

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6-Fluoro-4-oxo-4*H*-chromene-3carbaldehyde

Yoshinobu Ishikawa

School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan

Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Received 14 April 2014; accepted 15 April 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.106; data-to-parameter ratio = 14.2.

In the title compound, $C_{10}H_5FO_3$, the non-H atoms are essentially coplanar (r.m.s. deviation = 0.0071 Å), with the largest deviation from the mean plane [0.0203 (15) Å] being found for the ring C atom in the 2-position. In the crystal, molecules are linked into a three-dimensional architecture *via* $C-H\cdots O$ hydrogen bonds and $\pi-\pi$ stacking interactions between the chromone units along the *a*-axis direction [centroid–centroid distance between the benzene and pyran rings = 3.707 (2) Å].

Related literature

For related structures, see: Ishikawa (2014*a*,*b*). For halogen bonding, see: Auffinger *et al.* (2004); Metrangolo *et al.* (2005); Wilcken *et al.* (2013); Sirimulla *et al.* (2013).

Experimental

Crystal data

 $\begin{array}{l} C_{10} H_5 FO_3 \\ M_r = 192.15 \\ \text{Monoclinic, } P2_1/n \\ a = 7.8530 \ (19) \ \text{\AA} \\ b = 5.6020 \ (17) \ \text{\AA} \\ c = 17.987 \ (5) \ \text{\AA} \\ \beta = 95.09 \ (2)^\circ \end{array}$

 $V = 788.2 (4) Å^{3}$ Z = 4 Mo K\alpha radiation \(\mu = 0.14 \text{ mm}^{-1}\) T = 100 K 0.30 \(\times 0.20 \(\times 0.12 \text{ mm}\) 3 standard reflections every 150

intensity decay: 3.4%

 $R_{\rm int} = 0.024$

reflections

Data collection

Rigaku AFC-7R diffractometer 2412 measured reflections 1815 independent reflections 1496 reflections with $F^2 > 2\sigma(F^2)$

Refinement

- - - -

$R[F^2 > 2\sigma(F^2)] = 0.036$	128 parameters
$wR(F^2) = 0.106$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
1815 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$C1 - H1 \cdots O3^{i}$ $C4 - H2 \cdots O2^{ii}$ $C6 - H3 \cdots O3^{iii}$	0.95 0.95 0.95	2.37 2.35 2.48	3.308 (2) 3.235 (2) 3.198 (2)	171 154 133
D	(1) i 1	. 1 . L	('') 1	1.1. ("")

Symmetry codes: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) -x, -y - 1, -z + 1; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

The author acknowledges the University of Shizuoka for instrumental support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5307).

References

- Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
- Ishikawa, Y. (2014a). Acta Cryst. E70, 0555.
- Ishikawa, Y. (2014b). Acta Cryst. E70, 0514.
- Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.
- Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791.
- Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388.

supporting information

Acta Cryst. (2014). E70, o583 [doi:10.1107/S1600536814008502]

6-Fluoro-4-oxo-4H-chromene-3-carbaldehyde

Yoshinobu Ishikawa

S1. Structural commentary

Halogen bonds have been found to occur in organic, inorganic and biological systems, and have recently attracted much attention in medicinal chemistry, chemical biology and supramolecular chemistry (Auffinger *et al.*, 2004, Metrangolo *et al.*, 2005, Wilcken *et al.*, 2013, Sirimulla *et al.*, 2013). We have recently reported the crystal structures of monohalogenated 3-formylchromone derivatives 6-bromo-4-oxo-4*H*-chromene-3-carbaldehyde (Ishikawa, 2014*a*) and 6-chloro-4-oxo-4*H*-chromene-3-carbaldehyde (Ishikawa, 2014*b*). Halogen bonding is observed in the former, but is not observed in the latter. As part of our interest in this type of chemical bonding, we herein report the crystal structure of a monofluorinated 3-formylchromone derivative, 6-fluoro-4-oxo-4*H*-chromene-3-carbaldehyde. The objective of this study is to reveal whether halogen bond(*s*) can be formed in the crystal structure of this compound with a fluorine atom at the 6-position.

The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0071 Å, and the largest deviation is 0.0203 (15) Å for C1 (Fig. 1). This mean that the atoms are essentially coplanar. In the crystal, the molecules are linked *via* C—H···O hydrogen bonds and are further linked by π — π stacking interactions between the chromone units [centroid–centroid distance between the benzene and pyran rings = 3.707 (2) Å], into a three-dimensional architectureFig. 1. The distance between the fluorine and proximal formyl oxygen atoms [3.498 (2) Å, Fig.2 (bottom)] is far from halogen bonding. The fact that halogen bonding is observed in the crystal structure of 6-bromo-4-oxo-4*H*-chromene-3-carbaldehyde (Fig. 2 (top)) but is not observed in those of 6-chloro-4-oxo-4*H*-chromene-3-carbaldehyde (Fig. 2 (middle)) and the title compound demonstrates the trend of the size of σ -hole on halogens (Br > Cl > F; Sirimulla *et al.*, 2013).

S2. Synthesis and crystallization

Single crystals suitable for X-ray diffraction were obtained by slow evaporation at room temperature of an ethyl acetate solution of the commercially available title compound.

S3. Refinement

The C(*sp*²)-bound hydrogen atoms were placed in geometrical positions [C—H = 0.95 Å, $U_{iso}(H) = 1.2U_{eq}(C)$], and refined using a riding model. One reflection (0 1 1) was omitted because of systematic error.

Figure 1

A packing view of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius. The shortest intermolecular C—H…O hydrogen bonds are represented as dashed lines.

Figure 2

Sphere models of the crystal structures of 6-bromo-4-oxo-4*H*-chromene-3-carbaldehyde (top), 6-chloro-4-oxo-4*H*-chromene-3-carbaldehyde (middle), and the title compound (bottom).

6-Fluoro-4-oxo-4*H*-chromene-3-carbaldehyde

Crystal data	
$C_{10}H_5FO_3$	V = 788.2 (4) Å ³
$M_r = 192.15$	Z = 4
Monoclinic, $P2_1/n$	F(000) = 392.00
Hall symbol: -P 2yn	$D_{\rm x} = 1.619 {\rm ~Mg} {\rm ~m}^{-3}$
a = 7.8530 (19) Å	Mo <i>K</i> α radiation, $\lambda = 0.71069$ Å
b = 5.6020 (17) Å	Cell parameters from 25 reflections
c = 17.987 (5) Å	$\theta = 15.2 - 17.3^{\circ}$
$\beta = 95.09 \ (2)^{\circ}$	$\mu = 0.14 \mathrm{~mm^{-1}}$

T = 100 K Plate, colourless	$0.30 \times 0.20 \times 0.12 \text{ mm}$
Data collection	
Rigaku AFC-7R diffractometer ω -2 θ scans 2412 measured reflections 1815 independent reflections 1496 reflections with $F^2 > 2\sigma(F^2)$ $R_{int} = 0.024$	$\theta_{\text{max}} = 27.5^{\circ}$ $h = -10 \rightarrow 10$ $k = -4 \rightarrow 7$ $l = -23 \rightarrow 13$ 3 standard reflections every 150 reflections intensity decay: 3.4%
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.106$ S = 1.03 1815 reflections 128 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0562P)^2 + 0.3686P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.37$ e Å ⁻³ $\Delta\rho_{min} = -0.22$ e Å ⁻³ Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008) Extinction coefficient: 0.011 (3)

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
F1	0.24629 (11)	-0.31171 (17)	0.68919 (5)	0.0261 (3)	
01	0.33585 (12)	0.28450 (17)	0.45542 (5)	0.0178 (3)	
O2	0.05794 (13)	-0.32557 (18)	0.41030 (5)	0.0205 (3)	
O3	0.13190 (13)	0.13025 (19)	0.23839 (5)	0.0226 (3)	
C1	0.26630 (17)	0.2332 (3)	0.38638 (8)	0.0169 (3)	
C2	0.17422 (16)	0.0346 (3)	0.36799 (7)	0.0155 (3)	
C3	0.14094 (16)	-0.1427 (3)	0.42424 (7)	0.0147 (3)	
C4	0.19425 (16)	-0.2340 (3)	0.56069 (7)	0.0163 (3)	
C5	0.26679 (17)	-0.1674 (3)	0.62980 (7)	0.0185 (3)	
C6	0.36078 (17)	0.0417 (3)	0.64257 (8)	0.0191 (3)	
C7	0.38313 (17)	0.1905 (3)	0.58328 (8)	0.0182 (3)	
C8	0.21614 (16)	-0.0827 (3)	0.50018 (7)	0.0142 (3)	
C9	0.30989 (16)	0.1270 (3)	0.51258 (7)	0.0147 (3)	
C10	0.10652 (17)	-0.0034 (3)	0.28948 (7)	0.0187 (3)	
H1	0.2830	0.3442	0.3478	0.0203*	
H2	0.1311	-0.3782	0.5541	0.0195*	
H3	0.4087	0.0810	0.6914	0.0229*	
H4	0.4472	0.3338	0.5904	0.0218*	
Н5	0.0388	-0.1414	0.2783	0.0224*	

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0315 (5)	0.0312 (5)	0.0153 (5)	-0.0033 (4)	0.0012 (4)	0.0069 (4)
01	0.0222 (5)	0.0154 (5)	0.0157 (5)	-0.0035 (4)	0.0014 (4)	0.0000 (4)
02	0.0223 (5)	0.0183 (5)	0.0204 (5)	-0.0056 (4)	-0.0003 (4)	-0.0014 (4)
O3	0.0293 (6)	0.0222 (6)	0.0161 (5)	0.0045 (5)	0.0013 (4)	0.0016 (4)
C1	0.0186 (7)	0.0171 (7)	0.0153 (6)	0.0018 (5)	0.0033 (5)	0.0010 (5)
C2	0.0146 (6)	0.0166 (7)	0.0154 (7)	0.0024 (5)	0.0026 (5)	-0.0014 (5)
C3	0.0125 (6)	0.0151 (6)	0.0167 (7)	0.0024 (5)	0.0021 (5)	-0.0014 (5)
C4	0.0149 (6)	0.0163 (7)	0.0178 (7)	0.0001 (5)	0.0029 (5)	-0.0001 (6)
C5	0.0192 (7)	0.0215 (7)	0.0152 (7)	0.0032 (6)	0.0042 (5)	0.0033 (6)
C6	0.0177 (6)	0.0246 (8)	0.0147 (6)	0.0027 (6)	-0.0003(5)	-0.0034 (6)
C7	0.0163 (7)	0.0177 (7)	0.0204 (7)	0.0002 (5)	0.0010 (5)	-0.0051 (6)
C8	0.0120 (6)	0.0154 (6)	0.0154 (7)	0.0019 (5)	0.0023 (5)	-0.0015 (5)
С9	0.0146 (6)	0.0151 (7)	0.0149 (6)	0.0016 (5)	0.0032 (5)	0.0002 (5)
C10	0.0190 (7)	0.0197 (7)	0.0171 (7)	0.0024 (6)	0.0005 (5)	-0.0015 (6)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

F1—C5	1.3606 (17)	C4—C8	1.4020 (19)
01—C1	1.3427 (17)	C5—C6	1.393 (2)
O1—C9	1.3835 (17)	C6—C7	1.377 (2)
O2—C3	1.2282 (17)	С7—С9	1.3946 (19)
O3—C10	1.2155 (17)	C8—C9	1.394 (2)
C1—C2	1.352 (2)	C1—H1	0.950
C2—C3	1.4579 (19)	C4—H2	0.950
C2-C10	1.4796 (18)	С6—Н3	0.950
C3—C8	1.4780 (18)	C7—H4	0.950
C4—C5	1.3723 (18)	C10—H5	0.950
O1…C3	2.8691 (18)	С4…Н3	3.2823
O2…C1	3.576 (2)	C5…H4	3.2513
O2…C4	2.8658 (17)	C6…H2	3.2881
O2…C10	2.8760 (18)	C8…H4	3.2937
O3…C1	2.8344 (19)	С9…Н1	3.1941
C1…C7	3.587 (3)	С9…Н2	3.2746
C1…C8	2.760 (2)	С9…Н3	3.2509
C2…C9	2.7704 (19)	C10…H1	2.5600
C4…C7	2.813 (2)	H1…H5	3.4953
C5…C9	2.721 (2)	Н3…Н4	2.3436
C6…C8	2.796 (2)	F1···H3 ⁱ	2.6307
$F1 \cdots F1^i$	3.5513 (16)	F1…H4 ^{vi}	3.1761
F1…F1 ⁱⁱ	3.5513 (16)	F1····H5 ^{iv}	3.4684
F1…O2 ⁱⁱⁱ	3.5044 (15)	F1····H5 ^v	2.6941
F1…O3 ^{iv}	3.4981 (16)	O1…H2 ^{vii}	3.1318
F1…O3 ^v	3.5584 (16)	O1…H4 ^{xiv}	2.8987
F1…C6 ⁱ	3.315 (2)	O2···H1 ^{vi}	2.8570

F1····C7 ^{vi}	3.5947 (19)	O2····H2 ⁱⁱⁱ	2.3533
F1···C10 ^{iv}	3.3360 (18)	O3····H1 ^x	2.3664
F1···C10 ^v	3.3800 (18)	O3····H3 ^{xii}	2.4781
O1…O2 ^{vii}	3.1431 (15)	O3…H4 ^{xii}	2.9229
O1····C3 ^{vii}	3.5781 (19)	O3····H5 ^{xi}	2.9244
O1····C4 ^{vii}	3.5315 (19)	C1····H2 ^{iv}	3.4844
O1···C6 ^{viii}	3.5869 (19)	C1···H3 ^{viii}	3.4931
O1····C7 ^{viii}	3.5649 (19)	C1····H4 ^{xiv}	3,3095
O2…F1 ⁱⁱⁱ	3.5044 (15)	C1···H5 ^{xi}	3.5228
$02\cdots 01^{vi}$	3.1431 (15)	C2…H2 ^{iv}	3.4665
O2····C1 ^{vi}	3.0162 (19)	C2···H3 ^{viii}	3.5928
$O2\cdots C4^{iii}$	3 2351 (19)	C3···H1 ^{vi}	3 4163
$O^2 \cdots C^{iv}$	3 5572 (19)	C3…H2 ⁱⁱⁱ	3 4741
$O2\cdots C9^{iv}$	3 4951 (19)	C3···H4 ^{viii}	3 4389
O3…F1 ^{iv}	3 4981 (16)	$C4\cdots H4^{vi}$	3 1477
$O3 \cdots F1^{ix}$	3 5584 (16)	C5···H4 ^{vi}	3 2399
0303 ^x	3 3650 (17)	C5····H5 ^{iv}	3 4912
03···03 ^{xi}	3.3650(17)	$C5 \cdots H5^{v}$	3 4391
03···C1×	3.3077(19)	C6H1 ^{viii}	3 5277
$O_3 \cdots C_2^{xi}$	3.3077(19) 3.4099(18)	$C6\cdots H5^{v}$	3 5118
$O_3 \cdots C_{x^{ii}}$	3 1985 (18)	C7···H2vii	3 1377
O3…C7 ^{xii}	3 4120 (19)	$C8 \cdots H4^{viii}$	3 5193
$O_3 \cdots C_1 O_{x_i}^{x_i}$	2 9773 (19)	C9···H2 ^{vii}	3 2243
$C1 \cdots O2^{\text{vii}}$	3 0162 (19)	$C10\cdots H1^{x}$	2 8205
$C1 \cdots O3^{xi}$	3 3077 (19)	$C10$ ···· $H3^{xii}$	3 2620
C1···C6 ^{viii}	3.3077(17)	$H1 \cdots O2^{\text{vii}}$	2 8570
$C^{2} \cdots O^{3^{x}}$	3.390(2) 3.4099(18)	$H1 \cdots O3^{xi}$	2.6576
$C2\cdots C4^{iv}$	3 453 (2)	H1····C3 ^{vii}	3 4163
C2···C5 ^{iv}	3 546 (2)	H1····C6 ^{viii}	3 5277
C3…O1 ^{vi}	3 5781 (19)	$H1 \cdots C10^{xi}$	2.8205
C3···C4 ^{iv}	3 403 (2)	H1H3 ^{viii}	3 5122
C3···C8 ^{iv}	3.461 (2)	H1…H4 ^{xiv}	2.9261
C4…O1 ^{vi}	3.5315 (19)	H1…H5 ^{xi}	2.7690
C4…O2 ⁱⁱⁱ	3.2351 (19)	H2…O1 ^{vi}	3.1318
C4···C2 ^{iv}	3.453 (2)	H2····Q2 ⁱⁱⁱ	2.3533
C4···C3 ^{iv}	3.403 (2)	H2····C1 ^{iv}	3.4844
C4···C7 ^{vi}	3.557 (3)	H2…C2 ^{iv}	3.4665
C5···C2 ^{iv}	3.546 (2)	H2···C3 ⁱⁱⁱ	3.4741
C5…C10 ^{iv}	3.517 (2)	H2···C7 ^{vi}	3.1377
C6···F1 ⁱⁱ	3.315 (2)	H2····C9 ^{vi}	3.2243
C6…O1 ^{viii}	3.5869 (19)	H2…H2 ⁱⁱⁱ	3.0288
C6···O3 ^{xiii}	3.1985 (18)	$H2\cdots H4^{vi}$	2.9843
C6···C1 ^{viii}	3.390 (2)	H3…F1 ⁱⁱ	2.6307
C7…F1 ^{vii}	3.5947 (19)	H3····O3 ^{xiii}	2.4781
C7…O1 ^{viii}	3.5649 (19)	H3····C1 ^{viii}	3.4931
C7···O2 ^{iv}	3.5572 (19)	H3····C2 ^{viii}	3.5928
C7···O3 ^{xiii}	3.4120 (19)	H3····C10 ^{xiii}	3.2620
C7···C4 ^{vii}	3.557 (3)	H3···H1 ^{viii}	3.5122
	× /		

C7····C9 ^{viii}	3.562 (2)	H3…H5 ^v	3.0440
C8····C3 ^{iv}	3.461 (2)	H4…F1 ^{vii}	3.1761
C8····C8 ^{iv}	3.518 (2)	H4…O1 ^{xiv}	2.8987
C9O2 ^{iv}	3.4951 (19)	H4…O3 ^{xiii}	2.9229
C9····C7 ^{viii}	3.562 (2)	H4…C1 ^{xiv}	3.3095
C9····C9 ^{viii}	3.374 (2)	H4…C3 ^{viii}	3,4389
C10····F1 ^{iv}	3.3360 (18)	H4…C4 ^{vii}	3,1477
C10····F1 ^{ix}	3 3800 (18)	H4····C5 ^{vii}	3 2399
$C10\cdots O3^{x}$	2 9773 (19)	H4····C8 ^{viii}	3 5193
$C10 \cdots C5^{iv}$	3517(2)		2 9261
F1H2	25447	$H4 \cdots H2^{vii}$	2.9201
F1H3	2.5415	$H5 \dots E1^{iv}$	3 4684
01H4	2.5415	H5 H1 $H5 \dots E1^{i_X}$	2 6041
01····H4 02····H2	2.5219	H5O2x	2.0941
02.115	2.0131	H5. C1x	2.9244
02···H3	2.5814		5.5228
	2.5100		3.4912
	3.2808		3.4391
C3…H1	3.2935	Н5…С6	3.5118
C3…H2	2.6889	H5····H1 ^x	2.7690
С3…Н5	2.6767	H5…H3 ^{1x}	3.0440
C1—O1—C9	118.43 (11)	C4—C8—C9	118.99 (12)
O1—C1—C2	124.57 (13)	O1—C9—C7	116.03 (12)
C1—C2—C3	121.05 (12)	O1—C9—C8	121.94 (11)
C1—C2—C10	119.43 (13)	C7—C9—C8	122.02 (13)
C3—C2—C10	119.53 (12)	O3—C10—C2	124.30 (13)
Q2—C3—C2	123.45 (12)	01—C1—H1	117.713
02-C3-C8	122.66 (12)	C2-C1-H1	117.717
$C^2 - C^3 - C^8$	113 89 (12)	C5-C4-H2	121.008
$C_{5} - C_{4} - C_{8}$	117.98 (13)	C8—C4—H2	121.000
$F_1 - C_5 - C_4$	118 76 (13)	C5-C6-H3	120.543
F1 - C5 - C6	117.91 (12)	C7-C6-H3	120.538
C_{4}	117.91(12) 123.32(13)	C6-C7-H4	120.550
$C_{1}^{2} = C_{2}^{2} = C_{1}^{2}$	123.32(13) 118.02(13)	$C_0 = C_7 = H_4$	120.010
$C_{2} = C_{2} = C_{1}$	110.92(13) 119.76(13)	$C_{2} = C_{1} = H_{2}$	120.020
$C_{0} = C_{1} = C_{2}$	110.70(13) 120.00(12)	$C_{10} = C_{10} = H_{5}$	117.045
$C_3 = C_6 = C_4$	120.90(12) 120.11(12)	C2-C10-H3	117.050
03-08-09	120.11 (12)		
C1—O1—C9—C7	-179.22 (10)	C8—C4—C5—F1	179.77 (11)
C1—O1—C9—C8	0.80 (17)	C8—C4—C5—C6	-0.1 (2)
C9—O1—C1—C2	-1.26 (19)	H2—C4—C5—F1	-0.2
C9—O1—C1—H1	178.7	H2—C4—C5—C6	179.9
O1—C1—C2—C3	0.9 (2)	H2—C4—C8—C3	0.3
O1—C1—C2—C10	-179.01 (11)	H2—C4—C8—C9	-179.9
H1—C1—C2—C3	-179.1	F1—C5—C6—C7	-179.98 (11)
H1-C1-C2-C10	1.0	F1—C5—C6—H3	0.0
C1—C2—C3—O2	179.92 (12)	C4—C5—C6—C7	-0.1 (2)
C1—C2—C3—C8	0.01 (18)	C4—C5—C6—H3	179.9
	× /		

C1—C2—C10—O3	2.2 (2)	С5—С6—С7—С9	0.4 (2)
C1—C2—C10—H5	-177.8	С5—С6—С7—Н4	-179.6
C3—C2—C10—O3	-177.66 (12)	Н3—С6—С7—С9	-179.6
С3—С2—С10—Н5	2.3	Н3—С6—С7—Н4	0.4
C10-C2-C3-O2	-0.21 (19)	C6—C7—C9—O1	179.57 (11)
C10-C2-C3-C8	179.87 (11)	C6—C7—C9—C8	-0.5 (2)
O2—C3—C8—C4	-0.5 (2)	H4—C7—C9—O1	-0.4
O2—C3—C8—C9	179.68 (12)	Н4—С7—С9—С8	179.6
C2—C3—C8—C4	179.39 (11)	C3—C8—C9—O1	0.01 (19)
C2—C3—C8—C9	-0.40 (17)	C3—C8—C9—C7	-179.97 (11)
C5—C4—C8—C3	-179.74 (11)	C4—C8—C9—O1	-179.78 (11)
C5—C4—C8—C9	0.05 (19)	C4—C8—C9—C7	0.24 (19)

Symmetry codes: (i) -x+1/2, y-1/2, -z+3/2; (ii) -x+1/2, y+1/2, -z+3/2; (iii) -x, -y-1, -z+1; (iv) -x, -y, -z+1; (v) x+1/2, -y-1/2, z+1/2; (vi) x, y-1, z; (vii) x, y+1, z; (viii) -x+1, -y, -z+1; (ix) x-1/2, -y-1/2, z-1/2; (x) -x+1/2, y-1/2, -z+1/2; (xi) -x+1/2, y+1/2, -z+1/2; (xii) x-1/2, -y+1/2, z-1/2; (xiii) x+1/2, -y+1/2, z-1/2; (xii) x+1/2, -y+1/2, z-1/2; (xii) x-1/2, -y+1/2, z-1/2; (xiii) x+1/2, -y+1/2, z-1/2; (xiii) x-1/2, -y+1/2, z-1/2; (xiii) x+1/2, -y+1/2, z-1/2; (xiii) x-1/2, -y+1/2, -y+1/2, -y+1/2, -y+1/2, -y+1/2, -y+1/2; (xiii) x-1/2, -y+1/2, -y+1/2; (xii) x-1/2, -y+1/2, -y+1/2; (xii) x-1/2, -y+1/2, -y+1/2; (xii) x-1/2, -y+1/2; (xiii) x-1/2, -y+1/2; (xii) x-1/2, -y+1/2; (xii) x-1/2, -y+1/2; (xii) x-1/2, -y+1/2; (xii) x-1/2; (xii) x-1/2, -y+1/2; (xii) x-1/2, -y+1/2; (xii) x-1/2; (xii) x

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C1—H1···O3 ^{xi}	0.95	2.37	3.308 (2)	171
C4—H2···O2 ⁱⁱⁱ	0.95	2.35	3.235 (2)	154
C6—H3····O3 ^{xiii}	0.95	2.48	3.198 (2)	133

Symmetry codes: (iii) -x, -y-1, -z+1; (xi) -x+1/2, y+1/2, -z+1/2; (xiii) x+1/2, -y+1/2, z+1/2.