Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6-Chloro-4-oxo-4*H*-chromene-3-carbaldehyde

Yoshinobu Ishikawa

School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan

Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Received 28 March 2014; accepted 30 March 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.040; wR factor = 0.109; data-to-parameter ratio = 15.0.

In the title compound, $C_{10}H_5ClO_3$, a chlorinated 3-formylchromone derivative, the non-H atoms are essentially coplanar (r.m.s. deviation = 0.0456 Å) with the largest deviation from the least-squares plane [0.1136 (16) Å] being found for the ring-bound carbonyl O atom. In the crystal, molecules are linked through stacking interactions along the *b* axis [shortest centroid–centroid distance between the pyran and benzene rings = 3.4959 (15) Å].

Related literature

For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014). For van der Waals radii; see: Bondi (1964). For halogen bonding, see: Auffinger *et al.* (2004); Metrangolo *et al.* (2005); Sirimulla *et al.* (2013).

Experimental

Crystal data $C_{10}H_5ClO_3$ $M_r = 208.60$ Triclinic. $P\overline{1}$

a = 6.5838 (16) Åb = 6.9579 (17) Åc = 10.265 (3) Å $\alpha = 71.22 (3)^{\circ}$ $\beta = 85.64 (2)^{\circ}$ $\gamma = 69.29 (3)^{\circ}$ $V = 416.0 (2) \text{ Å}^{3}$ Z = 2

Data collection

Rigaku AFC-7R diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.891, T_{max} = 0.950$ 2356 measured reflections 1906 independent reflections

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.040 & 127 \text{ parameters} \\ wR(F^2) = 0.109 & H\text{-atom parameters constrained} \\ S = 1.10 & \Delta\rho_{max} = 0.29 \text{ e } \text{\AA}^{-3} \\ 1906 \text{ reflections} & \Delta\rho_{min} = -0.64 \text{ e } \text{\AA}^{-3} \end{array}$

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR88 (Burla et al., 1989); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

The author acknowledges the University of Shizuoka for instrumental support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5303).

References

Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.

- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389–393.
- Ishikawa, Y. (2014). Acta Cryst. E70, 0439.
- Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, 01416.

Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.

- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791.

Mo $K\alpha$ radiation $\mu = 0.43 \text{ mm}^{-1}$

 $0.36 \times 0.25 \times 0.12 \text{ mm}$

1741 reflections with $F^2 > 2\sigma(F^2)$

3 standard reflections every 150

intensity decay: -0.9%

T = 100 K

 $R_{\rm int} = 0.058$

reflections

supporting information

Acta Cryst. (2014). E70, o514 [doi:10.1107/S1600536814007119]

6-Chloro-4-oxo-4H-chromene-3-carbaldehyde

Yoshinobu Ishikawa

S1. Structural commentary

Halogen bonds have been found to occur in organic, inorganic and biological systems, and have recently attracted much attention in medicinal chemistry, chemical biology and supramolecular chemistry (Auffinger *et al.*, 2004; Metrangolo *et al.*, 2005; Sirimulla *et al.*, 2013). We have recently reported the crystal structures of dihalogenated 3-formylchromone derivatives 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013; Fig. 2 (top)) and 6,8-dibromo-4-oxochromene-3-carbaldehyde (Ishikawa, 2014). It was found that similar halogen bonds between the formyl oxygen atom and the halogen atoms at the 8-position are formed in those crystal structures. As part of our interest in this type of chemical bonding, we herein report the crystal structure of a monochlorinated 3-formylchromone derivative, 6-chloro-4-oxo-4*H*-chromene-3-carbaldehyde. The objective of this study is to reveal whether halogen bond(s) can be formed in the crystal structure of this compound without halogen atom at 8-position.

The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0456 Å, and the largest deviations is 0.1136 (16) Å for O2. These mean that these atoms are essentially coplanar.

In the crystal, the molecules are stacked with the inversion-symmetry equivalents along the *b*-axis direction [centroid– centroid distance between the pyran rings of the 4*H*-chromene units = 3.926(2) Å, *i*: -*x* + 2, -*y* + 1, -*z* + 1], as shown in Fig. 1. The distance between the chloride atom and the formyl oxygen atom of the translation-symmetry equivalent [C11···O3ⁱⁱ = 3.284(2) Å, *ii*: *x* + 1, *y*, *z* - 1] is approximately equal to the sum of their van der Waals radii [3.27 Å] (Bondi, 1964), as shown in the middle of Fig. 2. Thus, it is concluded that there is no halogen bond in the title compound. The C– Cl···O and Cl···O=C angles are 166.30 (8) and 166.69 (14)°, respectively. The latter angle is greater than that of 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013). A structure with halogen bonds can be modeled for the title compound (Fig.2, bottom), but it is not observed in the crystal. These results might be invaluable for the development of state-of-the-art force fields.

S2. Synthesis and crystallization

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution of the commercially available title compound at room temperature.

S3. Refinement

The C(sp²)-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, $U_{iso}(H) = 1.2U_{eq}(C)$], and refined using a riding model. One reflection (1 8 2) was omitted because of systematic error.

Figure 1

A packing view of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.

Figure 2

Sphere models of the crystal structures of 6,8-dichloro-4-oxochromene-3-carbaldehyde (top) and the title compound (middle), and an illustration of a hypothetical model of the title compound with halogen bonds (bottom).

6-Chloro-4-oxo-4H-chromene-3-carbaldehyde

Crystal data	
$C_{10}H_5ClO_3$	$\gamma = 69.29 \ (3)^{\circ}$
$M_r = 208.60$	V = 416.0 (2) Å ³
Triclinic, $P\overline{1}$	Z = 2
Hall symbol: -P 1	F(000) = 212.00
a = 6.5838 (16) Å	$D_{\rm x} = 1.665 {\rm ~Mg} {\rm ~m}^{-3}$
b = 6.9579 (17) Å	Mo $K\alpha$ radiation, $\lambda = 0.71069$ Å
c = 10.265 (3) Å	Cell parameters from 25 reflections
$\alpha = 71.22 \ (3)^{\circ}$	$\theta = 15.3 - 17.2^{\circ}$
$\beta = 85.64 \ (2)^{\circ}$	$\mu = 0.43 \text{ mm}^{-1}$

T = 100 K	$0.36 \times 0.25 \times 0.12 \text{ mm}$
Plate, colourless	
Data collection	
Rigaku AFC-7R diffractometer ω -2 θ scans Absorption correction: ψ scan (North <i>et al.</i> , 1968) $T_{\min} = 0.891, T_{\max} = 0.950$ 2356 measured reflections 1906 independent reflections	1741 reflections with $F^2 > 2\sigma(F^2)$ $R_{int} = 0.058$ $\theta_{max} = 27.5^{\circ}$ $h = -4 \rightarrow 8$ $k = -8 \rightarrow 9$ $l = -13 \rightarrow 13$ 3 standard reflections every 150 reflections intensity decay: -0.9%
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.109$ S = 1.10	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
1906 reflections 127 parameters 0 restraints	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0651P)^2 + 0.1805P]$ where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant direct methods	$(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.29 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{\text{min}} = -0.64 \text{ e } \text{\AA}^{-3}$

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	1.39536 (6)	0.20927 (6)	0.08023 (4)	0.01987 (16)	
01	0.69076 (17)	0.31098 (18)	0.46559 (11)	0.0144 (3)	
O2	1.29992 (18)	0.1926 (2)	0.61081 (12)	0.0182 (3)	
03	0.7968 (2)	0.2432 (3)	0.87417 (12)	0.0239 (3)	
C1	0.7314 (3)	0.2807 (3)	0.59818 (15)	0.0136 (3)	
C2	0.9290 (3)	0.2401 (3)	0.65261 (15)	0.0131 (3)	
C3	1.1186 (3)	0.2214 (3)	0.56792 (15)	0.0126 (3)	
C4	1.2409 (3)	0.2179 (3)	0.33066 (15)	0.0139 (3)	
C5	1.1898 (3)	0.2441 (3)	0.19633 (15)	0.0148 (3)	
C6	0.9759 (3)	0.2980 (3)	0.15125 (16)	0.0166 (4)	
C7	0.8106 (3)	0.3239 (3)	0.24213 (16)	0.0159 (4)	
C8	1.0736 (3)	0.2431 (3)	0.42402 (15)	0.0120 (3)	
C9	0.8618 (3)	0.2926 (3)	0.37834 (15)	0.0129 (3)	
C10	0.9496 (3)	0.2130 (3)	0.80066 (16)	0.0169 (4)	
H1	0.6135	0.2881	0.6580	0.0163*	
H2	1.3869	0.1834	0.3594	0.0167*	
Н3	0.9443	0.3168	0.0582	0.0200*	
H4	0.6643	0.3625	0.2123	0.0191*	
H5	1.0911	0.1694	0.8402	0.0202*	

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0190 (3)	0.0257 (3)	0.0136 (3)	-0.00517 (16)	0.00438 (14)	-0.00820 (15)
O1	0.0101 (5)	0.0183 (6)	0.0134 (5)	-0.0037 (4)	-0.0001 (4)	-0.0044 (4)
O2	0.0125 (5)	0.0268 (6)	0.0158 (6)	-0.0066 (5)	-0.0007 (4)	-0.0074 (5)
O3	0.0222 (6)	0.0358 (8)	0.0180 (6)	-0.0114 (6)	0.0065 (5)	-0.0141 (6)
C1	0.0137 (7)	0.0133 (7)	0.0130 (7)	-0.0036 (6)	0.0010 (5)	-0.0043 (6)
C2	0.0133 (7)	0.0141 (7)	0.0124 (7)	-0.0041 (6)	0.0004 (6)	-0.0056 (6)
C3	0.0127 (7)	0.0115 (7)	0.0136 (7)	-0.0034 (6)	-0.0002 (6)	-0.0047 (6)
C4	0.0137 (7)	0.0133 (7)	0.0142 (7)	-0.0039 (6)	0.0003 (6)	-0.0044 (6)
C5	0.0176 (8)	0.0133 (7)	0.0132 (7)	-0.0047 (6)	0.0022 (6)	-0.0049 (6)
C6	0.0220 (8)	0.0154 (7)	0.0118 (7)	-0.0064 (6)	-0.0017 (6)	-0.0031 (6)
C7	0.0160 (7)	0.0164 (7)	0.0142 (7)	-0.0050 (6)	-0.0042 (6)	-0.0029 (6)
C8	0.0132 (7)	0.0110 (7)	0.0111 (7)	-0.0037 (6)	-0.0001 (6)	-0.0031 (5)
C9	0.0136 (7)	0.0119 (7)	0.0124 (7)	-0.0038 (6)	0.0005 (6)	-0.0033 (6)
C10	0.0189 (8)	0.0189 (8)	0.0140 (7)	-0.0066 (6)	0.0010 (6)	-0.0068 (6)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cl1—C5	1.7377 (17)	C4—C8	1.405 (3)
01—C1	1.341 (2)	C5—C6	1.397 (3)
O1—C9	1.3802 (19)	C6—C7	1.379 (3)
O2—C3	1.230 (3)	С7—С9	1.393 (3)
O3—C10	1.210 (2)	C8—C9	1.392 (3)
C1—C2	1.354 (3)	C1—H1	0.950
C2—C3	1.457 (3)	C4—H2	0.950
C2-C10	1.481 (3)	С6—Н3	0.950
C3—C8	1.478 (3)	C7—H4	0.950
C4—C5	1.383 (3)	С10—Н5	0.950
O1…C3	2.866 (3)	С4…Н3	3.2782
O2…C1	3.578 (3)	C5…H4	3.2649
O2…C4	2.872 (3)	C6…H2	3.2829
O2…C10	2.898 (3)	C8…H4	3.2890
O3…C1	2.812 (3)	С9…Н1	3.1907
C1…C7	3.582 (3)	С9…Н2	3.2715
C1…C8	2.759 (3)	С9…Н3	3.2493
C2…C9	2.769 (3)	C10…H1	2.5487
C4…C7	2.807 (3)	H1…H5	3.4825
C5…C9	2.747 (3)	Н3…Н4	2.3384
C6…C8	2.795 (3)	Cl1····H3 ^{xi}	3.1849
Cl1···O3 ⁱ	3.2840 (16)	Cl1····H4 ^{vi}	2.9565
01…01 ⁱⁱ	3.1591 (18)	Cl1····H4 ^{xi}	3.4118
O1…O2 ⁱⁱⁱ	3.1063 (19)	Cl1····H5 ^x	3.4268
O1…O2 ^{iv}	3.309 (3)	Cl1…H5 ^{vii}	3.4313
O1…C1 ⁱⁱ	3.118 (2)	O1…H1 ⁱⁱ	2.7492
01…C3 ^v	3.589 (3)	O1···H2 ⁱⁱⁱ	2.8618

O1····C4 ^v	3.484 (3)	O1…H2 ^v	3.5281
O1…C8 ^v	3.432 (2)	O2…H1 ^{vi}	2.5039
O2…O1 ^{vi}	3.1063 (19)	O2…H2 ^{vii}	2.6366
O2…O1 ^{iv}	3.309 (3)	O3····H3 ^{ix}	2.4552
O2····C1 ^{vi}	3.096 (3)	O3…H3 ^v	3.5089
O2…C1 ^{iv}	3.543 (3)	O3…H4 ⁱⁱ	3.2371
O2····C4 ^{vii}	3.274 (2)	O3…H5 ^{xii}	3.2852
O2…C9 ^{iv}	3.394 (3)	C1…H1 ⁱⁱ	3.4760
O3…Cl1 ^{viii}	3.2840 (16)	C1···H2 ^v	3.4704
O3····C4 ^{iv}	3.590 (3)	C3····H2 ^{vii}	3.4084
O3…C5 ^{iv}	3.436 (3)	C4···H1 ^v	3.2703
O3···C6 ^{ix}	3,339 (3)	C4…H4 ^{vi}	3.3076
	3 118 (2)	C5…H1v	3 3113
$C1 \cdots O2^{iii}$	3 096 (3)	C5···H3 ^{xi}	3 2003
$C1 \cdots O2^{iv}$	3 543 (3)	C5···H4 ^{vi}	3 5285
$C1 \cdots C4^{v}$	3 247 (3)	C6···H3 ^{xi}	3 0323
$C1 \cdots C5^{v}$	3.452(3)	C6H5 ^x	3 5441
$C1 \cdots C8^{v}$	3.432(3)	C6H5 ^v	3.4065
$C_1 C_0$	3.467(3)	C7H1 ⁱⁱ	3.4005
C^{2}	3.392(3)		2 2026
C2C6y	3.302(3)		2 2852
$C_2 \cdots C_7^{v}$	3.483(3)		3.5052
	3.307(3)		2.0512
$C_2 = C_0^{\text{N}}$	3.410(3)		2.9312
$C_2 \cdots C_2$	3.380(3)		5.5274 2.7402
C_{2} C_{2}	5.589 (5) 2.4(1.(2)		2.7492
C_{3}	5.401 (5) 2.541 (2)		2.5039
	3.541 (3)		3.4/60
	3.512 (3)		3.2703
	3.395 (3)		3.3113
	3.484 (3)		3.4852
C4····O2 ^{vn}	3.274 (2)	H1C9 ⁿ	3.3852
	3.590 (3)		3.5933
C4···C1 ^v	3.247 (3)	H1…H2 ^v	3.3433
$C4\cdots C2^{iv}$	3.592 (3)	H1···H4 ⁿ	3.0973
$C4\cdots C10^{iv}$	3.518 (3)	H2···O1 ^{v1}	2.8618
C5…O3 ^{IV}	3.436 (3)	H2···O1 ^v	3.5281
C5···C1 ^v	3.452 (3)	H2…O2 ^{vii}	2.6366
C5…C2 ^v	3.562 (3)	H2…C1 ^v	3.4704
C5…C10 ^v	3.600 (3)	H2…C3 ^{vii}	3.4084
C5…C10 ^{iv}	3.568 (3)	H2…C7 ^{vi}	3.2936
C6…O3 ^x	3.339 (3)	H2····C9 ^{vi}	3.5013
C6…C2 ^v	3.485 (3)	H2…H1 ^v	3.3433
C6···C6 ^{xi}	3.536 (3)	H2…H2 ^{vii}	3.2073
C6…C10 ^v	3.287 (3)	H2…H4 ^{vi}	2.6733
C7…C2 ^v	3.507 (3)	H3…Cl1 ^{xi}	3.1849
C7…C3 ^v	3.541 (3)	H3…O3 ^x	2.4552
C8…O1 ^v	3.432 (2)	H3…O3 ^v	3.5089
C8····C1 ^v	3.487 (3)	H3····C5 ^{xi}	3.2003

C8····C2 ^{iv}	3.418 (3)	H3····C6 ^{xi}	3.0323
C8····C3 ^{iv}	3.512 (3)	H3…C10 ^x	2.9512
C8…C9 ^v	3.512 (3)	H3…C10 ^v	3.3274
C9O2 ^{iv}	3.394 (3)	H3····H3 ^{xi}	2.7733
C9…C2 ^v	3.580 (3)	H3…H5 ^x	2.7277
C9…C3 ^v	3.395 (3)	H3…H5 ^v	3.2917
C9C8 ^v	3.512 (3)	H4…Cl1 ⁱⁱⁱ	2.9565
C10····C4 ^{iv}	3.518 (3)	H4····Cl1 ^{xi}	3.4118
C10····C5 ^v	3,600 (3)	H4···O3 ⁱⁱ	3.2371
C10····C5 ^{iv}	3.568 (3)	H4···C4 ⁱⁱⁱ	3.3076
$C10\cdots C6^{v}$	3 287 (3)	H4···C5 ⁱⁱⁱ	3 5285
Cl1…H2	2 8098	H4…H1 ⁱⁱ	3 0973
C11H3	2 8018	H4···H2 ⁱⁱⁱ	2 6733
01···H4	2 5183	H5···Cl1 ^{ix}	3 4268
02···H2	2.5105	H5···Cl1 ^{vii}	3.4313
O2H5	2.6171		3 2852
O2H1	2.0255	H5···C6 ^{ix}	3 5441
C1H5	2.4041	H5 C6	3 4065
C2H1	3.2708	115 Сб Ц5Ц2іх	3. 4 005 2.777
C2H2	2.6804	115 ¹¹¹⁵ 115112v	2.7277
C3H5	2.0894	н5…н5	5.2917
C3 II3	2.7009		
C1	118 51 (13)	C4—C8—C9	118 86 (15)
01 - C1 - C2	124.50 (14)	01 - C9 - C7	116.07 (15)
C1 - C2 - C3	120.89 (15)	01 - C9 - C8	122.03 (15)
C1 - C2 - C10	118 68 (14)	C7 - C9 - C8	121.89 (15)
C_{3} C_{2} C_{10}	120 43 (15)	O_{3} - C10 - C2	123.81 (16)
$0^{2}-C^{3}-C^{2}$	123.55 (15)	01 - C1 - H1	117 750
02 - 03 - 02 02 - 03 - 08	123.55(15) 122.50(14)	$C^2 - C^1 - H^1$	117.752
$C_2 - C_3 - C_8$	113 94 (14)	C_{5} C_{4} H_{2}	120 520
$C_{2} = C_{3} = C_{3}$	118.97 (15)	C8-C4-H2	120.520
$C_{11} - C_{5} - C_{4}$	119 56 (13)	C5-C6-H3	120.015
$C_1 = C_5 = C_6$	118 90 (13)	C7-C6-H3	120.000
C4-C5-C6	121 54 (15)	C6-C7-H4	120.001
$C_{5} - C_{6} - C_{7}$	119.83 (16)	C9-C7-H4	120.505
$C_{6} = C_{7} = C_{9}$	118.88 (16)	$C_{3} - C_{10} - H_{5}$	118 090
C_{3} C_{8} C_{4}	121 17 (15)	C_{2} C_{10} H5	118.097
C_{3}^{-} C_{8}^{-} C_{9}^{0}	121.17(13) 110.07(14)	62 610 113	110.077
05-06-05	119.97 (14)		
C1C7C7	179.49 (13)	C8—C4—C5—Cl1	-178.97 (13)
C1—O1—C9—C8	0.2 (2)	C8—C4—C5—C6	1.0 (3)
C9—O1—C1—C2	2.4 (3)	H2—C4—C5—Cl1	1.0
C9-01-C1-H1	-177.6	H2—C4—C5—C6	-179.0
O1—C1—C2—C3	-1.4 (3)	H2—C4—C8—C3	1.3
O1—C1—C2—C10	179.14 (13)	H2—C4—C8—C9	-179.7
H1—C1—C2—C3	178.6	Cl1—C5—C6—C7	179.23 (11)
H1-C1-C2-C10	-0.9	Cl1—C5—C6—H3	-0.8
C1—C2—C3—O2	177.29 (15)	C4—C5—C6—C7	-0.7 (3)

-2.0(2)	С4—С5—С6—Н3	179.3
-6.6 (3)	C5—C6—C7—C9	-0.8 (3)
173.4	С5—С6—С7—Н4	179.1
173.91 (15)	Н3—С6—С7—С9	179.1
-6.1	Н3—С6—С7—Н4	-0.9
-3.3 (3)	C6—C7—C9—O1	-177.08 (14)
177.49 (13)	C6—C7—C9—C8	2.2 (3)
4.1 (3)	H4—C7—C9—O1	2.9
-174.93 (14)	H4—C7—C9—C8	-177.8
-176.66 (13)	C3—C8—C9—O1	-3.7 (3)
4.3 (2)	C3—C8—C9—C7	177.13 (13)
-178.70 (13)	C4—C8—C9—O1	177.30 (14)
0.3 (3)	C4—C8—C9—C7	-1.9 (3)
	$\begin{array}{c} -2.0 (2) \\ -6.6 (3) \\ 173.4 \\ 173.91 (15) \\ -6.1 \\ -3.3 (3) \\ 177.49 (13) \\ 4.1 (3) \\ -174.93 (14) \\ -176.66 (13) \\ 4.3 (2) \\ -178.70 (13) \\ 0.3 (3) \end{array}$	-2.0 (2) $C4-C5-C6-H3$ $-6.6 (3)$ $C5-C6-C7-C9$ 173.4 $C5-C6-C7-H4$ $173.91 (15)$ $H3-C6-C7-C9$ -6.1 $H3-C6-C7-H4$ $-3.3 (3)$ $C6-C7-C9-O1$ $177.49 (13)$ $C6-C7-C9-O1$ $177.49 (13)$ $C6-C7-C9-O1$ $-174.93 (14)$ $H4-C7-C9-O1$ $-176.66 (13)$ $C3-C8-C9-O1$ $4.3 (2)$ $C3-C8-C9-O1$ $-178.70 (13)$ $C4-C8-C9-O1$ $0.3 (3)$ $C4-C8-C9-C7$

Symmetry codes: (i) x+1, y, z-1; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z; (iv) -x+2, -y+1, -z+1; (v) -x+2, -y, -z+1; (vi) x+1, y, z; (vii) -x+3, -y, -z+1; (viii) x-1, y, z+1; (ix) x, y, z-1; (xi) -x+2, -y+1, -z; (xii) -x+2, -y, -z+1; (vi) x+1, y, z; (vii) -x+3, -y, -z+1; (viii) x-1, y, z+1; (ix) x, y, z-1; (xi) -x+2, -y+1, -z; (xii) -x+2, -y, -z+1; (vi) x+1, y, z; (vii) -x+3, -y, -z+1; (viii) x+1, -z; (vii) -x+3, -z; (vii) -x+3; (vii) -x+3, -z; (vii) -x+3, -z; (vii) -x+3, -z; (vii) -x+3; (vi) -x+3; (vii)