inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

β -Nb₉VO₂₅

Rawia Nasri, Saïda Fatma Chérif,* Mohamed Faouzi Zid and Ahmed Driss

Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis, Tunisia Correspondence e-mail: c.fatouma@yahoo.fr

Received 15 March 2014; accepted 8 April 2014

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (Nb–O) = 0.006 Å; disorder in main residue; R factor = 0.034; wR factor = 0.086; data-to-parameter ratio = 10.6.

The title compound, nonaniobium vanadium pentacosaoxide, was prepared by a solid-state reaction at 1198 K. It is isotypic with Nb₉AsO₂₅, Nb₉PO₂₅ and Ta₉VO₂₅. The structure consists of NbO₆ octahedra (one with 4/*m*.. and two with *m*.. symmetry) and VO₄ tetrahedra ($\overline{4}$.. symmetry) sharing corners and edges to form a three-dimensional framework. This framework can be considered as a junction between ribbons made up from NbO₆ octahedra and chains of NbO₆ octahedra and chains of NbO₆ octahedra is unoccupied. The structural differences with α -Nb₉VO₂₅, VOSO₄, SbOPO₄ and NbOPO₄ oxides are discussed.

Related literature

For isotypic compouds, see: Ulutagay *et al.* (1998); Roth *et al.* (1965); Casais *et al.* (1993). For physical properties, see: Prabaharan *et al.* (1997); Aranda *et al.* (1992); Bergner *et al.* (2009). For details of structurally related compounds, see: Haddad & Jouini (1996, 1997); Zid *et al.* (1992); Casais *et al.* (1993); Chérif *et al.* (2011); Roth *et al.* (1965); Köhler *et al.* (1989); Piffard *et al.* (1986); Longo & Arnott (1970); Tachez *et al.* (1981); Amos *et al.* (1998). For details of bond-valence calculations, see: Brown & Altermatt (1985).

Experimental

Crystal data Nb₉VO₂₅

 $M_r = 1287.13$

Tetragonal, I4/m a = 15.7726 (9) Å c = 3.8399 (6) Å V = 955.27 (17) Å³ Z = 2

Data collection Enraf–Nonius CAD-4

diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.695, T_{\max} = 0.812$ 851 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ 56 parameters

 $wR(F^2) = 0.086$ $\Delta \rho_{max} = 1.15 \text{ e Å}^{-3}$

 S = 0.99 $\Delta \rho_{min} = -1.52 \text{ e Å}^{-3}$

 593 reflections
 $\Delta \rho_{min} = -1.52 \text{ e Å}^{-3}$

Data collection: *CAD-4 EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 1999); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

- Amos, T. G., Yokochi, A. & Sleight, A. W. (1998). J. Solid State Chem. 14, 303– 307.
- Aranda, M. A. G., Attfield, J. P., Bruque, S. B. & Martinez-Lara, M. (1992). *Inorg. Chem.* 31, 1045–1049.
- Bergner, C., Vashook, V., Leoni, S. & Langbein, H. (2009). J. Solid State Chem. 182, 2053–2060.
- Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Casais, M. T., Gutiérrez Puebla, E., Monge, M. A., Rasines, I. & Ruiz Valero, C. (1993). J. Solid State Chem. 102, 261–266.
- Chérif, S. F., Zid, M. F. & Driss, A. (2011). Acta Cryst. E67, i10.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Haddad, A. & Jouini, T. (1996). J. Solid State Chem. 124, 244-249.
- Haddad, A. & Jouini, T. (1997). J. Solid State Chem. 134, 10-16.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Köhler, J., Miller, G. & Simon, A. (1989). Z. Anorg. Allg. Chem. 568, 8-21.
- Longo, J. M. & Arnott, R. J. (1970). J. Solid State Chem. 1, 394–398.
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Piffard, Y., Oyetola, S., Verbaere, A. & Tournoux, M. (1986). J. Solid State Chem. 63, 81–85.
- Prabaharan, S. R. S., Michael, M. S., Radhakrishna, S. & Julien, C. (1997). J. Mater. Chem. 7, 1791–1796.
- Roth, R. S., Wadsley, A. D. & Andersson, S. (1965). *Acta Cryst.* **18**, 643–647. Sheldrick, G. M. (2008). *Acta Cryst.* **A64**, 112–122.
- Tachez, M., Theobald, F. & Bordes, E. (1981). J. Solid State Chem. 40, 280-283.
- Ulutagay, M., Schimek, G. L. & Hwu, S.-J. (1998). Acta Cryst. C54, 898–900.
- Zid, M. F., Jouini, T. & Piffard, Y. (1992). J. Solid State Chem. 99, 201-206.

Mo $K\alpha$ radiation

 $0.14 \times 0.05 \times 0.04 \text{ mm}$

593 independent reflections

intensity decay: 1.1%

363 reflections with $I > 2\sigma(I)$

2 standard reflections every 120 min

 $\mu = 5.78 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.044$

supporting information

Acta Cryst. (2014). E70, i20 [doi:10.1107/S1600536814007831]

β -Nb₉VO₂₅

Rawia Nasri, Saïda Fatma Chérif, Mohamed Faouzi Zid and Ahmed Driss

S1. Comment

Les composés à structure ouverte formés d'octaèdres et de tétraèdres constituent un vaste domaine de recherche ces derniéres années. En relation avec leurs structures, ces matériaux présentent des propriétés intéressantes tels que la conductivité ionique (Prabaharan *et al.*, 1997), échange d'ions (Aranda *et al.*, 1992), ou bien elles sont utilisés en catalyse hétérogène (Bergner *et al.*, 2009). Dans ce contexte, nous avons tenté d'explorer les systèmes *A*–Nb–V–O (A = cation monovalent) par réaction à l'état solide. L'investigation de ces derniers a permis d'isoler les formes suivantes: NaNb₆₁₅V_{0.94}O₁₄ (Koehler *et al.*, 1989), K₃Nb₆VO₁₉ (Haddad & Jouini, 1996), Rb₅VONb₁₄O₃₈ (Haddad & Jouini, 1997).

Un cristal de forme allongé a été choisi sous microscope polarisant, et s'est averé après étude structurale d'être le composé binaire Nb₉VO₂₅. L'unité asymétrique est constituée par un arrangement de trois octaèdres NbO₆ et d'un tétraèdre VO₄ liés entre eux au moyen de sommets, formant ainsi le groupement Nb₃VO₁₉ (Fig. 1). Dans la charpente oxygénée, les octaèdres Nb1O₆ forment par partage de sommets des chaînes de type Nb1O₅ (Fig. 2a) et les tétraèdres VO₄ forment par mise en commun d'arêtes des chaînes de type VO₂ (Fig. 2b). Par contre, les octaèdres Nb2O₆ et Nb3O₆ se lient d'une part par mise en commun de sommets pour former des chaînes classiques NbO₅ et d'autre part ces dernières se regroupent par partage d'arêtes pour conduire à des chaînes doubles (Fig. 3a), qui par formation de ponts simples Nb2— O—Nb3, et en se regroupant par paires mènent à des rubans (Fig. 3 b). La jonction de ces derniers par mise en commun de sommets avec les chaînes formées par les octaèdres Nb1O₆ conduit à une charpente octaédrique. La charpente tridimensionnelle de Nb₉VO₂₅ est donc la conséquence d'une jonction entre ces rubans et les chaînes octaédriques Nb1O₅ et tétraédriques VO₂ (Fig. 4). Les atomes de niobium et de vanadium forment avec les atomes d'oxygène des liaisons Nb —O et V—O conformes à celles rencontrées dans la littérature (Zid *et al.*, 1992; Casais *et al.*, 1993; Haddad & Jouini, 1996; Chérif *et al.*, 2011).

Le calcul des différentes valences des liaisons (BVS), utilisant la formule empirique de Brown (Brown & Altermatt, 1985), conduit aux valeurs des charges des ions: Nb1(4.944), Nb2(4.897), Nb3(4.928), V1(5.074), en bon accord avec les degrés d'oxydation attendus.

La comparaison de notre structure avec celles des oxydes analogues, montre qu'elle est isotype à: Nb₉PO₂₅ (Roth *et al.*, 1965), Ta₉VO₂₅ (Casais *et al.*, 1993) et Nb₉AsO₂₅ (Ulutagay *et al.*, 1998). Le composé étudié Nb₉VO₂₅ (forme β) cristallise dans le système quadratique, groupe d'espace centrosymétrique *I*4/m (87) alors que celui isoformulaire Nb₉VO₂₅ (forme *a*) est non centrosymétrique, groupe d'espace $I\overline{4}$ (82) (Casais *et al.*, 1993). Une diffèrence nette dans la charpente a été observée. En effet, pour notre composé les tétraèdres se lient par partage d'arêtes, mais pour celui non-centrosymétrique les tétraèdres ne sont pas liés entre eux (Fig. 5). Un examen bibliographique nous a conduit à la famille des oxydes suivants: VOSO₄ (Longo & Arnott, 1970) (forme *a*) VOPO₄ (Tachez *et al.*, 1981) SbOPO₄ (Piffard *et al.*, 1986) et NbOPO₄ (Amos *et al.*, 1998). Ces derniers présentent une diffèrence nette en mode de connection entre les octaèdres et les tétraèdres. En effet, dans les oxydes SbOPO₄, NbOPO₄ et VOSO₄ les chaînes octaédriques MO₅ (*M*=Sb, Nb, V) se connectent au moyen de sommets avec les tétraèdres XO₄ (P, S) pour conduire à une charpente oxygénée

tridimensionnelle (Fig. 6) différente à celle rencontrée dans l'oxyde obtenu Nb₉VO₂₅.

S2. Experimental

Les cristaux de Nb₉VO₂₅ ont été obtenus par réaction à l'état solide à partir des réactifs suivants: Nb₂O₅ (FLUKA, 72520), V₂O₅ (ACROS ORGANICS, A018448201) et Na₂CO₃ (PROLABO, 27778) pris dans les proportions Na:Nb:V=3:6:1. Le mélange, finement broyé, a été mis dans un creuset en porcelaine, placé dans un four puis préchauffé à l'air à 623 K pendant 24 heures en vue d'éliminer les composés volatils: NH₃ et CO₂. Il est ensuite porté à une température proche de sa fusion, 1198 K. Le mélange est maintenu à cette température pendant une semaine pour favoriser la germination et la croissance des cristaux puis il subit en premier lieu un refroidissement lent (5°/jour) jusqu'à 1098 K puis un second rapide (50°/h) jusqu'à la température ambiante. Des cristaux de couleur jaune sous forme de baguettes ont été isolés à l'aide d'une loupe binoculaire.

S3. Refinement

L'analyse de la carte de Fourier différence finale ne révèle aucun pic résiduel significatif. Par ailleurs les ellipsoïdes sont très bien définis. Les densités d'électrons maximum et minimum restants dans la Fourier-différence sont situées respectivements à 0.36 Å de Nb1 et à 1.24 Å de O5. Il en résulte la composition chimique finale, Nb₉VO₂₅ du matériau obtenu.

Figure 1

Unité asymétrique dans Nb₉VO₂₅. Les éllipsoïdes ont été définis avec 50% de probabilité. [*Code de symétrie*: (i) x, y, z - 1; (ii) y, x - 1, z; (iii) y, -x + 1, -z; (iv) x - 1, -y + 1/2, -z - 1/2; (v) -x + 1, -y, -z; (vi) y + 1, -x + 1, -z; (vii) -x + 3/2, -y, z; (viii) -x + 3/2, -y + 1/2, -z + 1/2; (ix) -x + 1, -y + 1, -z + 1; (x) -y + 1/2, x - 1/2, z + 1/2; (xi) y - 1/2, -x + 3/2, -z + 1/2; (xii) x - 1, y, z + 1].

Figure 3 Représentation: (*a*) des chaînes doubles, (*b*) des rubans.

Figure 4

Projection de la structure de β -Nb₉VO₂₅ selon [001].

Figure 5

Vue en perspective de la structure de α -Nb₉VO₂₅ (Casais *et al.*, 1993) montrant la jonction des polyèdres.

Figure 6

Projection, selon [100], de la structure de NbOPO₄ (Amos et al., 1998) montrant la disposition des polyèdres.

Nonaniobium vanadium pentacosaoxide

Crystal data Nb₉VO₂₅ $M_r = 1287.13$ Tetragonal, *I*4/*m* Hall symbol: -I 4 a = 15.7726 (9) Å c = 3.8399 (6) Å V = 955.27 (17) Å³ Z = 2F(000) = 1184

 $D_x = 4.475 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 11-15^{\circ}$ $\mu = 5.78 \text{ mm}^{-1}$ T = 298 KPrism, yellow $0.14 \times 0.05 \times 0.04 \text{ mm}$ Data collection

Enraf-Nonius CAD-4	593 independent reflections
diffractometer	363 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.044$
Graphite monochromator	$\theta_{\rm max} = 26.9^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$
$\omega/2\theta$ scans	$h = -20 \rightarrow 1$
Absorption correction: ψ scan	$k = -20 \rightarrow 1$
(North <i>et al.</i> , 1968)	$l = -4 \rightarrow 1$
$T_{\min} = 0.695, T_{\max} = 0.812$	2 standard reflections every 120 min
851 measured reflections	intensity decay: 1.1%
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier

Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	$w = 1/[\sigma^2(F_o^2) + (0.0234P)^2]$
$wR(F^2) = 0.086$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.99	$(\Delta/\sigma)_{\rm max} < 0.001$
593 reflections	$\Delta ho_{ m max} = 1.15 \ { m e} \ { m \AA}^{-3}$
56 parameters	$\Delta \rho_{\rm min} = -1.52 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: SHELXL97 (Sheldrick,
Primary atom site location: structure-invariant	2008), Fc [*] =kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}
direct methods	Extinction coefficient: 0.0050 (3)

Special details

Experimental. Le cristal étant de faible taille, la correction d'absorption par psi-scan n'a pas amélioré le résultat de l'affinement.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Nb1	0.0000	0.0000	0.0000	0.0195 (7)	
Nb2	0.78149 (7)	0.10593 (7)	0.0000	0.0058 (4)	
Nb3	0.88301 (6)	0.32601 (6)	0.0000	0.0057 (3)	
V1	0.0000	0.5000	0.7500	0.0071 (12)	0.50
01	0.8838 (5)	0.0515 (5)	0.0000	0.012 (2)	
02	0.8233 (5)	0.2169 (5)	0.0000	0.013 (2)	
03	0.7479 (5)	0.1109 (5)	0.5000	0.0084 (19)	
O4	0.7185 (5)	-0.0125 (5)	0.0000	0.0106 (19)	
05	0.6482 (5)	0.1572 (5)	0.0000	0.010 (2)	
06	0.0000	0.0000	0.5000	0.020 (5)	
07	0.9251 (5)	0.4473 (5)	0.0000	0.0069 (18)	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nb1	0.0071 (8)	0.0071 (8)	0.044 (2)	0.000	0.000	0.000
Nb2	0.0044 (5)	0.0083 (6)	0.0048 (7)	-0.0002 (4)	0.000	0.000
Nb3	0.0058 (6)	0.0068 (6)	0.0045 (6)	0.0015 (5)	0.000	0.000
V1	0.0072 (17)	0.0072 (17)	0.007 (3)	0.000	0.000	0.000
01	0.010 (4)	0.012 (4)	0.012 (5)	0.003 (3)	0.000	0.000
02	0.018 (4)	0.010 (4)	0.012 (5)	-0.002 (4)	0.000	0.000
O3	0.003 (4)	0.011 (4)	0.012 (5)	-0.003 (4)	0.000	0.000
04	0.009 (4)	0.007 (4)	0.015 (5)	-0.004 (4)	0.000	0.000
05	0.010 (4)	0.015 (5)	0.004 (5)	0.005 (4)	0.000	0.000
O6	0.023 (7)	0.023 (7)	0.016 (11)	0.000	0.000	0.000
07	0.008 (4)	0.007 (4)	0.006 (4)	0.000(3)	0.000	0.000

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Nb1—O6 ⁱ	1.9200 (3)	Nb3—O7	2.025 (7)
Nb106	1.9200 (3)	Nb3—O3 ^{viii}	2.292 (8)
Nb1—O1 ⁱⁱ	2.005 (8)	V1—O7 ^{ix}	1.735 (6)
Nb1—O1 ⁱⁱⁱ	2.005 (8)	V1—07 ^x	1.735 (6)
Nb1—O1 ^{iv}	2.005 (8)	V1—O7 ^{xi}	1.735 (6)
Nb1—O1 ^v	2.005 (8)	V1—O7 ^{xii}	1.735 (6)
Nb2—O1	1.827 (8)	O1—Nb1 ^{xiii}	2.005 (8)
Nb2—O2	1.870 (8)	O3—Nb2 ^{xiv}	1.993 (2)
Nb2—O3 ⁱ	1.993 (2)	O3—Nb3 ^{viii}	2.292 (8)
Nb2—O3	1.993 (2)	O4—Nb3 ^{xv}	1.792 (7)
Nb2—O4	2.115 (7)	O5—Nb3 ^{vii}	1.999 (2)
Nb2—O5	2.253 (8)	O5—Nb3 ^{viii}	1.999 (2)
Nb3—O4 ^{vi}	1.792 (7)	O6—Nb1 ^{xiv}	1.9200 (3)
Nb3—O2	1.962 (8)	O7—V1 ^{ix}	1.735 (6)
Nb3—O5 ^{vii}	1.999 (2)	O7—V1 ^{xvi}	1.735 (6)
Nb3—O5 ^{viii}	1.999 (2)		
			/
O6 ¹ —Nb1—O6	180.0	O2—Nb3—O7	170.5 (3)
$O6^{i}$ —Nb1—O1 ⁱⁱ	90.0	O5 ^{vn} —Nb3—O7	87.5 (2)
O6—Nb1—O1 ⁱⁱ	90.0	O5 ^{viii} —Nb3—O7	87.5 (2)
O6 ⁱ —Nb1—O1 ⁱⁱⁱ	90.0	O4 ^{vi} —Nb3—O3 ^{viii}	177.3 (3)
O6—Nb1—O1 ⁱⁱⁱ	90.0	O2—Nb3—O3 ^{viii}	87.1 (3)
O1 ⁱⁱ —Nb1—O1 ⁱⁱⁱ	180.0 (5)	O5 ^{vii} —Nb3—O3 ^{viii}	73.8 (2)
$O6^{i}$ —Nb1—O1 ^{iv}	90.0	O5 ^{viii} —Nb3—O3 ^{viii}	73.8 (2)
O6—Nb1—O1 ^{iv}	90.0	O7—Nb3—O3 ^{viii}	83.4 (3)
O1 ⁱⁱ —Nb1—O1 ^{iv}	90.0	$O7^{ix}$ —V1— $O7^{x}$	107.83 (13)
O1 ⁱⁱⁱ —Nb1—O1 ^{iv}	90.0	$O7^{ix}$ —V1— $O7^{xi}$	107.83 (13)
$O6^{i}$ —Nb1—O1 ^v	90.0	$O7^{x}$ V1 $O7^{xi}$	112.8 (3)
O6—Nb1—O1 ^v	90.0	$O7^{ix}$ V1 $O7^{xii}$	112.8 (3)
$O1^{ii}$ —Nb1—O1 ^v	90.0	$O7^{x}$ —V1— $O7^{xii}$	107.83 (13)
O1 ⁱⁱⁱ —Nb1—O1 ^v	90.0	O7 ^{xi} —V1—O7 ^{xii}	107.83 (13)

$O1^{iv}$ —Nb1— $O1^{v}$	180.0	07 ^{ix} —V1—V1 ^{xvii}	123.60 (13)
O1—Nb2—O2	97.3 (3)	$O7^{x}$ V1 V1 $V1^{xvii}$	56.40 (13)
O1—Nb2—O3 ⁱ	104.7 (2)	O7 ^{xi} —V1—V1 ^{xvii}	56.40 (13)
O2—Nb2—O3 ⁱ	93.3 (2)	O7 ^{xii} —V1—V1 ^{xvii}	123.60 (13)
O1—Nb2—O3	104.7 (2)	O7 ^{ix} —V1—V1 ^{xviii}	56.40 (13)
O2—Nb2—O3	93.3 (2)	O7 ^x —V1—V1 ^{xviii}	123.60 (13)
O3 ⁱ —Nb2—O3	148.8 (4)	O7 ^{xi} —V1—V1 ^{xviii}	123.60 (13)
O1—Nb2—O4	90.0 (3)	O7 ^{xii} —V1—V1 ^{xviii}	56.40 (13)
O2—Nb2—O4	172.7 (3)	V1 ^{xvii} —V1—V1 ^{xviii}	180.0
O3 ⁱ —Nb2—O4	84.8 (2)	Nb2—O1—Nb1 ^{xiii}	175.9 (5)
O3—Nb2—O4	84.8 (2)	Nb2—O2—Nb3	172.0 (5)
O1—Nb2—O5	173.0 (3)	Nb2 ^{xiv} —O3—Nb2	148.8 (4)
O2—Nb2—O5	89.6 (3)	Nb2 ^{xiv} —O3—Nb3 ^{viii}	104.9 (2)
O3 ⁱ —Nb2—O5	74.8 (2)	Nb2—O3—Nb3 ^{viii}	104.9 (2)
O3—Nb2—O5	74.8 (2)	Nb3 ^{xv} —O4—Nb2	175.1 (5)
O4—Nb2—O5	83.1 (3)	Nb3 ^{vii} —O5—Nb3 ^{viii}	147.6 (4)
O4 ^{vi} —Nb3—O2	95.6 (3)	Nb3 ^{vii} —O5—Nb2	106.1 (2)
O4 ^{vi} —Nb3—O5 ^{vii}	106.1 (2)	Nb3 ^{viii} —O5—Nb2	106.1 (2)
O2—Nb3—O5 ^{vii}	89.9 (2)	Nb1 ^{xiv} —O6—Nb1	180.0
O4 ^{vi} —Nb3—O5 ^{viii}	106.1 (2)	V1 ^{ix} —07—V1 ^{xvi}	67.2 (3)
O2—Nb3—O5 ^{viii}	89.9 (2)	V1 ^{ix} —O7—Nb3	132.5 (3)
O5 ^{vii} —Nb3—O5 ^{viii}	147.6 (4)	V1 ^{xvi} —O7—Nb3	132.5 (3)
O4 ^{vi} —Nb3—O7	94.0 (3)		

Symmetry codes: (i) x, y, z-1; (ii) -y, x-1, z; (iii) y, -x+1, -z; (iv) x-1, y, z; (v) -x+1, -y, -z; (vi) y+1, -x+1, -z; (vii) -x+3/2, -y+1/2, -z-1/2; (viii) -x+3/2, -y+1/2, -z+1/2; (ix) -x+1, -y+1, -z+1; (x) -y+1/2, x-1/2, z+1/2; (xi) y-1/2, -x+3/2, -z+1/2; (xii) x-1, y, z+1; (xiii) x+1, y, z; (xiv) x, y, z+1; (xv) -y+1, x-1, z; (xvi) x+1, y, z-1; (xvii) -x, -y+1, -z+1; (xviii) -x, -y+1, -z+1; (xviii) -x, -y+1, -z+1; (xviii) -x, -y+1, -z+2.