

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6-Chloro-8-nitro-4-oxo-4*H*-chromene-3carbaldehyde

Yoshinobu Ishikawa

School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan

Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Received 7 April 2014; accepted 8 April 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.035; wR factor = 0.098; data-to-parameter ratio = 14.1.

In the title compound, $C_{10}H_4CINO_5$, the non-H atoms of the 6chlorochromone unit are coplanar (r.m.s. deviation = 0.017 Å) with the largest deviation from the mean plane [0.031 (2) Å] being found for the C=O C atom. The nitro group (NO₂) is inclined to the chromone unit mean plane by 13.3 (2) °. The formyl group is also twisted with respect to the attached ring [C-C-C-O torsion angles = 10.8 (4) and -171.8 (2)°]. In the crystal, molecules are linked via C-H···O hydrogen bonds forming slab-like networks lying parallel to ($\overline{3}$ 01). The slabs are linked by π - π interactions involving the benzene rings of the chromone units [centroid–centroid distance = 3.770 (3) Å].

Related literature

For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014). For halogen bonding, see: Auffinger *et al.* (2004); Metrangolo *et al.* (2005); Wilcken *et al.* (2013); Sirimulla *et al.* (2013).

Experimental

Crystal data $C_{10}H_4CINO_5$ $M_r = 253.60$ Monoclinic, C2/c

a = 18.585 (9) Å
b = 10.4918 (17) Å
c = 11.094 (3) Å

 $\beta = 119.23 (3)^{\circ}$ $V = 1887.7 (12) \text{ Å}^3$ Z = 8Mo $K\alpha$ radiation

Data collection

Rigaku AFC-7R diffractometer 2588 measured reflections 2173 independent reflections 1903 reflections with $F^2 > 2\sigma(F^2)$

Refinement $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.098$ S = 1.052173 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C1-H1···O4 ⁱ	0.95	2.53	3.463 (3)	169
C4−H2···O2 ⁱⁱ	0.95	2.35	3.250 (3)	158
$C6-H3\cdots O5^{iii}$	0.95	2.27	3.191 (3)	164
Symmetry codes: (i) -	$-x + \frac{1}{2}, y + \frac{1}{2}, -z$	$x - \frac{1}{2}$; (ii) $-x + 1$, -y + 1, -z + 1;	iii) $x, y - 1, z$.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software;

Software; data reduction: *WinAFC Diffractometer Control Software*; program(s) used to solve structure: *SIR2008* (Burla *et al.*, 1989); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalStructure* (Rigaku, 2010); software used to prepare material for publication: *CrystalStructure*.

We acknowledge the University of Shizuoka for instrumental support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5305).

References

- Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.
- Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389–393.
- Ishikawa, Y. (2014). Acta Cryst. E70, 0514.
- Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.
- Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.
- Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791.
- Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388.

organic compounds

 $\mu = 0.41 \text{ mm}^{-1}$

 $0.38 \times 0.22 \times 0.18 \text{ mm}$

3 standard reflections every 150

H-atom parameters constrained

intensity decay: -0.7%

T = 100 K

 $R_{\rm int} = 0.019$

reflections

154 parameters

 $\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

supporting information

Acta Cryst. (2014). E70, o547 [doi:10.1107/S1600536814007788]

6-Chloro-8-nitro-4-oxo-4H-chromene-3-carbaldehyde

Yoshinobu Ishikawa

S1. Structural commentary

Halogen bonds have been found to occur in organic, inorganic, and biological systems, and have recently attracted much attention in medicinal chemistry, chemical biology and supramolecular chemistry (Auffinger *et al.*, 2004; Metrangolo *et al.*, 2005; Wilcken *et al.*, 2013; Sirimulla *et al.*, 2013). We have recently reported the crystal structures of a dichlorinated 3-formylchromone derivative 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013) and a monochlorinated 3-formylchromone derivative 6-chloro-4-oxo-4*H*-chromene-3-carbaldehyde (Ishikawa, 2014). It was found that halogen bonding is observed between the formyl oxygen atom and the chlorine atom at 8-position (Fig. 1, left), and is not observed between any oxygen atom and the chlorine atom at 6-position. As part of our interest in this type of chemical bonding, we herein report the crystal structure of a monochlorinated 3-formylchromone derivative with a nitro group, 6-chloro-8-nitro-4-oxo-4*H*-chromene-3-carbaldehyde. The objective of this study is to reveal whether halogen bond(*s*) can be formed in the crystal structure of this compound with an electron-withdrawing group near the chlorine atom at 6-position. It was postulated that the size of a σ hole of the chlorine atom might be large enough to form halogen bond(*s*) by electron-withdrawing inductive effect of the nitro group (Wilcken *et al.*, 2013).

The mean deviation of the least-square planes for the non-hydrogen atoms of the 6-chlorochromone unit is 0.0228 Å, and the largest deviations is 0.054 (2) Å for C2 (Fig. 2). The nitro group is twisted from this plane as seen in the dihedral angle between the least-squares planes of 14.116 (10) Å. The formyl group is also twisted [C1–C2–C10–O5 = 10.8 (4)° and C3–C2–C10–O5 = -171.8 (2)°], as shown in Fig. 2.

In the crystal, the molecules are linked through stacking interaction along the *a* axis [centroid–centroid distance between the benzene rings of the chromone units = 3.770 (3) Å], as shown in Fig. 3. The distances between the chlorine atom and the oxygen atoms of the nitro group [3.874 (2) Å], the formyl group [3.535 (3) and 3.666 (2) Å], and the α,β -unsaturated carbonyl group [3.595 (2) Å] are far from halogen bonding. A structure with halogen bonds can be envisaged for the title compound (Fig. 1, right), but it is not observed in the present crystal structure.

S2. Synthesis and crystallization

To a solution of 5'-chloro-2'-hydroxy-3'-nitroacetophenone (3.5 mmol) in *N*,*N*-dimethylformamide (10 ml) was added dropwise POCl₃ (8.7 mmol) for 5 min at 0 °C. After the mixture was stirred for 14 h at room temperature, water (40 ml) was added. The precipitates were collected, washed with water and dried *in vacuo*. Recrystallization from ethyl acetate gave yellow crystals (yield: 25%). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.40 (d, 1H, *J* = 2.4 Hz), 8.71 (d, 1H, *J* = 2.4 Hz), 9.06 (s, 1H), 10.08 (s, 1H). DART-MS calcd for [C₁₀H₄Cl₁N₁O₅ + H⁺]: 253.978, found 254.005.

S3. Refinement

The C(*sp*²)-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, U_{iso} (H) = 1.2 U_{eq} (C)], and refined using a riding model.

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.

Figure 2

A packing view of the title compound.

Figure 3

An illustration of the structure of 6,8-dichloro-4-oxochromene-3-carbaldehyde with halogen bonds in the crystal (left) and a hypothetical model of the title compound with halogen bonds (right).

6-Chloro-8-nitro-4-oxo-4H-chromene-3-carbaldehyde

Crystal data $C_{10}H_4CINO_5$ $M_r = 253.60$ Monoclinic, C2/cHall symbol: -C 2yc a = 18.585 (9) Å b = 10.4918 (17) Å c = 11.094 (3) Å $\beta = 119.23$ (3)° V = 1887.7 (12) Å³ Z = 8

Data collection

Rigaku AFC-7R
diffractometer
ω –2 θ scans
2588 measured reflections
2173 independent reflections
1903 reflections with $F^2 > 2\sigma(F^2)$
$R_{\rm int} = 0.019$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.098$ S = 1.052173 reflections 154 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1024.00 $D_x = 1.785 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 25 reflections $\theta = 15.4-17.5^{\circ}$ $\mu = 0.41 \text{ mm}^{-1}$ T = 100 KPlate, yellow $0.38 \times 0.22 \times 0.18 \text{ mm}$

 $\theta_{\text{max}} = 27.5^{\circ}$ $h = -13 \rightarrow 24$ $k = 0 \rightarrow 13$ $l = -14 \rightarrow 12$ 3 standard reflections every 150 reflections intensity decay: -0.7%

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0464P)^2 + 3.8081P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.29$ e Å⁻³ $\Delta\rho_{min} = -0.38$ e Å⁻³

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.44735 (3)	0.12307 (4)	0.37638 (4)	0.02112 (14)
O1	0.32475 (8)	0.53278 (12)	-0.03825 (12)	0.0162 (3)
O2	0.44970 (8)	0.63260 (12)	0.36926 (13)	0.0197 (3)
O3	0.30625 (11)	0.16061 (14)	-0.15276 (15)	0.0321 (4)
O4	0.25980 (8)	0.35147 (13)	-0.21525 (13)	0.0220 (3)
05	0.34664 (10)	0.91339 (13)	0.07444 (15)	0.0259 (4)
N1	0.30008 (9)	0.27227 (15)	-0.12702 (15)	0.0172 (3)
C1	0.33433 (11)	0.65518 (17)	0.00207 (18)	0.0164 (4)
C2	0.37408 (11)	0.69511 (16)	0.13480 (18)	0.0151 (4)
C3	0.41012 (11)	0.60278 (16)	0.24645 (17)	0.0146 (4)
C4	0.42517 (10)	0.37048 (16)	0.29954 (17)	0.0143 (4)
C5	0.41278 (10)	0.24532 (16)	0.25645 (17)	0.0152 (4)
C6	0.37215 (10)	0.21418 (17)	0.11583 (18)	0.0157 (4)
C7	0.34310 (10)	0.31087 (17)	0.01960 (17)	0.0144 (4)
C8	0.39566 (10)	0.46805 (16)	0.20106 (17)	0.0132 (4)
С9	0.35390 (10)	0.43954 (16)	0.06022 (17)	0.0136 (4)
C10	0.38301 (12)	0.83413 (18)	0.16297 (19)	0.0191 (4)
H1	0.3114	0.7185	-0.0679	0.0197*
H2	0.4535	0.3903	0.3953	0.0172*
H3	0.3647	0.1276	0.0872	0.0188*
H4	0.4189	0.8622	0.2546	0.0229*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

Atomic	displ	lacement	parameters	$(Å^2)$
--------	-------	----------	------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0291 (3)	0.0136 (3)	0.0160 (3)	0.00127 (17)	0.00746 (18)	0.00454 (15)
01	0.0234 (7)	0.0120 (6)	0.0106 (6)	0.0016 (5)	0.0061 (5)	0.0011 (5)
O2	0.0231 (7)	0.0158 (7)	0.0127 (6)	-0.0004 (5)	0.0029 (6)	-0.0029 (5)
03	0.0562 (11)	0.0153 (7)	0.0186 (7)	-0.0017 (7)	0.0133 (7)	-0.0070 (6)
04	0.0250 (7)	0.0227 (7)	0.0114 (6)	0.0001 (6)	0.0035 (6)	-0.0006 (5)
05	0.0394 (9)	0.0143 (7)	0.0239 (7)	0.0011 (6)	0.0154 (7)	0.0019 (6)
N1	0.0220 (8)	0.0170 (8)	0.0125 (7)	-0.0043 (6)	0.0083 (6)	-0.0037 (6)
C1	0.0212 (9)	0.0119 (8)	0.0159 (9)	0.0026 (7)	0.0089 (7)	0.0024 (7)
C2	0.0179 (8)	0.0120 (8)	0.0148 (8)	0.0005 (7)	0.0075 (7)	-0.0002 (7)
C3	0.0158 (8)	0.0137 (8)	0.0128 (8)	-0.0005 (7)	0.0059 (7)	-0.0011 (7)
C4	0.0156 (8)	0.0140 (9)	0.0114 (8)	0.0000 (7)	0.0050 (7)	0.0004 (7)
C5	0.0173 (8)	0.0134 (8)	0.0133 (8)	0.0016 (7)	0.0063 (7)	0.0028 (7)
C6	0.0190 (8)	0.0127 (8)	0.0162 (8)	-0.0022 (7)	0.0092 (7)	-0.0024 (7)
C7	0.0167 (8)	0.0158 (8)	0.0100 (8)	-0.0027 (7)	0.0059 (7)	-0.0035 (7)
C8	0.0146 (8)	0.0125 (8)	0.0118 (8)	-0.0003 (6)	0.0059 (7)	-0.0005 (6)

supporting information

С9	0.0158 (8)	0.0128 (8)	0.0116 (8)	0.0010 (6)	0.0062 (7)	0.0013 (6)
C10	0.0250 (10)	0.0136 (9)	0.0187 (9)	-0.0025 (7)	0.0107 (8)	-0.0013 (7)

Geometric parameters (Å, °)

Geometric purumeters (A,)			
C11—C5	1.7301 (18)	C3—C8	1.480 (3)
O1—C1	1.343 (3)	C4—C5	1.378 (3)
O1—C9	1.366 (2)	C4—C8	1.399 (3)
O2—C3	1.231 (2)	C5—C6	1.400 (3)
O3—N1	1.224 (3)	C6—C7	1.377 (3)
O4—N1	1.2220 (19)	С7—С9	1.406 (3)
O5—C10	1.210 (3)	C8—C9	1.396 (3)
N1—C7	1.476 (3)	C1—H1	0.950
C1—C2	1.352 (3)	C4—H2	0.950
C2—C3	1.453 (3)	С6—Н3	0.950
C2—C10	1.484 (3)	C10—H4	0.950
0104	2 5723 (18)	C6…N1 ⁱⁱⁱ	3 266 (4)
01···N1	2,865 (2)	C6···C5 ^v	3 544 (4)
01	2.853 (3)	C6C7 ⁱⁱⁱ	3.511(1) 3.530(3)
02…C1	3 566 (3)	$C7 \cdots O2^{v_i}$	3.207(3)
$O^2 \cdots C^4$	2,833(3)	C7…N1 ⁱⁱⁱ	3.207(3) 3.516(4)
$O^2 \cdots C^{10}$	2.033 (3)	$C7 \cdots C6^{iii}$	3.510(1) 3.530(3)
03	2.670 (3)	C7…C7 ⁱⁱⁱ	3,511 (4)
03	3 590 (3)	$C8\cdots C4^{v}$	3.311(4) 3 487 (4)
04	3 526 (3)	$C8 \cdots C8^{v}$	3 479 (4)
04	2,834(3)	$C9\cdots O2^{vi}$	3.179(1) 3.452(3)
05…C1	2.034(3)	$C10\cdots O3^{iv}$	3.452(5) 3.011(4)
C1C8	2.003(3) 2.751(3)	C10···N1 ^{iv}	3.544(4)
C2····C9	2.777(3)		3 529 (4)
C4···C7	2.771(3)	Cl1···H2	2 8102
C5···C9	2 786 (3)	Cl1···H3	2.8003
C6···C8	2.789(3)	02···H2	2.5550
	35748(10)	O2···H4	2.6525
Cl1…O2 ⁱⁱ	3 5947 (15)	O3…H3	2.3584
Cl1···O4 ⁱⁱⁱ	3.371 (3)	05···H1	2.4692
Cl1O5 ^{iv}	3 535 (3)	N1H3	2.5702
Cl1···C6 ^v	3 448 (3)	C1···H4	3 2764
$01\cdots02^{v_i}$	3 433 (3)	C3…H1	3 2794
0103 ^{vii}	3,365 (2)	C3…H2	2.6539
O1…O5 ^{viii}	3.062 (3)	C3…H4	2.72.52
O1····C4 ^{vi}	3321(3)	C4…H3	3 2742
02···Cl1 ⁱⁱ	3 5947 (15)	C6H2	3.2764
$02 \cdots 01^{iv}$	3 433 (3)	C9H1	3 1800
$O2\cdots O3^{iv}$	3.352 (3)	C9···H2	3.2847
$O^2 \cdots O^{4^{iv}}$	3 183 (3)	C9···H3	3 2837
O2···N1 ^{iv}	2.974 (3)	C10H1	2.5450
$02 \cdots C1^{v}$	3 551 (3)	H1H4	3 4766
02 01	5.551 (5)	111 117	5.1/00

O2····C2 ^v	3.362 (4)	Cl1…H1 ^{iv}	3.3241
O2…C3 ^v	3.435 (4)	Cl1····H3 ^v	3.3146
O2····C4 ⁱⁱ	3.250 (3)	Cl1····H4 ^x	2.9832
O2····C7 ^{iv}	3.207 (3)	O1…H2 ^{vi}	2.9400
O2…C9 ^{iv}	3.452 (3)	O2…H2 ⁱⁱ	2.3513
03…01 ^{ix}	3.365 (2)	O3····H1 ^{ix}	2.8519
03…02 ^{vi}	3.352 (3)	O3····H4 ^{vi}	2.7560
03…04 ^{ix}	3.524 (2)	O4···H1 ^{ix}	2.5249
03…05 ^x	3435(3)	O4···H3 ⁱⁱⁱ	3 2607
03 05 ^{vi}	3 542 (3)	$05 \cdots H1^{\text{viii}}$	3 2161
$O3 \cdots C1^{ix}$	3.458(3)	$05 \cdot H^{3xi}$	2 2666
03····C2 ^{vi}	3.100(3) 3.512(4)	N1····H1 ^{ix}	3.0357
03 ···C10 ^{vi}	3.012(4)	N1····H3 ⁱⁱⁱ	3 4641
04····C11 ⁱⁱⁱ	3.011(4) 3.371(3)	N1····H4 ^{vi}	3 3795
$04 \cdot 02^{vi}$	3.371(3) 3.183(3)		3.4007
04 02	3.103(3)		3.4007
0405 ^{ix}	5.524(2)		2 2806
$04\cdots05^{m}$	3.338 (3)		3.2800
	3.403(3)		3.5197
04C2 ^{vi}	3.312 (4)		3.2457
04C3 ^{vi}	3.062 (4)		3.3272
04····C5 ^m	3.177 (3)		3.5199
O4····C6 ^m	3.217 (3)	C7H3 ^m	3.5024
05…Cl1 ^{vi}	3.535 (3)	C8…H2 ^v	3.5485
O5…O1 ^{vm}	3.062 (3)	C9…H2 ^v	3.4053
O5…O3 ^{xi}	3.435 (3)	C10…H1 ^{viii}	3.2794
O5…O3 ^{iv}	3.542 (3)	C10····H3 ^{xi}	3.1660
O5…O4 ^{vii}	3.538 (3)	C10····H4 ^v	3.3452
O5…C1 ^{viii}	3.124 (4)	H1····Cl1 ^{vi}	3.3241
O5····C6 ^{xi}	3.191 (3)	H1···O3 ^{vii}	2.8519
N1…O2 ^{vi}	2.974 (3)	$H1\cdots O4^{vii}$	2.5249
N1…C2 ^{vi}	3.541 (4)	H1…O5 ^{viii}	3.2161
N1····C3 ^{vi}	3.267 (4)	H1…N1 ^{vii}	3.0357
N1…C5 ⁱⁱⁱ	3.492 (3)	H1…C1 ^{viii}	3.4007
N1···C6 ⁱⁱⁱ	3.266 (4)	H1····C2 ^{viii}	3.2806
N1····C7 ⁱⁱⁱ	3.516 (4)	$H1 \cdots C4^{vi}$	3.2457
N1…C10 ^{vi}	3.544 (4)	$H1 \cdots C5^{vi}$	3.3272
C1···O2 ^v	3.551 (3)	H1····C10 ^{viii}	3.2794
C1···O3 ^{vii}	3.458 (3)	H1…H1 ^{viii}	3.3600
C1····O4 ^{vii}	3.463 (3)	H1…H2 ^{vi}	3.0810
C1···O5 ^{viii}	3.124 (4)	H2…O1 ^{iv}	2.9400
C1…C4 ^{vi}	3.417 (4)	H2…O2 ⁱⁱ	2.3513
C1···C10 ^{viii}	3.529 (4)	H2····C1 ^{iv}	3.0167
C2…O2 ^v	3.362 (4)	H2…C3 ⁱⁱ	3.5197
C2O3 ^{iv}	3.512 (4)	H2····C7 ^v	3.5199
C2…O4 ^{iv}	3.312 (4)	H2…C8 ^v	3 5485
$C2\cdots N1^{iv}$	3.541(4)	$H2\cdots C9^{v}$	3 4053
C3…O2 ^v	3.435 (4)	$H2\cdots H1^{iv}$	3 0810
C3····O4 ^{iv}	3.062 (4)	H2…H2 ⁱⁱ	3.1238

C3…N1 ^{iv}	3.267 (4)	H3…C11 ^v	3.3146
C3…C3 ^v	3.303 (4)	H3····O4 ⁱⁱⁱ	3.2607
C4…O1 ^{iv}	3.321 (3)	H3…O5 ^x	2.2666
C4···O2 ⁱⁱ	3.250 (3)	H3…N1 ⁱⁱⁱ	3.4641
C4···C1 ^{iv}	3.417 (4)	H3····C7 ⁱⁱⁱ	3.5024
C4····C4 ^v	3.454 (4)	H3…C10 ^x	3.1660
C4…C8 ^v	3.487 (4)	H3····H4 ^x	3.2237
C5…O4 ⁱⁱⁱ	3.177 (3)	H4…Cl1 ^{xi}	2.9832
C5…N1 ⁱⁱⁱ	3.492 (3)	H4····O3 ^{iv}	2.7560
C5…C5 ^v	3.314 (4)	H4…N1 ^{iv}	3.3795
C5…C6 ^v	3.544 (4)	H4…C10 ^v	3.3452
C6···Cl1 ^v	3.448 (3)	H4···H3 ^{xi}	3.2237
C6···O4 ⁱⁱⁱ	3217(3)	$H4\cdots H4^{v}$	3 0665
C6O5 ^x	3.191(3)		5.0000
00 05	5.171 (5)		
C1—O1—C9	118.83 (14)	N1—C7—C9	122.16 (15)
O3—N1—O4	123.66 (15)	C6—C7—C9	121.20 (16)
O3—N1—C7	117.23 (14)	C3—C8—C4	119.75 (15)
O4—N1—C7	119.10 (16)	C3—C8—C9	119.65 (15)
Q1—C1—C2	124.91 (16)	C4—C8—C9	120.59 (16)
C1 - C2 - C3	120.08 (16)	01	119.50 (15)
C1—C2—C10	118.65 (16)	01	121.89 (15)
C3—C2—C10	121.21 (15)	C7—C9—C8	118.60 (15)
02-C3-C2	123.47 (16)	05-C10-C2	122.94 (16)
02 - C3 - C8	122.01 (15)	O1 - C1 - H1	117.543
$C_2 = C_3 = C_8$	114 53 (14)	$C^2 - C^1 - H^1$	117.546
$C_{5} - C_{4} - C_{8}$	119 41 (16)	C5-C4-H2	120 299
C11 - C5 - C4	120 22 (13)	C8-C4-H2	120.299
C11 - C5 - C6	118 66 (14)	C5-C6-H3	120.290
C4-C5-C6	121 12 (16)	C7-C6-H3	120.103
$C_{5} - C_{6} - C_{7}$	119.06 (17)	$O_{5} - C_{10} - H_{4}$	118 529
N1 - C7 - C6	116.64 (16)	C^2 — C^{10} —H4	118.529
	110.01 (10)	02 010 111	110.52)
C1—O1—C9—C7	178.93 (17)	C5—C4—C8—C3	-178.83 (17)
C1—O1—C9—C8	-2.2 (3)	C5—C4—C8—C9	0.1 (3)
C9—O1—C1—C2	2.8 (3)	C8—C4—C5—C11	-179.02 (16)
C9—O1—C1—H1	-177.2	C8—C4—C5—C6	0.9 (3)
O3—N1—C7—C6	-12.8(3)	H2—C4—C5—Cl1	1.0
O3—N1—C7—C9	167.45 (19)	H2—C4—C5—C6	-179.1
O4—N1—C7—C6	166.20 (17)	H2—C4—C8—C3	1.2
O4—N1—C7—C9	-13.5 (3)	H2—C4—C8—C9	-179.9
01—C1—C2—C3	-0.2 (4)	Cl1—C5—C6—C7	178.84 (13)
O1—C1—C2—C10	177.18 (18)	Cl1—C5—C6—H3	-1.1
H1—C1—C2—C3	179.8	C4—C5—C6—C7	-1.0 (3)
H1-C1-C2-C10	-2.8	C4—C5—C6—H3	179.0
C1—C2—C3—O2	177.3 (2)	C5—C6—C7—N1	-179.42 (17)
C1—C2—C3—C8	-2.7 (3)	C5—C6—C7—C9	0.3 (3)
C1—C2—C10—O5	10.8 (4)	H3—C6—C7—N1	0.6

supporting information

C1—C2—C10—H4	-169.2	Н3—С6—С7—С9	-179.7
C3—C2—C10—O5	-171.8 (2)	N1—C7—C9—O1	-0.8 (3)
C3—C2—C10—H4	8.2	N1—C7—C9—C8	-179.69 (17)
C10-C2-C3-O2	-0.1 (4)	C6—C7—C9—O1	179.53 (18)
C10—C2—C3—C8	-179.99 (19)	C6—C7—C9—C8	0.6 (3)
O2—C3—C8—C4	2.1 (4)	C3—C8—C9—O1	-0.8 (3)
O2—C3—C8—C9	-176.81 (19)	C3—C8—C9—C7	178.10 (17)
C2—C3—C8—C4	-177.99 (18)	C4—C8—C9—O1	-179.68 (18)
C2—C3—C8—C9	3.1 (3)	C4—C8—C9—C7	-0.8 (3)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+1/2, -*y*+1/2, -*z*; (iv) *x*, -*y*+1, *z*+1/2; (v) -*x*+1, *y*, -*z*+1/2; (vi) *x*, -*y*+1, *z*-1/2; (vii) -*x*+1/2, -*y*+1/2, -*z*; (ix) -*x*+1/2, -*y*+1/2, -*z*; (ix) -*x*+1/2, -*y*+1/2, -*z*+1/2; (vi) -*x*+1, *y*, -*z*+1/2; (vi) -*x*+1/2, -*y*+1/2, -*z*+1/2; (vi) -*x*+1/2, -*z*+1/2; (vi) -*x*+1

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C1—H1···O4 ^{vii}	0.95	2.53	3.463 (3)	169
C4—H2···O2 ⁱⁱ	0.95	2.35	3.250 (3)	158
C6—H3····O5 ^x	0.95	2.27	3.191 (3)	164

Symmetry codes: (ii) -x+1, -y+1, -z+1; (vii) -x+1/2, y+1/2, -z-1/2; (x) x, y-1, z.