

Acta Crystallographica Section E **Structure Reports** Online ISSN 1600-5368

4-(4-Bromophenyl)-7,7-dimethyl-2methylamino-3-nitro-7.8-dihydro-4Hchromen-5(6H)-one including an unknown solvate

S. Antony Inglebert,^a Jayabal Kamalraja,^b K. Sethusankar^c* and Gnanasambandam Vasuki^b

^aSri Ram Engineering College, Chennai 602 024, India, ^bDepartment of Chemistry, Pondichery University, Pondichery 605 014, India, and ^cDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India Correspondence e-mail: ksethusankar@yahoo.co.in

Received 17 March 2014; accepted 10 April 2014

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.038; wR factor = 0.105; data-to-parameter ratio = 13.8.

In the title compound, C₁₈H₁₉BrN₂O₄, the chromene unit is not quite planar (r.m.s. deviation = 0.199 Å), with the methyl C atoms lying 0.027 (4) and 1.929 (4) Å from the mean plane of the chromene unit. The six-membered carbocyclic ring of the chromene moiety adopts an envelope conformation, with the dimethyl-substituted C atom as the flap. The methylamine and nitro groups are slightly twisted from the chromene moiety, with C-N-C-O and O-N-C-C torsion angles of 2.7 (4) and -0.4 (4)°, respectively. The dihedral angle between the mean plane of the chromene unit and the benzene ring is 85.61 (13)°. An intramolecular $N-H \cdots O$ hydrogen bond generates an S(6) ring motif, which stabilizes the molecular conformation. In the crystal, molecules are linked via N- $H \cdots O$ hydrogen bonds, forming hexagonal rings lying parallel to the ab plane. A region of disordered electron density, most probably disordered ethanol solvent molecules, occupying voids of *ca* 432 $Å^3$ for an electron count of 158, was treated using the SQUEEZE routine in PLATON [Spek (2009). Acta Cryst. D65, 148-155]. Their formula mass and unit-cell characteristics were not taken into account during refinement.

Related literature

For the biological and pharmacological properties of chromene and chromene derivatives, see: Thomas & Zachariah (2013). For graph-set notation, see: Bernstein et al. (1995). For ring puckering parameters, see: Cremer & Pople (1975). For a related structure, see: Narayanan et al. (2013).

Z = 18

Mo $K\alpha$ radiation

 $0.35 \times 0.30 \times 0.30$ mm

25281 measured reflections

3206 independent reflections

2565 reflections with $I > 2\sigma(I)$

 $\mu = 2.34 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.035$

Experimental

Crystal data

C18H19BrN2O4 $M_r = 407.26$ Trigonal, $R\overline{3}$ a = 24.2105 (13) Å c = 15.7745 (9) Å V = 8007.4 (8) Å³

Data collection

```
Bruker Kappa APEXII CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2008)
  T_{\rm min}=0.446,\;T_{\rm max}=0.496
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	H atoms treated by a mixture of
$wR(F^2) = 0.105$	independent and constrained
S = 1.09	refinement
3206 reflections	$\Delta \rho_{\rm max} = 0.68 \text{ e } \text{\AA}^{-3}$
233 parameters	$\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2 - H2N \cdots O3$ $N2 - H2N \cdots O4^{i}$	0.83 (3) 0.83 (3)	2.00 (3) 2.38 (3)	2.618 (3) 2.969 (3)	130 (3) 129 (3)
	. 1 1	. 2		

Symmetry code: (i) $x - y + \frac{1}{3}, x - \frac{1}{3}, -z + \frac{2}{3}$.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

The authors gratefully acknowledge Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU2714).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Narayanan, P., Kamalraja, J., Perumal, P. T. & Sethusankar, K. (2013). Acta Cryst. E69, 0931-0932.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Thomas, N. & Zachariah, S. M. (2013). Asian J. Pharm. Clin. Res. 6 (Suppl. 2), 11–15.

supporting information

Acta Cryst. (2014). E70, o579-o580 [doi:10.1107/S1600536814007983]

4-(4-Bromophenyl)-7,7-dimethyl-2-methylamino-3-nitro-7,8-dihydro-4*H*-chromen-5(6*H*)-one including an unknown solvate

S. Antony Inglebert, Jayabal Kamalraja, K. Sethusankar and Gnanasambandam Vasuki

S1. Comment

Chromene constitutes the basic backbone of various types of polyphenols and is widely found in natural alkaloids, tocopherols, flavonoids and anthocyanins. Natural and synthetic chromene derivatives possess important biological activities such as antitumor, antispasmolytic, antivascular, anticancer, anti-HIV, estrogenic and herbicidal activity. They also plays an important role in the production of highly effective fluorescent dyes for synthetic fibers, daylight fluorescent pigments and electrophotographic and electroluminescent devices (Thomas *et al.*, 2013).

The title compound, Fig. 1, consists of a chromene unit connected to a bromophenyl ring at C7, a nitro group at C8, a methyl amine group at C9, an oxygen atom at C12 and a dimethyl group at C14. The mean plane of the chromene unit (O2/C7-C15) is almost normal to the benzene ring (C1-C6), with a dihedral angle of 85.61 $(13)^{\circ}$. The mean plane of the chromene unit makes dihedral angles of 7.25 (21) and 2.89 $(21)^{\circ}$ with the nitro and methylamine groups, respectively.

The six membered carbocyclic ring (C10–C15) of the chromene moiety has an envelope conformation with puckering parameters (Cremer & Pople, 1975), of Puckering Amplitude (Q) = 0.459 (3) Å, θ = 124.1 (4) °, φ = 57.4 (5) °. Atom C14 deviates by -0.324 (3) Å from the mean plane passing through the other five C ring atoms. The sum of the angles around atom N1 (359.9 °) is in accordance with *sp*² hybridization. The amine group nitrogen atoms, N1 and N2, deviate by -0.156 (2) and -0.0153 (3) Å from the mean plane of the chromene unit. The bromine atom, Br1, deviates from the benzene ring (C1–C6) by 0.0526 (5) Å. The methyl amine group attached to C9 is coplanar with the chromene unit as indicated by the torsion angle C18-N2-C9-O2 = 2.7 (4)°. The nitro group is also coplanar to the chromene unit, as indicated by the torsion angles O1-N1-C8-C7 = -5.5 (3)° and O3-N1-C8-C9 = -0.4 (4)°, respectively. The molecular structure is characterized by an intramolecular N—H···O hydrogen bond, which generates an *S*(*6*) ring motif (Bernstein *et al.*, 1995). The title compound exhibits structural similarities with the related structure, 4-(4-Bromophenyl)-2-methyl-amino-3-nitro-5,6,7,8-tetrahydro-4*H*-chromen-5-one (Narayanan *et al.*, 2013).

The crystal packing is stabilized by intermolecular N—H…O hydrogen bonds forming hexagonal rings centered about a threefold rotation axis and lying parallel to the *ab* plane (Fig. 2 and Table 1). The amide N1 atom is involved in both intra and intermolecular hydrogen bonding, having a bifurcated character (Table 1).

S2. Experimental

A solution of the 4-bromobenzaldehyde (1.0 mmol), 5,5- dimethylcyclohexane-1,3-dione (1.0 mmol), NMSM (1.0 mmol), and *L*-proline (0.2 equiv) in EtOH (2 ml) was stirred for the 2.3 h until the reaction was complete as indicated by TLC. The product obtained was filtered and washed with EtOH (2 ml) to remove the excess base and other impurities. Finally, the products were recrystallized from EtOH yielding block-like colourless crystals.

S3. Refinement

The NH H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were placed in idealized positions and allowed to ride on the parent atoms: C—H = 0.93 - 0.97 Å with $U_{iso}(H)=1.5 U_{eq}(C)$ -methyl) and = $1.2U_{eq}(C)$ for other H atoms. A region of disordered electron density, most probably disordered ethanol solvent molecules, occupying voids of *ca* 432 Å³ for an electron count of 158, was treated using the SQUEEZE routine in *PLATON* [Spek (2009). Acta Cryst. D65, 148–155]. The formula mass and unit-cell characteristics were not taken into account during refinement.

Figure 1

A view of the molecular structure of the title molecule, with atom labelling. Displacement ellipsoids drawn at the 30% probability level. The intramolecular N—H···O hydrogen bond is shown as a dashed line (see Table 1 for details).

Figure 2

A partial view along the *c* axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

4-(4-Bromophenyl)-7,7-dimethyl-2-methylamino-3-nitro-7,8-dihydro-4H-chromen-5(6H)-one

Crystal data $C_{18}H_{19}BrN_2O_4$ $M_r = 407.26$ Trigonal, $R\overline{3}$ Hall symbol: -R 3 a = 24.2105 (13) Å c = 15.7745 (9) Å $V = 8007.4 (8) Å^3$ Z = 18F(000) = 3744

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scan Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\min} = 0.446, T_{\max} = 0.496$ $D_x = 1.520 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3206 reflections $\theta = 2.3-25.2^{\circ}$ $\mu = 2.34 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.35 \times 0.30 \times 0.30 \text{ mm}$

25281 measured reflections 3206 independent reflections 2565 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 25.2^\circ, \ \theta_{min} = 2.3^\circ$ $h = -28 \rightarrow 29$ $k = -29 \rightarrow 28$ $l = -12 \rightarrow 18$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.105$	neighbouring sites
S = 1.09	H atoms treated by a mixture of independent
3206 reflections	and constrained refinement
233 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0569P)^2 + 9.8133P]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.68 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.212132 (19)	0.139268 (18)	0.68871 (2)	0.06222 (17)
01	0.43022 (10)	0.17889 (10)	0.40027 (13)	0.0472 (5)
O2	0.26619 (8)	0.05160 (8)	0.21543 (11)	0.0321 (4)
O3	0.42426 (10)	0.09139 (10)	0.35374 (13)	0.0447 (5)
O4	0.27248 (10)	0.24234 (10)	0.29435 (14)	0.0504 (5)
N1	0.40219 (10)	0.12873 (11)	0.35810(13)	0.0354 (5)
N2	0.32782 (12)	0.01391 (11)	0.25833 (16)	0.0374 (6)
H2N	0.3582 (17)	0.0173 (16)	0.287 (2)	0.056 (10)*
C1	0.24640 (15)	0.14478 (14)	0.57850 (17)	0.0399 (7)
C2	0.30235 (15)	0.19826 (14)	0.55683 (18)	0.0439 (7)
H2	0.3238	0.2310	0.5958	0.053*
C3	0.32632 (14)	0.20269 (13)	0.47641 (17)	0.0390 (7)
H3	0.3643	0.2389	0.4613	0.047*
C4	0.29519 (12)	0.15445 (12)	0.41766 (16)	0.0301 (6)
C5	0.23957 (13)	0.10049 (13)	0.44189 (18)	0.0397 (7)
H5	0.2186	0.0672	0.4035	0.048*
C6	0.21442 (15)	0.09504 (15)	0.52256 (19)	0.0455 (7)
H6	0.1769	0.0587	0.5384	0.055*
C7	0.32208 (12)	0.16060 (12)	0.32833 (15)	0.0293 (6)
H7A	0.3573	0.2044	0.3209	0.035*
C8	0.34739 (12)	0.11581 (12)	0.31480 (15)	0.0297 (6)
C9	0.31590 (12)	0.06113 (12)	0.26513 (16)	0.0297 (6)
C10	0.24637 (12)	0.09617 (12)	0.21277 (15)	0.0278 (6)
C11	0.27201 (11)	0.14784 (12)	0.26209 (15)	0.0281 (5)

C12	0.24891 (12)	0.19332 (12)	0.25304 (16)	0.0313 (6)
C13	0.19699 (12)	0.17837 (12)	0.18972 (17)	0.0336 (6)
H13A	0.2165	0.1994	0.1367	0.040*
H13B	0.1714	0.1963	0.2099	0.040*
C14	0.15270 (12)	0.10710 (13)	0.17229 (17)	0.0335 (6)
C15	0.19391 (12)	0.07738 (13)	0.15019 (17)	0.0321 (6)
H15A	0.1674	0.0313	0.1494	0.039*
H15B	0.2119	0.0912	0.0940	0.039*
C16	0.10934 (15)	0.09891 (16)	0.0969 (2)	0.0502 (8)
H16A	0.0811	0.0543	0.0866	0.075*
H16B	0.1350	0.1182	0.0475	0.075*
H16C	0.0848	0.1191	0.1095	0.075*
C17	0.11220 (14)	0.07477 (14)	0.2504 (2)	0.0458 (7)
H17A	0.0850	0.0301	0.2393	0.069*
H17B	0.0866	0.0937	0.2636	0.069*
H17C	0.1395	0.0802	0.2976	0.069*
C18	0.29496 (15)	-0.04065 (14)	0.2025 (2)	0.0477 (8)
H18A	0.3047	-0.0730	0.2189	0.072*
H18B	0.3086	-0.0278	0.1452	0.072*
H18C	0.2498	-0.0573	0.2066	0.072*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0846 (3)	0.0630 (3)	0.0458 (2)	0.0419 (2)	0.02115 (17)	0.00610 (15)
O1	0.0358 (11)	0.0452 (13)	0.0568 (13)	0.0174 (10)	-0.0149 (10)	-0.0151 (10)
O2	0.0316 (10)	0.0282 (10)	0.0418 (10)	0.0190 (8)	-0.0093 (8)	-0.0064 (8)
O3	0.0418 (12)	0.0528 (13)	0.0520 (12)	0.0330 (11)	-0.0116 (9)	-0.0050 (10)
O4	0.0536 (13)	0.0335 (12)	0.0689 (14)	0.0254 (10)	-0.0152 (11)	-0.0155 (10)
N1	0.0303 (12)	0.0409 (14)	0.0338 (12)	0.0169 (12)	-0.0007 (10)	0.0019 (10)
N2	0.0382 (14)	0.0366 (14)	0.0460 (13)	0.0254 (12)	-0.0108 (11)	-0.0049 (11)
C1	0.0492 (18)	0.0427 (17)	0.0363 (14)	0.0294 (15)	0.0069 (13)	0.0028 (12)
C2	0.0535 (19)	0.0352 (16)	0.0377 (15)	0.0183 (15)	-0.0045 (14)	-0.0096 (12)
C3	0.0381 (16)	0.0269 (15)	0.0414 (15)	0.0082 (13)	-0.0028 (12)	-0.0038 (11)
C4	0.0296 (14)	0.0278 (14)	0.0359 (13)	0.0168 (12)	-0.0028 (11)	-0.0024 (11)
C5	0.0357 (16)	0.0311 (15)	0.0422 (15)	0.0091 (13)	-0.0017 (12)	-0.0066 (12)
C6	0.0372 (17)	0.0399 (17)	0.0494 (17)	0.0119 (14)	0.0076 (13)	0.0037 (14)
C7	0.0261 (13)	0.0250 (13)	0.0344 (13)	0.0109 (11)	-0.0002 (10)	-0.0011 (11)
C8	0.0241 (13)	0.0335 (14)	0.0315 (13)	0.0143 (12)	-0.0012 (10)	0.0003 (11)
C9	0.0244 (13)	0.0325 (14)	0.0337 (13)	0.0153 (12)	0.0009 (10)	0.0022 (11)
C10	0.0259 (13)	0.0253 (13)	0.0345 (13)	0.0145 (11)	0.0022 (10)	0.0019 (10)
C11	0.0238 (13)	0.0261 (14)	0.0343 (13)	0.0125 (11)	0.0019 (10)	0.0011 (11)
C12	0.0302 (14)	0.0252 (14)	0.0386 (14)	0.0140 (12)	0.0026 (11)	-0.0001 (11)
C13	0.0338 (15)	0.0304 (14)	0.0423 (15)	0.0203 (13)	0.0041 (12)	0.0037 (12)
C14	0.0286 (14)	0.0297 (14)	0.0445 (15)	0.0164 (12)	-0.0025 (12)	0.0002 (11)
C15	0.0308 (14)	0.0314 (14)	0.0371 (14)	0.0177 (12)	-0.0062 (11)	-0.0057 (11)
C16	0.0410 (17)	0.0495 (19)	0.067 (2)	0.0275 (16)	-0.0180 (15)	-0.0085 (16)
C17	0.0321 (16)	0.0385 (17)	0.0652 (19)	0.0164 (14)	0.0095 (14)	0.0054 (14)

C18	0.0516 (19)	0.0396 (17)	0.0617 (19)	0.0302 (16)	-0.0143 (15)	-0.0141 (15)
Geomei	tric parameters (Á	, <i>o</i>)				
Br1—C	21	1.902 (3)		С7—Н7А		0.9800
01—N	1	1.247 (3)		C8—C9		1.392 (4)
O2—C	9	1.356 (3)		C10—C11		1.334 (3)
О2—С	10	1.384 (3)		C10—C15		1.489 (3)
O3—N	1	1.261 (3)		C11—C12		1.470 (4)
O4—C	12	1.217 (3)		C12—C13		1.501 (4)
N1-C	8	1.382 (3)		C13—C14		1.534 (4)
N2C	9	1.316 (3)		C13—H13A		0.9700
N2—C	18	1.450 (4)		C13—H13B		0.9700
N2—H	2N	0.83 (3)		C14—C17		1.525 (4)
C1—C2	2	1.369 (4)		C14—C16		1.532 (4)
C1—C	6	1.377 (4)		C14—C15		1.534 (4)
C2—C.	3	1.377 (4)		C15—H15A		0.9700
С2—Н	2	0.9300		C15—H15B		0.9700
C3—C4	4	1.382 (4)		C16—H16A		0.9600
С3—Н	3	0.9300		C16—H16B		0.9600
C4—C	5	1.381 (4)		C16—H16C		0.9600
C4—C'	7	1.528 (3)		C17—H17A		0.9600
С5—С	6	1.388 (4)		C17—H17B		0.9600
С5—Н	5	0.9300		C17—H17C		0.9600
С6—Н	6	0.9300		C18—H18A		0.9600
C7—C	8	1.504 (4)		C18—H18B		0.9600
С7—С	11	1.511 (3)		C18—H18C		0.9600
C9—O	2—C10	120.62 (19))	C10—C11—C7		123.0 (2)
01—N	1—03	120.5 (2)		C12—C11—C7		118.7 (2)
01—N	1—C8	118.5 (2)		O4—C12—C11		120.7 (2)
O3—N	1—C8	120.9 (2)		O4—C12—C13		121.3 (2)
C9—N2	2—C18	125.6 (2)		C11—C12—C13		118.1 (2)
C9—N2	2—H2N	116 (2)		C12—C13—C14		114.9 (2)
C18—N	N2—H2N	119 (2)		С12—С13—Н13А		108.6
С2—С	1—C6	121.7 (3)		C14—C13—H13A		108.6
С2—С	1—Br1	119.0 (2)		С12—С13—Н13В		108.6
C6—C	1—Br1	119.3 (2)		C14—C13—H13B		108.6
C1—C2	2—С3	118.9 (3)		H13A—C13—H13	В	107.5
C1—C2	2—Н2	120.6		C17—C14—C16		109.7 (2)
C3—C2	2—Н2	120.6		C17—C14—C15		110.2 (2)
C2—C	3—C4	121.4 (3)		C16—C14—C15		109.1 (2)
C2—C.	3—Н3	119.3		C17—C14—C13		109.9 (2)
C4—C.	3—Н3	119.3		C16—C14—C13		109.5 (2)
C5—C4	4—С3	118.4 (2)		C15—C14—C13		108.4 (2)
C5—C4	4—С7	120.9 (2)		C10—C15—C14		111.2 (2)
C3—C4	4—С7	120.7 (2)		C10—C15—H15A		109.4
C4—C	5—C6	121.2 (3)		C14—C15—H15A		109.4

supporting information

С4—С5—Н5	119.4	C10—C15—H15B	109.4
С6—С5—Н5	119.4	C14—C15—H15B	109.4
C1—C6—C5	118.4 (3)	H15A—C15—H15B	108.0
С1—С6—Н6	120.8	C14—C16—H16A	109.5
С5—С6—Н6	120.8	C14—C16—H16B	109.5
C8—C7—C11	109.2 (2)	H16A—C16—H16B	109.5
C8—C7—C4	111.6 (2)	C14—C16—H16C	109.5
C11—C7—C4	111.0 (2)	H16A—C16—H16C	109.5
С8—С7—Н7А	108.3	H16B—C16—H16C	109.5
C11—C7—H7A	108.3	C14—C17—H17A	109.5
С4—С7—Н7А	108.3	C14—C17—H17B	109.5
N1—C8—C9	120.0 (2)	H17A—C17—H17B	109.5
N1-C8-C7	1173(2)	C_{14} C_{17} H_{17} C_{17}	109.5
C9-C8-C7	122.6(2)	H17A - C17 - H17C	109.5
N2-C9-02	1115(2)	H17B-C17-H17C	109.5
$N_{2} - C_{9} - C_{8}$	1282(2)	N2-C18-H18A	109.5
02 - C9 - C8	120.2(2) 120.3(2)	N2	109.5
$C_{11} = C_{10} = O_{2}^{2}$	120.3(2) 122.2(2)	H18A - C18 - H18B	109.5
$C_{11} = C_{10} = C_{15}$	122.2(2) 126.8(2)	N2_C18_H18C	109.5
0^{2} C_{10} C_{15}	120.0(2) 110.0(2)	$H_{18}^{-} C_{18}^{-} H_{18}^{-} H_{18}^{-} C_{18}^{-} H_{18}^{-} H_{18}^{-$	109.5
$C_{10} = C_{10} = C_{13}$	110.9(2) 118.2(2)	H18B C18 H18C	109.5
010-011-012	110.2 (2)	1118D-C18-1118C	109.5
C6-C1-C2-C3	13(5)	C7—C8—C9—N2	-1692(3)
Br1-C1-C2-C3	-1786(2)	N1 - C8 - C9 - O2	-172.9(2)
C1-C2-C3-C4	-0.1(5)	C7 - C8 - C9 - O2	1,2.9(2) 110(4)
$C_2 - C_3 - C_4 - C_5$	-13(4)	C9 - C10 - C11	-43(4)
$C_2 - C_3 - C_4 - C_7$	179 2 (3)	C9 - O2 - C10 - C15	1765(2)
C_{3} C_{4} C_{5} C_{6}	15(4)	$0^{2}-C_{10}-C_{11}-C_{12}$	178.4(2)
C7-C4-C5-C6	-1790(3)	C_{15} C_{10} C_{11} C_{12}	-2.6(4)
C_{2} C_{1} C_{6} C_{5}	-1.2(5)	02-C10-C11-C7	-3.5(4)
Br1-C1-C6-C5	178 8 (2)	C_{15} C_{10} C_{11} C_{7}	1755(2)
C4-C5-C6-C1	-0.3(5)	C8-C7-C11-C10	129(3)
$C_{5} - C_{4} - C_{7} - C_{8}$	-698(3)	C4-C7-C11-C10	-110.6(3)
C_{3} C_{4} C_{7} C_{8}	109.7(3)	C8-C7-C11-C12	-1690(2)
$C_{5} - C_{4} - C_{7} - C_{11}$	52 3 (3)	C4-C7-C11-C12	675(3)
C_{3} C_{4} C_{7} C_{11}	-1282(3)	C_{10} C_{11} C_{12} C_{11} C_{12} C	-1772(3)
01 - N1 - C8 - C9	120.2(3)	C7 - C11 - C12 - O4	4 6 (4)
03 - N1 - C8 - C9	-0.4(4)	C_{10} C_{11} C_{12} C_{13}	1.0(1)
01 - N1 - C8 - C7	-5.5(3)	C7 - C11 - C12 - C13	-1772(2)
03 - N1 - C8 - C7	176.0(2)	04-C12-C13-C14	-1541(3)
$C_{11} = C_7 = C_8 = N_1$	170.0(2) 167.3(2)	C_{11} C_{12} C_{13} C_{14}	27.6(3)
C4 - C7 - C8 - N1	-69.6(3)	C12 - C13 - C14 - C17	686(3)
$C_{1} = C_{1} = C_{0} = C_{0}$	-165(3)	C12 - C13 - C14 - C17	$-170 \times (2)$
C_{4} C_{7} C_{8} C_{9}	10.5 (3)	C_{12} C_{13} C_{14} C_{15} C_{14} C_{15}	-510(2)
$C_{1} = C_{1} = C_{0} = C_{2}$	27(4)	$C_{12} - C_{13} - C_{14} - C_{15}$	-230(4)
$C_{10} = N_2 = C_7 = C_2$	2.7 (4) -177 2 (2)	02 C10 C15 C14	23.7(4)
$C_{10} = N_2 = C_9 = C_0$	-170 A (2)	02 - 010 - 013 - 014	-710(2)
$C_{10} = 02 = 02 = 02$	1/9.4(2)	$C_{14} = C_{14} = C_{15} = C_{10}$	167.6 (2)
U10-02-U9-U8	0.5 (5)	C10 - C14 - C13 - C10	107.0(2)

supporting information

N1—C8—C9—N2	6.9 (4)	C13—C14—C15—C10		48.5 (3)	
Hydrogen-bond geometry (Å, °)					
D—H···A		D—H	H…A	$D \cdots A$	D—H···A
N2—H2 <i>N</i> ···O3		0.83 (3)	2.00 (3)	2.618 (3)	130 (3)
N2—H2 N ···O4 ⁱ		0.83 (3)	2.38 (3)	2.969 (3)	129 (3)

Symmetry code: (i) x-y+1/3, x-1/3, -z+2/3.