5
$\mathrm{O} 1-\mathrm{C} 02 \mathrm{~A}-\mathrm{H} 02 \mathrm{~B}$	110.2	C6-C5-H5A	119.5
H02A-C02A-H02B	108.5	C5-C6-C7	119.74 (15)
$\mathrm{C} 01 \mathrm{~B}-\mathrm{C} 02 \mathrm{~B}-\mathrm{O} 1$	108.4 (10)	C5-C6-H6A	120.1
C01B-C02B-H02C	110.0	C7-C6-H6A	120.1
$\mathrm{O} 1-\mathrm{C} 02 \mathrm{~B}-\mathrm{H} 02 \mathrm{C}$	110.0	O3-C7-C6	123.51 (13)
C01B-C02B-H02D	110.0	O3-C7-C2	116.73 (12)
$\mathrm{O} 1-\mathrm{C} 02 \mathrm{~B}-\mathrm{H} 02 \mathrm{D}$	110.0	C6-C7-C2	119.73 (14)
H02C-C02B-H02D	108.4	O3-C8-C8 ${ }^{\text {i }}$	108.37 (12)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	118.74 (14)	O3-C8-H8A	110.0
C3-C2-C1	119.91 (13)	C88-C8-H8A	110.0
C7-C2-C1	121.32 (13)	O3-C8-H8B	110.0
C02B-C01B-H01D	109.5	C8- ${ }^{\text {i }} 8$ - H 8 B	110.0
C02B-C01B-H01E	109.5	H8A-C8-H8B	108.4
H01D-C01B-H01E	109.5		
$\mathrm{C} 02 \mathrm{~A}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	4.9 (7)	C1-C2-C3-C4	177.81 (15)
C02B-O1-C1-O2	-4.7 (6)	C2-C3-C4-C5	1.1 (3)
C02A-O1-C1-C2	-172.4 (7)	C3-C4-C5-C6	-0.8 (3)
C02B-O1-C1-C2	177.9 (6)	C4-C5-C6-C7	-0.1 (3)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 02 \mathrm{~A}-\mathrm{C} 01 \mathrm{~A}$	-107.6 (14)	C8-O3-C7-C6	-1.2 (2)
C02B-O1-C02A-C01A	-63 (4)	C8-O3-C7-C2	176.78 (13)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 02 \mathrm{~B}-\mathrm{C} 01 \mathrm{~B}$	-156.1 (10)	C5-C6-C7-O3	178.61 (15)
$\mathrm{C} 02 \mathrm{~A}-\mathrm{O} 1-\mathrm{C} 02 \mathrm{~B}-\mathrm{C} 01 \mathrm{~B}$	64 (4)	C5-C6-C7-C2	0.7 (2)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-136.02 (18)	C3-C2-C7-O3	-178.45 (13)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	41.24 (19)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{O} 3$	3.3 (2)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	42.3 (2)	C3-C2-C7-C6	-0.4 (2)

supporting information

$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$-140.48(14)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$-178.72(13)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.5(2)$	$\mathrm{C} 7-\mathrm{O} 3-\mathrm{C} 8-\mathrm{C} 8$	$179.76(14)$

Symmetry code: (i) $-x+1, y,-z+1 / 2$.

