organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6-Cyanonaphthalen-2-yl 4-hexylbenzoate

Md. Lutfor Rahman,^a* H. T. Srinivasa,^b Mohd. Yusoff Mashitah,^a Huey Chong Kwong^c and Ching Kheng Quah^d

^aUniversity Malaysia Pahang, Faculty of Industrial Sciences and Technology, 26300 Gambang, Kuantan, Pahang, Malaysia, ^bRaman Research Institute, C.V. Raman Avenue, Sadashivanagar, Bangalore 560080, India, ^cSchool of Chemistry Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: lutfor73@gmail.com

Received 11 April 2014; accepted 22 April 2014

Key indicators: single-crystal X-ray study; T = 298 K; mean σ () = 0.000 Å; disorder in main residue; R factor = 0.069; wR factor = 0.268; data-to-parameter ratio = 10.3.

In the title compound, $C_{24}H_{23}NO_2$, a whole molecule is disordered over two sets of sites with occupancies in a ratio of 0.692 (6):0.308 (6). In the major disorder component, the naphthalene ring system forms a dihedral angle of 68.6 (5)° with the benzene ring. The corresponding angle in the minor component is 81.6 (10)°. In the crystal, molecules are linked into chains propagating along the *b*-axis direction *via* weak $C-H\cdots O$ hydrogen bonds. The crystal packing is further consolidated by weak $C-H\cdots \pi$ interactions.

Related literature

For features of electro-optical display devices, see: Cox & Clecak (1976); Reddy & Tschierske (2006); Hanasaki *et al.* (2011) For applications of cyano groups in liquid crystal displays, see: Coates & Gray (1976); Klingbiel *et al.* (1974); Takezoe & Takanishi (2006). For related structures, see: Kuzmina *et al.* (2010); Blake *et al.* (1995); Li (2006). For standard bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data $C_{24}H_{23}NO_2$ $M_r = 357.43$ Monoclinic, C2/c a = 14.4712 (2) Å b = 9.5592 (2) Å c = 29.5386 (5) Å $\beta = 98.898$ (1)°

 $V = 4036.99 (12) \text{ Å}^{3}$ Z = 8Cu K\alpha radiation $\mu = 0.59 \text{ mm}^{-1}$ T = 298 K $0.29 \times 0.11 \times 0.08 \text{ mm}$

15700 measured reflections

 $R_{\rm int} = 0.026$

3574 independent reflections

2344 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{min} = 0.848, T_{max} = 0.954$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.069$ 73 restraints $wR(F^2) = 0.268$ H-atom parameters constrainedS = 1.10 $\Delta \rho_{max} = 0.25$ e Å⁻³3574 reflections $\Delta \rho_{min} = -0.22$ e Å⁻³348 parameters $\Delta \rho_{min} = -0.22$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C2A–C5A/C10A/C11A and C13B–C18B rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	<i>D</i> -H···2
$C4A - H4AA \cdots O2A^{i}$	0.95	2.44	3.303 (11)	149
$C9B - H9BA \cdots O2B^{ii}$	0.95	2.59	3.352 (11)	138
$C14B - H14B \cdots Cg1^{iii}$	0.95	2.85	3.708 (14)	151
$C20A - H20A \cdots Cg2^{iv}$	0.99	2.91	3.819 (14)	152
$C19B - H19C \cdots Cg2^{iv}$	0.99	2.88	3.746 (19)	146
Symmetry codes: (i)	$-x + \frac{1}{2}, v -$	$\frac{1}{2}$, $-z + \frac{3}{2}$; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}$	$-z + \frac{3}{2}$; (iii

Symmetry codes: (1) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{2}{2};$ (11) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{2}{2};$ (11) $-x + 1, y, -z + \frac{3}{2};$ (iv) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1.$

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

This research was supported by a PRGS Research Grant (No. RDU 130803).

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5699).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Blake, A. J., Fallis, I. A., Parsons, S., Schröder, M. & Bruce, D. W. (1995). Acta Cryst. C51, 2666–2668.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Coates, D. & Gray, G. W. (1976). Mol. Cryst. Liq. Cryst. 37, 249-262.
- Cox, R. J. & Clecak, N. J. (1976). Mol. Cryst. Liq. Cryst. 37, 263-267.
- Hanasaki, T., Kamei, Y., Mandai, A., Uno, K. & Kaneko, K. (2011). *Liq. Cryst.* **38**, 785–792.
- Klingbiel, R. T., Genova, D. J., Crisewell, T. R. & Vanmeter, J. P. (1974). J. Am. Chem. Soc, 96, 7625–7631.
- Kuzmina, L. G., Pestov, S. M., Kochetov, A. N., Churakov, A. V. & Lermontova, E. K. (2010). *Crystallogr. Rep.* 55, 786–792.
- Li, Y.-H. (2006). Acta Cryst. E62, 05935-05936.
- Reddy, R. A. & Tschierske, C. (2006). J. Mater. Chem. 16, 907-961.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Takezoe, H. & Takanishi, Y. (2006). Jpn. J. Appl. Phys. 45, 597-625.

supporting information

Acta Cryst. (2014). E70, o620 [doi:10.1107/S160053681400909X]

6-Cyanonaphthalen-2-yl 4-hexylbenzoate

Md. Lutfor Rahman, H. T. Srinivasa, Mohd. Yusoff Mashitah, Huey Chong Kwong and Ching Kheng Quah

S1. Comment

Electro-optical display devices require certain desirable features such as large positive dielectric anisotropy, nematic phase, low melting point, stability and lack of color (Cox & Clecak, 1976; Reddy & Tschierske, 2006; Hanasaki *et al.*, 2011). To obtain such properties, a highly polar terminal cyano group can be incorporated to give a large dipole moment. Maximum dipole moment (90 degrees) indicates that the dipole moment is exactly parallel to the molecular short axis, which acts along the long axis of the molecule and helps to give the proper alignment for liquid crystal displays (Coates & Gray, 1976; Klingbiel *et al.*, 1974; Takezoe & Takanishi, 2006). Here we report the synthesis and single-crystal X-ray study of an unsymmetrical naphthalene liquid crystal molecule. The shows a nematic phase after 379 K then a stable phase until an isotropic state at 411 K on a heating cycle. Upon cooling from the isotropic state, the nematic phase was reformed at 410 K, the phase is stabilized before crystallizes at 321 K.

The molecular structure of the title compound is shown in Fig 1. The whole molecule of the title compound is disordered over two positions with a refined site-occupancy ratio of 0.692 (6): 0.308 (6). For the major component, the naphthalene ring system (C2A—C11A) makes a dihedral angle of 68.6 (5)° with the benzene ring (C13A—C18A). In the minor component, the dihedral angle formed between the naphthalene ring system (C2B—C11B) and the benzene ring (C13B—C18B) is 81.6 (10)°. All the bond lengths (Allen *et al.*, 1987) and angles are in normal ranges and compared with the closely related structures (Kuzmina *et al.*, 2010; Blake *et al.*, 1995; Li, 2006)

In the crystal, molecules are linked into chains propagating along the *b*-axis *via* weak C—H···O hydrogen bonds. Weak C—H··· π interactions are also observed (see Table 1).

S2. Experimental

A mixture of 4-hexylbenzoic acid (1.0 mmol), 2-cyano-6-hydroxy-naphthalene (1.0 mmol), dicyclohexylcarbodiimide (1.2 mmol) and catalytic quantity of *N*,*N*-dimethylaminopyridine in 5 ml of dry dichloromethane was stirred at room temperature for 1 h. Progress of the reaction was monitored by TLC (ethyl acetate: pet ether 2:8). After completion of the reaction, the reaction mass was diluted with water and extracted into dichloromethane (25 ml). The organic layer was washed with diluted acetic acid and water. The organic layer was dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. The crude product was purified by column chromatography by using ethyl acetate: petroleum ether (2:8) as eluent and the product was recrystallization from chloroform. Yield = 70% as colourless block crystals. IR(KBr): v = 2920, 2856, 2224, 1724, 1454, 1066, 902 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.11-6.98$ (m, 10H, Ar—H), 2.54 (t, J = 1.37 Hz, 2H, Ar—CH₂–), 1.47–1.44 (m, 8H, alkyl-CH₂–), 0.91 (m, 3H, alkyl-CH₃) p.p.m.; Elemental analysis calcd for C₂₄H₂₃NO₂ (%): C 80.64, H 6.49, N 3.92; found. C 80.69, H 6.54, N 4.07.

S3. Refinement

The title compound is disordered over two positions with a refined site-occupancy ratio of 0.692 (6): 0.308 (6) and the minor disordered component was refined isotropically. All H atoms were positioned geometrically [C-H = 0.95-0.99 Å] and refined using a riding model with $U_{iso}(H) = 1.2$ or $1.5 U_{eq}(C)$. A rotating group model was applied to the methyl groups. The restraints of same geometries were applied to all disordered components. Identical anisotropic displacement and distance restraint were used in the final refinement. Similarity were applied to the disordered atoms. *DFIX* restraints of 1.50 (1) Å were used for the long-disordered alkyl chains such as C19B-C20B, C21B-C22B, C22B-C23B, C23B -C24B and C23A-C24A distances. Same U^{ij} parameters restraints were used for C22A/C23A and C22B/C23B atom pairs. One outlier (1 1 10) was omitted from the reflection data.

Figure 1

The molecular structure of the title compound showing 30% probability displacement ellipsoids for the major component of disorder. Open bonds show the minor disordered component.

Figure 2

The crystal packing of the title compound. Dashed lines represent the intermolecular hydrogen bonds. Only major disordered component is shown.

6-Cyanonaphthalen-2-yl 4-hexylbenzoate

<i>a</i> = 14.4712 (2) Å
b = 9.5592 (2) Å
c = 29.5386(5) Å
$\beta = 98.898 \ (1)^{\circ}$

 $V = 4036.99 (12) Å^3$ Z = 8 F(000) = 1520 $D_x = 1.176 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54178 Å$ Cell parameters from 5436 reflections

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.848, T_{\max} = 0.954$

Primary atom site location: structure-invariant

Refinement

Refinement on F^2

Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.069$ $wR(F^2) = 0.268$ S = 1.103574 reflections 348 parameters 73 restraints

sealed tube	2344 reflections with $I > 2\sigma(I)$
	$R_{\rm int} = 0.026$
	$\theta_{\rm max} = 67.5^{\circ}, \ \theta_{\rm min} = 3.0^{\circ}$
scan	$h = -17 \rightarrow 17$
	$k = -11 \rightarrow 10$
	$l = -35 \longrightarrow 34$
	Secondary atom site location: difference Fourier
	map
	Hydrogen site location: inferred from
	neighbouring sites
	H-atom parameters constrained
	$w = 1/[\sigma^2(F_o^2) + (0.1621P)^2 + 0.4013P]$
	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
	$(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

 $\theta = 3.0 - 59.5^{\circ}$

 $\mu = 0.59 \text{ mm}^{-1}$

Block, colourless

 $0.29 \times 0.11 \times 0.08 \text{ mm}$

15700 measured reflections

3574 independent reflections

T = 298 K

Special details

direct methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1A	0.4778 (8)	0.1930 (11)	0.99962 (18)	0.145 (3)	0.692 (6)
C1A	0.4583 (9)	0.1754 (13)	0.9609 (2)	0.161 (4)	0.692 (6)
C2A	0.4351 (12)	0.1379 (10)	0.9130 (2)	0.121 (5)	0.692 (6)
C3A	0.4307 (11)	-0.0035 (9)	0.8995 (3)	0.125 (5)	0.692 (6)
H3AA	0.4415	-0.0758	0.9218	0.150*	0.692 (6)
C4A	0.4110 (9)	-0.0350 (9)	0.8543 (3)	0.130 (4)	0.692 (6)
H4AA	0.4045	-0.1304	0.8453	0.156*	0.692 (6)
C5A	0.3996 (15)	0.0695 (7)	0.8201 (2)	0.095 (5)	0.692 (6)
C6A	0.3754 (5)	0.0381 (5)	0.77329 (15)	0.090 (2)	0.692 (6)
H6AA	0.3707	-0.0566	0.7635	0.108*	0.692 (6)
C7A	0.3590 (10)	0.1417 (10)	0.7424 (2)	0.113 (5)	0.692 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C8A	0.3659 (11)	0.2835 (11)	0.7551 (3)	0.154 (5)	0.692 (6)
H8AA	0.3557	0.3550	0.7325	0.185*	0.692 (6)
C9A	0.3874 (10)	0.3163 (8)	0.8002 (3)	0.146 (5)	0.692 (6)
H9AA	0.3895	0.4117	0.8093	0.175*	0.692 (6)
C10A	0.4066 (15)	0.2110 (8)	0.8340 (2)	0.109 (4)	0.692 (6)
C11A	0.4239 (8)	0.2407 (9)	0.8809 (3)	0.137 (4)	0.692 (6)
H11A	0.4280	0.3356	0.8906	0.164*	0.692 (6)
01A	0.3432 (3)	0.1110 (9)	0.69588 (13)	0.116 (3)	0.692 (6)
02A	0.1939 (3)	0.1789 (6)	0.69048 (16)	0.1168 (13)	0.692 (6)
C12A	0.2548 (5)	0.1298 (13)	0.6719(2)	0.122 (4)	0.692 (6)
C13A	0.2471(4)	0.0879(13)	0.62349(17)	0.099(2)	0.692 (6)
C14A	0.3195(3)	0.0298 (8)	0 60548 (14)	$0.033(\underline{-})$	0.692 (6)
H14A	0.3777	0.0133	0.6245	0.133*	0.692 (6)
C15A	0.3777	-0.0047(8)	0.55975(13)	0.1260 (17)	0.692 (6)
H15A	0.3590	-0.0449	0.5477	0.151*	0.692 (6)
C16A	0.3390	0.0449	0.5477 0.53108 (13)	0.131 0.1217(16)	0.092(0)
CITA	0.2230(3) 0.1530(5)	0.0108(8)	0.55108(15) 0.5407(2)	0.1217(10) 0.124(4)	0.092(0)
	0.1339 (3)	0.0780 (19)	0.5497 (2)	0.154 (4)	0.092(0)
	0.0902	0.0977	0.5500	0.101°	0.092(0)
U18A	0.1643 (5)	0.1128 (14)	0.5950 (2)	0.137 (4)	0.692 (6)
HI8A	0.1137	0.1544	0.60/0	0.164*	0.692 (6)
C19A	0.2169 (5)	-0.0254 (9)	0.48135 (16)	0.171(3)	0.692 (6)
HI9A	0.2802	-0.0236	0.4726	0.206*	0.692 (6)
H19B	0.1948	-0.1235	0.4787	0.206*	0.692 (6)
C20A	0.1562 (6)	0.0569 (8)	0.44850 (17)	0.198 (3)	0.692 (6)
H20A	0.1738	0.1563	0.4536	0.237*	0.692 (6)
H20B	0.0916	0.0465	0.4553	0.237*	0.692 (6)
C21A	0.1545 (5)	0.0258 (10)	0.39913 (17)	0.181 (3)	0.692 (6)
H21A	0.1073	0.0879	0.3815	0.218*	0.692 (6)
H21B	0.2161	0.0524	0.3912	0.218*	0.692 (6)
C22A	0.1342 (9)	-0.1186 (11)	0.3829 (2)	0.250 (4)	0.692 (6)
H22A	0.0863	-0.1630	0.3987	0.300*	0.692 (6)
H22B	0.1914	-0.1770	0.3872	0.300*	0.692 (6)
C23A	0.0965 (9)	-0.0943 (9)	0.3306(2)	0.250 (4)	0.692 (6)
H23A	0.0277	-0.0830	0.3250	0.300*	0.692 (6)
H23B	0.1261	-0.0117	0.3185	0.300*	0.692 (6)
C24A	0.1261 (7)	-0.2275(10)	0.3103 (3)	0.231 (4)	0.692 (6)
H24A	0 1177	-0.2188	0 2768	0 347*	0.692(6)
H24B	0.0879	-0.3050	0.3187	0.347*	0.692 (6)
H24C	0.1921	-0.2458	0.3220	0.347*	0.692 (6)
N1R	0.1921 0.459(2)	0.187 (4)	1 0011 (6)	0.194 (12)*	0.092(0)
CIB	0.457(2)	0.167(4)	0.0620(3)	0.194(12) 0.087(3)*	0.308(0)
CID	0.4372(10)	0.1027(13) 0.1220(12)	0.9029(3)	0.087 (5)	0.308(0)
C2B	0.441(2) 0.4330(17)	-0.0078(12)	0.9143(3)	$0.088(0)^{*}$	0.308(0)
	0.4330 (17)	-0.0813	0.0777 (4)	0.090 (7)	0.308 (0)
пэра Сар	0.4409	-0.0813	0.9210	0.108	0.308 (0)
	0.4144 (10)	-0.0374 (12)	0.8343 (3)	0.0// (4)* 0.00 2 *	0.308 (6)
H4BA	0.4150	-0.1310	0.8222 (4)	0.092*	0.308 (6)
COR	0.393 (4)	0.0/15(14)	0.8222 (4)	0.095 (12)*	0.308 (6)
C6B	0.379(2)	0.0423 (19)	0.7750(4)	0.149(11)*	0.308 (6)

	0.0000	0.0510	0.747	0.150*	0.000 (6)
H6BA	0.3777	-0.0518	0.7647	0.179*	0.308 (6)
C/B	0.366 (2)	0.1472 (15)	0.7444 (4)	0.099 (9)*	0.308 (6)
C8B	0.3689 (13)	0.2883 (13)	0.7582 (4)	0.094 (5)*	0.308 (6)
H8BA	0.3570	0.3608	0.7360	0.112*	0.308 (6)
C9B	0.3894 (12)	0.3195 (13)	0.8036 (4)	0.093 (5)*	0.308 (6)
H9BA	0.3970	0.4144	0.8129	0.112*	0.308 (6)
C10B	0.399 (3)	0.2120 (13)	0.8370 (4)	0.088 (6)*	0.308 (6)
C11B	0.4239 (11)	0.2405 (12)	0.8838 (3)	0.080 (4)*	0.308 (6)
H11B	0.4289	0.3346	0.8943	0.096*	0.308 (6)
O1B	0.3470 (9)	0.116 (2)	0.6980 (4)	0.148 (9)*	0.308 (6)
O2B	0.1958 (7)	0.1460 (11)	0.6993 (3)	0.103 (3)*	0.308 (6)
C12B	0.2563 (6)	0.1302 (17)	0.6760 (3)	0.068 (3)*	0.308 (6)
C13B	0.2474 (8)	0.111 (3)	0.6263 (3)	0.085 (5)*	0.308 (6)
C14B	0.3233 (8)	0.0828 (13)	0.6055 (3)	0.110 (5)*	0.308 (6)
H14B	0.3838	0.0751	0.6231	0.132*	0.308 (6)
C15B	0.3109 (8)	0.0656 (17)	0.5587 (4)	0.144 (6)*	0.308 (6)
H15B	0.3636	0.0436	0.5444	0.173*	0.308 (6)
C16B	0.2255 (8)	0.0793 (15)	0.5321 (3)	0.122 (5)*	0.308 (6)
C17B	0.1482 (10)	0.092 (4)	0.5540 (5)	0.131 (9)*	0.308 (6)
H17B	0.0871	0.0862	0.5369	0.157*	0.308 (6)
C18B	0.1600 (7)	0.1134 (19)	0.6002 (4)	0.084 (4)*	0.308 (6)
H18B	0.1068	0.1302	0.6147	0.101*	0.308 (6)
C19B	0.2193 (12)	0.0783 (14)	0.4804 (4)	0.176 (6)*	0.308 (6)
H19C	0.1846	0.1624	0.4678	0.211*	0.308 (6)
H19D	0.2832	0.0841	0.4726	0.211*	0.308 (6)
C20B	0.1719 (10)	-0.0493(14)	0.4583 (4)	0.150 (4)*	0.308 (6)
H20C	0.1042	-0.0435	0.4599	0.180*	0.308 (6)
H20D	0.1969	-0.1329	0.4758	0.180*	0.308 (6)
C21B	0.1845 (9)	-0.068(2)	0.4092 (4)	0.197 (7)*	0.308 (6)
H21C	0.2172	0.0170	0.4005	0.237*	0.308 (6)
H21D	0.2280	-0.1470	0.4083	0.237*	0.308 (6)
C22B	0.1034 (8)	-0.0921(19)	0.3719 (4)	0.169 (5)*	0.308 (6)
H22C	0.0646	-0.0066	0.3665	0.202*	0.308 (6)
H22D	0.0638	-0.1692	0 3804	0.202*	0.308 (6)
C23B	0 1438 (8)	-0.130(2)	0 3296 (4)	0.169 (5)*	0.308 (6)
H23D	0.1818	-0.0516	0.3200 (4)	0.109 (3)	0.308 (6)
H23E	0.1836	-0.2140	0.3204	0.202	0.308 (6)
C24B	0.0605 (9)	-0.157(2)	0.337(4)	0.180 (6)*	0.308 (6)
H24D	0.0005 (7)	-0.1898	0.2656	0.270*	0.308 (6)
H24G	0.0247	-0.0701	0.2030	0.270*	0.308 (6)
H246	0.0247	-0.2281	0.2075	0.270*	0.308 (6)
112412	0.0200	0.2201	0.50+0	0.270	0.508 (0)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1A	0.162 (5)	0.174 (5)	0.093 (3)	-0.048 (4)	0.003 (2)	-0.042 (2)
C1A	0.165 (6)	0.177 (8)	0.137 (5)	-0.058 (5)	0.011 (4)	-0.031 (4)
C2A	0.112 (6)	0.146 (7)	0.104 (4)	-0.031 (3)	0.011 (2)	-0.025 (3)

Acta Cryst. (2014). E70, o620

C3A	0.132 (7)	0.131 (6)	0.105 (4)	-0.023 (3)	0.000 (2)	-0.005 (2)
C4A	0.143 (6)	0.111 (4)	0.131 (5)	-0.009 (3)	0.004 (3)	-0.014 (2)
C5A	0.080 (4)	0.103 (6)	0.100 (6)	-0.0027 (15)	0.011 (2)	-0.0106 (19)
C6A	0.082 (2)	0.097 (3)	0.091 (3)	0.0071 (14)	0.0105 (14)	-0.0054 (15)
C7A	0.095 (5)	0.146 (8)	0.098 (5)	0.012 (3)	0.0154 (19)	-0.001 (2)
C8A	0.161 (7)	0.145 (6)	0.155 (6)	-0.005 (3)	0.018 (4)	0.038 (4)
C9A	0.173 (7)	0.106 (4)	0.156 (7)	-0.017 (3)	0.015 (4)	0.008 (3)
C10A	0.097 (6)	0.106 (5)	0.125 (5)	-0.015 (2)	0.019 (3)	-0.011 (2)
C11A	0.140 (5)	0.119 (4)	0.149 (6)	-0.038 (3)	0.016 (3)	-0.036 (3)
O1A	0.0883 (19)	0.176 (5)	0.084 (2)	0.0302 (17)	0.0133 (10)	0.0084 (14)
O2A	0.110 (2)	0.135 (3)	0.108 (2)	0.0322 (19)	0.0273 (16)	0.014 (2)
C12A	0.113 (4)	0.118 (4)	0.140 (6)	0.019 (2)	0.034 (3)	0.027 (3)
C13A	0.104 (3)	0.091 (5)	0.103 (4)	0.017 (2)	0.0192 (19)	0.018 (2)
C14A	0.111 (3)	0.125 (4)	0.099 (3)	0.027 (3)	0.0207 (18)	0.013 (2)
C15A	0.127 (3)	0.153 (5)	0.100 (3)	0.041 (3)	0.022 (2)	0.008 (2)
C16A	0.142 (4)	0.122 (4)	0.100 (3)	0.028 (3)	0.015 (2)	0.003 (2)
C17A	0.126 (5)	0.152 (7)	0.114 (4)	0.033 (3)	-0.018 (3)	0.002 (3)
C18A	0.125 (4)	0.144 (5)	0.140 (6)	0.034 (3)	0.018 (3)	0.000 (4)
C19A	0.177 (5)	0.216 (8)	0.113 (4)	0.050 (5)	-0.004 (3)	-0.025 (4)
C20A	0.286 (9)	0.192 (7)	0.111 (4)	0.000 (6)	0.015 (4)	0.012 (4)
C21A	0.174 (5)	0.251 (9)	0.115 (4)	0.001 (6)	0.011 (3)	0.006 (4)
C22A	0.297 (9)	0.307 (10)	0.127 (4)	0.007 (7)	-0.028 (4)	0.004 (4)
C23A	0.297 (9)	0.307 (10)	0.127 (4)	0.007 (7)	-0.028 (4)	0.004 (4)
C24A	0.258 (9)	0.285 (11)	0.156 (6)	0.028 (8)	0.048 (6)	-0.035 (6)

Geometric parameters (Å, °)

N1A—C1A	1.146 (6)	N1B—C1B	1.148 (9)	
C1A—C2A	1.449 (5)	C1B—C2B	1.446 (7)	
C2A—C11A	1.358 (6)	C2B—C11B	1.364 (7)	
C2A—C3A	1.408 (6)	C2B—C3B	1.411 (8)	
C3A—C4A	1.356 (5)	C3B—C4B	1.356 (7)	
СЗА—НЗАА	0.9500	СЗВ—НЗВА	0.9500	
C4A—C5A	1.411 (6)	C4B—C5B	1.415 (8)	
C4A—H4AA	0.9500	C4B—H4BA	0.9500	
C5A—C6A	1.406 (5)	C5B—C6B	1.405 (8)	
C5A-C10A	1.413 (5)	C5B—C10B	1.412 (7)	
C6A—C7A	1.343 (5)	C6B—C7B	1.342 (8)	
С6А—Н6АА	0.9500	C6B—H6BA	0.9500	
C7A—O1A	1.389 (5)	C7B—O1B	1.388 (8)	
C7A—C8A	1.406 (6)	C7B—C8B	1.407 (8)	
C8A—C9A	1.358 (6)	C8B—C9B	1.361 (8)	
C8A—H8AA	0.9500	C8B—H8BA	0.9500	
C9A-C10A	1.414 (6)	C9B—C10B	1.417 (8)	
С9А—Н9АА	0.9500	С9В—Н9ВА	0.9500	
C10A—C11A	1.397 (6)	C10B—C11B	1.399 (8)	
C11A—H11A	0.9500	C11B—H11B	0.9500	
01A—C12A	1.375 (5)	O1B—C12B	1.377 (8)	

O2A—C12A	1.204 (5)	O2B—C12B	1.204 (7)
C12A—C13A	1.473 (6)	C12B—C13B	1.465 (8)
C13A—C14A	1.365 (5)	C13B—C14B	1.366 (8)
C13A—C18A	1.374 (5)	C13B—C18B	1.375 (7)
C14A—C15A	1.375 (5)	C14B—C15B	1.377 (8)
C14A—H14A	0.9500	C14B—H14B	0.9500
C15A—C16A	1.367 (5)	C15B—C16B	1.365 (9)
C15A—H15A	0.9500	C15B—H15B	0.9500
C16A—C17A	1.380 (7)	C16B—C17B	1.382 (10)
C16A—C19A	1.510 (6)	C16B—C19B	1.513 (9)
C17A—C18A	1.363 (7)	C17B—C18B	1.366 (9)
C17A—H17A	0.9500	C17B—H17B	0.9500
C18A—H18A	0.9500	C18B—H18B	0.9500
C19A—C20A	1.438 (7)	C19B—C20B	1.4992 (11)
C19A—H19A	0.9900	C19B—H19C	0.9900
C19A—H19B	0.9900	C19B—H19D	0.9900
C20A—C21A	1.485 (6)	C20B—C21B	1.4998 (11)
C20A—H20A	0.9900	C20B—H20C	0.9900
C20A—H20B	0.9900	C20B—H20D	0.9900
C21A—C22A	1.476 (8)	C21B—C22B	1.4990 (11)
C21A—H21A	0.9900	C21B—H21C	0.9900
C21A—H21B	0.9900	C21B—H21D	0.9900
C22A - C23A	1.574 (7)	C22B—C23B	1.5011 (11)
C22A—H22A	0.9900	C22B—H22C	0.9900
C22A—H22B	0.9900	C22B—H22D	0.9900
C_{23A} C_{24A}	1,4984 (11)	C23B—C24B	1.4995 (11)
C_{23A} H23A	0.9900	C_{23B} H23D	0.9900
C23A—H23B	0.9900	C23B—H23E	0.9900
C24A—H24A	0.9800	C_{24B} H24D	0.9800
C24A - H24B	0.9800	C_{24B} H24G	0.9800
C_{24A} H24C	0.9800	C_{24B} H246	0.9800
02411 11240	0.9000		0.9000
N1A—C1A—C2A	174.0 (11)	C3B—C2B—C1B	118.7 (8)
C11A—C2A—C3A	120.1 (5)	C4B—C3B—C2B	119.4 (8)
C11A—C2A—C1A	119.2 (6)	C4B—C3B—H3BA	120.3
C3A—C2A—C1A	120.5 (6)	C2B—C3B—H3BA	120.3
C4A—C3A—C2A	119.1 (5)	C3B—C4B—C5B	120.3 (8)
С4А—С3А—НЗАА	120.5	C3B—C4B—H4BA	119.9
С2А—С3А—НЗАА	120.5	C5B—C4B—H4BA	119.9
C3A—C4A—C5A	122.0 (6)	C6B—C5B—C10B	119.3 (8)
СЗА—С4А—Н4АА	119.0	C6B—C5B—C4B	120.6 (10)
С5А—С4А—Н4АА	119.0	C10B—C5B—C4B	119.5 (8)
C6A—C5A—C4A	122.4 (5)	C7B—C6B—C5B	120.2 (10)
C6A—C5A—C10A	119.1 (4)	С7В—С6В—Н6ВА	119.9
C4A—C5A—C10A	118.4 (5)	C5B—C6B—H6BA	119.9
C7A—C6A—C5A	120.1 (4)	C6B-C7B-O1B	119.5 (10)
С7А—С6А—Н6АА	119.9	C6B—C7B—C8B	121.8 (9)
С5А—С6А—Н6АА	119.9	O1B - C7B - C8B	118.8 (9)
	**/*/		

C6A—C7A—O1A	120.0 (6)	C9B—C8B—C7B	119.1 (8)
C6A—C7A—C8A	122.2 (5)	C9B—C8B—H8BA	120.4
O1A—C7A—C8A	117.5 (5)	C7B—C8B—H8BA	120.4
C9A—C8A—C7A	118.7 (6)	C8B—C9B—C10B	120.7 (8)
С9А—С8А—Н8АА	120.6	C8B—C9B—H9BA	119.6
С7А—С8А—Н8АА	120.6	C10B—C9B—H9BA	119.6
C8A—C9A—C10A	121.2 (6)	C11B—C10B—C5B	119.1 (7)
С8А—С9А—Н9АА	119.4	C11B—C10B—C9B	122.0 (9)
С10А—С9А—Н9АА	119.4	C5B—C10B—C9B	118.6 (7)
C11A—C10A—C5A	118.4 (5)	C2B—C11B—C10B	119.9 (8)
C11A—C10A—C9A	122.7 (6)	C2B—C11B—H11B	120.1
C5A - C10A - C9A	1186(5)	C10B-C11B-H11B	120.1
C_{2A} C_{11A} C_{10A}	121.9(5)	C12B - O1B - C7B	120.1 118.1(13)
C_{2A} C_{11A} H_{11A}	119.0	O^2B $C^{12}B$ $O^{12}B$ $O^{12}B$	117.8 (9)
$C_{10} = C_{11} = H_{11}$	119.0	O2B $C12B$ $O1B$	117.0(9) 129.0(8)
$C_{12A} = O_{1A} = C_{7A}$	119.6	$\begin{array}{c} 02B \\ 01B \\$	129.0(3) 113.0(7)
C12A = O1A = C7A	110.0(0) 120 4 (5)	C14P C12P C13P	113.0(7)
$O_2A = C_{12}A = O_1A$	120.4(3) 126.7(5)	C14B $-C13B$ $-C13B$	119.0(7) 121.6(7)
$O_{2A} = C_{12A} = C_{13A}$	120.7(3)	C14B— $C13B$ — $C12BC19D$ — $C12D$ — $C12D$	121.0(7)
C14A = C12A = C18A	112.9 (3)	C18B - C13B - C12B	119.5 (8)
C14A = C13A = C18A	118.7 (5)	C13B—C14B—C15B	119.2 (9)
C14A - C13A - C12A	122.8 (4)	C13B - C14B - H14B	120.4
C18A - C13A - C12A	118.4 (5)	C15B-C14B-H14B	120.4
C13A—C14A—C15A	119.8 (4)	C16B—C15B—C14B	122.1 (9)
C13A—C14A—H14A	120.1	C16B—C15B—H15B	118.9
C15A—C14A—H14A	120.1	C14B—C15B—H15B	118.9
C16A—C15A—C14A	122.3 (4)	C15B—C16B—C17B	117.7 (8)
C16A—C15A—H15A	118.8	C15B—C16B—C19B	119.1 (9)
C14A—C15A—H15A	118.8	C17B—C16B—C19B	123.1 (9)
C15A—C16A—C17A	117.1 (4)	C18B—C17B—C16B	119.8 (10)
C15A—C16A—C19A	119.8 (4)	C18B—C17B—H17B	120.1
C17A—C16A—C19A	123.1 (4)	C16B—C17B—H17B	120.1
C18A—C17A—C16A	121.1 (5)	C17B—C18B—C13B	121.3 (9)
C18A—C17A—H17A	119.4	C17B—C18B—H18B	119.4
C16A—C17A—H17A	119.4	C13B—C18B—H18B	119.4
C17A—C18A—C13A	120.9 (6)	C20B—C19B—C16B	113.4 (9)
C17A—C18A—H18A	119.5	C20B—C19B—H19C	108.9
C13A—C18A—H18A	119.5	C16B—C19B—H19C	108.9
C20A—C19A—C16A	117.4 (5)	C20B—C19B—H19D	108.9
C20A—C19A—H19A	107.9	C16B—C19B—H19D	108.9
C16A—C19A—H19A	107.9	H19C—C19B—H19D	107.7
C20A—C19A—H19B	107.9	C19B—C20B—C21B	113.6 (9)
C16A—C19A—H19B	107.9	C19B—C20B—H20C	108.8
H19A—C19A—H19B	107.2	C21B-C20B-H20C	108.8
C19A - C20A - C21A	118.0 (6)	C19B—C20B—H20D	108.8
C19A - C20A - H20A	107.8	C_{21B} C_{20B} H_{20D}	108.8
$C_{21}A = C_{20}A = H_{20}A$	107.8	H20C_C20B_H20D	107.7
$C_{19A} = C_{20A} = H_{20R}$	107.8	$C_{22}B_{22}C_{21}B_{22}C_{20}B_{20}C_{20}C_{20}C_{20}C_{20}C_{20}C_{20}C_{20}C_{20}C_{20}C_{20}C_{2$	122 1 (10)
$C_{1}A = C_{1}A = H_{1}B$	107.8	$C_{22B} = C_{21B} = C_{20B}$	106.8
$\nabla 2 \Pi - \nabla 2 \nabla \Pi - \Pi 2 \nabla \Pi$	10/.0		100.0

H20A—C20A—H20B	107.2	C20B—C21B—H21C	106.8
C22A—C21A—C20A	118.6 (6)	C22B—C21B—H21D	106.8
C22A—C21A—H21A	107.7	C20B—C21B—H21D	106.8
C20A—C21A—H21A	107.7	H21C—C21B—H21D	106.7
C22A—C21A—H21B	107.7	C21B—C22B—C23B	106.7 (8)
C20A—C21A—H21B	107.7	C21B—C22B—H22C	110.4
H21A—C21A—H21B	107.1	C23B—C22B—H22C	110.4
C21A—C22A—C23A	101.6 (6)	C21B—C22B—H22D	110.4
C21A—C22A—H22A	111.4	C23B—C22B—H22D	110.4
C23A—C22A—H22A	111.4	H22C—C22B—H22D	108.6
C21A—C22A—H22B	111.4	C24B—C23B—C22B	104.8 (8)
C23A—C22A—H22B	111.4	C24B—C23B—H23D	110.8
H22A—C22A—H22B	109.3	C22B—C23B—H23D	110.8
C24A - C23A - C22A	101.0 (6)	C24B—C23B—H23E	110.8
C24A—C23A—H23A	111.6	C22B—C23B—H23E	110.8
$C_{22}A - C_{23}A - H_{23}A$	111.6	H_{23D} C_{23B} H_{23E}	108.9
C24A - C23A - H23B	111.6	$C_{23B} - C_{24B} - H_{24D}$	109.5
$C_{22}A - C_{23}A - H_{23}B$	111.6	C_{23B} C_{24B} H_{24G}	109.5
H23A—C23A—H23B	109.4	$H_{24}D - C_{24}B - H_{24}G$	109.5
N1B-C1B-C2B	172 (2)	C_{23B} C_{24B} H_{24E}	109.5
$C_{11B} - C_{2B} - C_{3B}$	121.5 (8)	H24D-C24B-H24E	109.5
C11B - C2B - C1B	119.5 (8)	H24G-C24B-H24E	109.5
	(0)		10,10
C11A—C2A—C3A—C4A	-3 (2)	C11B—C2B—C3B—C4B	4 (4)
C1A—C2A—C3A—C4A	-178.5 (13)	C1B—C2B—C3B—C4B	178 (2)
C2A—C3A—C4A—C5A	3 (2)	C2B—C3B—C4B—C5B	-7 (4)
C3A—C4A—C5A—C6A	-177.4 (15)	C3B—C4B—C5B—C6B	177 (3)
C3A—C4A—C5A—C10A	-2 (3)	C3B-C4B-C5B-C10B	6 (6)
C4A—C5A—C6A—C7A	175.3 (16)	C10B—C5B—C6B—C7B	-4 (6)
C10A—C5A—C6A—C7A	0 (3)	C4B—C5B—C6B—C7B	-175 (3)
C5A—C6A—C7A—O1A	174.3 (13)	C5B—C6B—C7B—O1B	-177 (3)
C5A—C6A—C7A—C8A	1 (2)	C5B—C6B—C7B—C8B	2 (5)
C6A—C7A—C8A—C9A	-2 (2)	C6B—C7B—C8B—C9B	3 (4)
O1A—C7A—C8A—C9A	-175.7 (12)	O1B-C7B-C8B-C9B	-178.5 (19)
C7A—C8A—C9A—C10A	3 (2)	C7B-C8B-C9B-C10B	-5 (4)
C6A—C5A—C10A—C11A	175.4 (16)	C6B-C5B-C10B-C11B	-173 (4)
C4A—C5A—C10A—C11A	0 (3)	C4B-C5B-C10B-C11B	-2 (7)
C6A—C5A—C10A—C9A	1 (3)	C6B-C5B-C10B-C9B	1 (7)
C4A—C5A—C10A—C9A	-174.6 (16)	C4B-C5B-C10B-C9B	172 (3)
C8A—C9A—C10A—C11A	-176.5 (16)	C8B-C9B-C10B-C11B	178 (3)
C8A—C9A—C10A—C5A	-2 (3)	C8B—C9B—C10B—C5B	4 (5)
C3A—C2A—C11A—C10A	1 (3)	C3B-C2B-C11B-C10B	-1 (4)
C1A—C2A—C11A—C10A	176.5 (15)	C1B-C2B-C11B-C10B	-174 (3)
C5A—C10A—C11A—C2A	1 (3)	C5B-C10B-C11B-C2B	0 (5)
C9A—C10A—C11A—C2A	174.8 (16)	C9B-C10B-C11B-C2B	-174 (3)
C6A—C7A—O1A—C12A	110.0 (13)	C6B-C7B-01B-C12B	103 (3)
C8A—C7A—O1A—C12A	-76.0 (16)	C8B-C7B-01B-C12B	-75 (3)
C7A—O1A—C12A—O2A	3.8 (16)	C7B—O1B—C12B—O2B	-12 (2)

C7A—O1A—C12A—C13A O2A—C12A—C13A—C14A	-177.7 (9) -178.4 (11)	C7B—O1B—C12B—C13B O2B—C12B—C13B—C14B	173.2 (17) -174.5 (18)
O1A—C12A—C13A—C14A	3.2 (17)	O1B—C12B—C13B—C14B	0 (3)
O2A—C12A—C13A—C18A	4 (2)	O2B—C12B—C13B—C18B	2 (4)
O1A—C12A—C13A—C18A	-174.6 (11)	O1B—C12B—C13B—C18B	176 (2)
C18A—C13A—C14A—C15A	-1.2 (15)	C18B—C13B—C14B—C15B	4 (3)
C12A—C13A—C14A—C15A	-178.9 (10)	C12B—C13B—C14B—C15B	180.0 (18)
C13A—C14A—C15A—C16A	-0.1 (12)	C13B—C14B—C15B—C16B	2 (2)
C14A—C15A—C16A—C17A	1.6 (13)	C14B—C15B—C16B—C17B	-9 (3)
C14A—C15A—C16A—C19A	-179.1 (7)	C14B—C15B—C16B—C19B	171.8 (12)
C15A—C16A—C17A—C18A	-2 (2)	C15B—C16B—C17B—C18B	10 (4)
C19A—C16A—C17A—C18A	178.8 (12)	C19B—C16B—C17B—C18B	-170 (2)
C16A—C17A—C18A—C13A	1 (2)	C16B—C17B—C18B—C13B	-5 (5)
C14A—C13A—C18A—C17A	1 (2)	C14B—C13B—C18B—C17B	-2 (4)
C12A—C13A—C18A—C17A	178.7 (14)	C12B—C13B—C18B—C17B	-178 (3)
C15A—C16A—C19A—C20A	-148.2 (8)	C15B—C16B—C19B—C20B	111.4 (16)
C17A—C16A—C19A—C20A	31.1 (15)	C17B—C16B—C19B—C20B	-68 (3)
C16A—C19A—C20A—C21A	173.8 (6)	C16B—C19B—C20B—C21B	-166.8 (12)
C19A—C20A—C21A—C22A	54.9 (12)	C19B—C20B—C21B—C22B	-129.0 (19)
C20A—C21A—C22A—C23A	156.5 (8)	C20B—C21B—C22B—C23B	-170.5 (17)
C21A—C22A—C23A—C24A	149.9 (9)	C21B—C22B—C23B—C24B	178.6 (14)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2A–C5A/C10A/C11A and C13B–C18B rings, respectively.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
$C4A$ —H4 AA ···O2 A^{i}	0.95	2.44	3.303 (11)	149
C9 <i>B</i> —H9 <i>BA</i> ···O2 <i>B</i> ⁱⁱ	0.95	2.59	3.352 (11)	138
C14 B —H14 B ··· $Cg1$ ⁱⁱⁱ	0.95	2.85	3.708 (14)	151
$C20A$ — $H20A$ ··· $Cg2^{iv}$	0.99	2.91	3.819 (14)	152
C19B—H19 C ··· $Cg2^{iv}$	0.99	2.88	3.746 (19)	146

Symmetry codes: (i) -x+1/2, y-1/2, -z+3/2; (ii) -x+1/2, y+1/2, -z+3/2; (iii) -x+1, y, -z+3/2; (iv) -x+1/2, -y+1/2, -z+1.