

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diethyl 4-oxo-4H-[1,4'-biquinoline]-3,3'dicarboxylate

Yoshinobu Ishikawa* and Nanako Yoshida

School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan

Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Received 25 March 2014; accepted 1 April 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.052; wR factor = 0.159; data-to-parameter ratio = 15.9.

In the title molecule, $C_{24}H_{20}N_2O_5$, the quinoline and quinolinone moieties are practically perpendicular to each other, forming a dihedral angle of $89.06 (3)^{\circ}$. In the crystal, each moiety forms coplanar π -stacked couples with the respective inversion equivalents. The quinolinone moieties overlap with their benzene rings with a centroid-centroid separation of 3.641 (2) Å, whereas the quinoline moieties overlap with their pyridine rings with a separation of 3.592 (2) Å. The resulting supramolecular chains propargate along [101].

Related literature

For the background to this study, see: Ishikawa & Fujii (2011). For a related compound, see: Kajihara (1965).

organic compounds

mm

3 standard reflections every 150

intensity decay: -0.2%

Experimental

Crystal data

$C_{24}H_{20}N_2O_5$	$\gamma = 102.85 (3)^{\circ}$
$M_r = 416.43$	V = 973.5 (6) Å ³
Triclinic, P1	Z = 2
a = 7.4478 (16) Å	Mo $K\alpha$ radiation
b = 11.284 (5) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 12.583 (5) Å	$T = 100 { m K}$
$\alpha = 107.78 \ (3)^{\circ}$	$0.25 \times 0.20 \times 0.15$
$\beta = 92.96 \ (3)^{\circ}$	

Data collection Rigaku AFC-7R diffractometer

5486 measured reflections 4479 independent reflections 3077 reflections with $F^2 > 2\sigma(F^2)$

Refinement

282 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

 $R_{\rm int} = 0.034$

reflections

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

This work was partly supported by Grants-in-Aid (No. 24590141 to YI) for Scientific Research from the Japan Society for the Promotion of Science. We acknowledge the University of Shizuoka for instrumental support, and thank Professor Kei Manabe (University of Shizuoka, Japan) for helpful discussions.

Supporting information for this paper is available from the IUCr electronic archives (Reference: LD2124).

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.
- Ishikawa, Y. & Fujii, S. (2011). Bioinformation, 6, 221-225.
- Kajihara, S. (1965). Nippon Kagaku Zasshi, 86, 933-941.
- Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2014). E70, o523 [doi:10.1107/S1600536814007314]

Diethyl 4-oxo-4H-[1,4'-biquinoline]-3,3'-dicarboxylate

Yoshinobu Ishikawa and Nanako Yoshida

S1. Comment

4-Quinolones show inhibition not only to Gram-negative and Gram-positive bacteria, but also to human immunodeficiency virus (HIV). The inhibition to HIV is derived from their chelating ability to metal ions in the active site of the metalloenzyme HIV integrase. According to our inhibitor design targeting the metalloenzyme influenza virus RNA polymerase (Ishikawa & Fujii, 2011), we tried to synthesize a 4-quinolone derivative bearing a benzensulfonyl group. Reaction of ethyl 4-oxo-1,4-dihydroquinoline-3-carboxylate with benzenesulfonyl chloride in the presence of K₂CO₃ in *N*,*N*-dimethylformamide (DMF) at 120 °C gave the white solid after purification by silica gel chromatography (Fig.1).

The crystallographic analysis revealed that it is a self-condensation product of ethyl 4-oxo-1,4-dihydroquinoline-3carboxylate with a loss of one water molecule, as shown in Fig.2. This structure well accounts for the ¹H NMR and MS spectra. The C–N bond formation should occur *via* the formation of a benzenesulfonate intermediate. The quinoline rings are approximately perpendicular to each other [dihedral angle = 90.94 (3)°]. In the crystal, the molecule is assembled *via* stacking interaction with its inversion equivalents^{i,ii} [centroid-centroid distances between the benzene rings of the upper quinoline units = 3.641 (2) Å (i: -*x*, -*y*, -*z*) and between the pyridine rings of the lower quinoline units = 3.592 (2) Å (ii: -*x* + 1, -*y*, -*z* + 1)]. As a result, the molecules form chains along [101] direction, as shown in Fig.3. Report on the synthesis of 1,4'-quinolines is scarce (Kajihara, 1965).

S2. Experimental

In a Schlenk tube under nitrogen atmosphere, the mixture of ethyl 4-oxo-1,4-dihydroquinoline-3-carboxylate (0.20 g, 1.0 mmol), benzenesufonyl chloride (0.35 g, 2.0 mmol), K₂CO₃ (0.28 g, 2.0 mmol) in 5 ml of DMF were stirred at 120 °C overnight. After cooling to room temperature water was added, and the mixture was extracted with ethyl acetate three times. The extract was dried over anhydrous Na₂SO₄, and purified by column chromatography on silica gel (ethyl acetate: ethanol = 180: 5, yield: 33%). ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 0.87$ (t, 3H, J = 7.1 Hz), 1.24 (t, 3H, J = 7.1 Hz), 4.07 (m, 2H), 4.21 (q, 2H, J = 7.1 Hz), 6.71 (d, 1H, J = 7.3 Hz), 7.50 (m, 2H), 7.60 (d, 1H, J = 8.3 Hz), 7.74 (t, 1H, J = 7.6 Hz), 8.05 (t, 1H, J = 7.8 Hz), 8.33 (d, 1H, J = 8.3 Hz), 8.34 (d, 1H, J = 8.3 Hz), 8.74 (s, 1H), 9.57 (s, 1H). DART-MS calcd for [C₂₄H₂₀N₂O₅ + H⁺]: 417.188, found 417.150. Single crystals suitable for X-ray diffraction were obtained by slow evapolation of an ethyl acetate solution of the title compound at room temperature.

S3. Refinement

The C(*sp*²)-bound [C–H 0.95 Å, $U_{iso}(H) = 1.2U_{eq}(C)$] and methylene [C–H 0.99 Å, $U_{iso}(H) = 1.2U_{eq}(C)$] hydrogen atoms were placed in geometrical positions and refined using a riding model. A rotating group model was applied to the methyl groups with distance constraint [C–H = 0.98 Å, $U_{iso}(H) = 1.2U_{eq}(C)$].

Figure 1

Reaction scheme for the title compound.

Figure 2

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.

Figure 3

A crystal packing view of the title compound.

Diethyl 4-oxo-4H-[1,4'-biquinoline]-3,3'-dicarboxylate

Crystal data	
$C_{24}H_{20}N_{2}O_{5}$ $M_{r} = 416.43$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 7.4478 (16) Å b = 11.284 (5) Å c = 12.583 (5) Å a = 107.78 (3)° $\beta = 92.96$ (3)° $\gamma = 102.85$ (3)° V = 973.5 (6) Å ³	Z = 2 F(000) = 436.00 $D_x = 1.421 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 25 reflections $\theta = 15.3-17.3^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 100 K Plate, colorless $0.25 \times 0.20 \times 0.15 \text{ mm}$
Data collection	
Rigaku AFC-7R diffractometer ω -2 θ scans 5486 measured reflections 4479 independent reflections 3077 reflections with $F^2 > 2\sigma(F^2)$ $R_{int} = 0.034$	$\theta_{\text{max}} = 27.5^{\circ}$ $h = -9 \rightarrow 5$ $k = -14 \rightarrow 14$ $l = -16 \rightarrow 16$ 3 standard reflections every 150 reflections intensity decay: -0.2%

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.052$	Secondary atom site location: difference Fourier
R[1 > 20(1)] = 0.052	
$wR(F^2) = 0.159$	Hydrogen site location: inferred from
S = 1.02	neighbouring sites
4479 reflections	H-atom parameters constrained
282 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0934P)^2 + 0.0738P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{\AA}^{-3}$

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
O1	0.3332 (2)	0.32182 (13)	0.08577 (12)	0.0232 (4)	
O2	0.80212 (19)	0.33534 (14)	0.30167 (12)	0.0236 (4)	
O3	0.69998 (19)	0.40856 (13)	0.16873 (12)	0.0222 (4)	
O4	0.1676 (2)	0.17036 (14)	0.61313 (12)	0.0259 (4)	
O5	0.2323 (2)	0.24073 (13)	0.46750 (12)	0.0228 (4)	
N1	0.3020 (2)	0.08516 (14)	0.27797 (13)	0.0145 (4)	
N2	0.2925 (3)	-0.17369 (16)	0.46462 (14)	0.0206 (4)	
C1	0.4640 (3)	0.16992 (17)	0.28111 (15)	0.0149 (4)	
C2	0.4860 (3)	0.25268 (17)	0.21964 (15)	0.0149 (4)	
C3	0.3287 (3)	0.25386 (17)	0.14649 (15)	0.0150 (4)	
C4	-0.0110 (3)	0.15898 (18)	0.08414 (16)	0.0177 (4)	
C5	-0.1760 (3)	0.07462 (19)	0.08318 (16)	0.0203 (4)	
C6	-0.1832 (3)	-0.00914 (19)	0.14607 (16)	0.0202 (5)	
C7	-0.0263 (3)	-0.00679 (18)	0.21064 (16)	0.0170 (4)	
C8	0.1514 (3)	0.16402 (17)	0.14924 (15)	0.0145 (4)	
C9	0.1409 (3)	0.08087 (17)	0.21275 (15)	0.0142 (4)	
C10	0.6784 (3)	0.33482 (17)	0.23514 (16)	0.0159 (4)	
C11	0.8869 (3)	0.48947 (19)	0.17788 (18)	0.0214 (5)	
C12	0.8689 (3)	0.5903 (2)	0.1253 (2)	0.0280 (5)	
C13	0.2596 (3)	-0.06055 (19)	0.50924 (17)	0.0185 (4)	
C14	0.2587 (3)	0.03214 (18)	0.45333 (16)	0.0165 (4)	
C15	0.2959 (3)	-0.00050 (17)	0.34353 (16)	0.0155 (4)	
C16	0.3614 (3)	-0.16464 (18)	0.17583 (16)	0.0174 (4)	
C17	0.3957 (3)	-0.28265 (19)	0.12941 (17)	0.0209 (5)	
C18	0.3959 (3)	-0.36552 (19)	0.19449 (18)	0.0231 (5)	
C19	0.3611 (3)	-0.32810 (19)	0.30362 (18)	0.0222 (5)	
C20	0.3277 (3)	-0.12283 (17)	0.28961 (16)	0.0159 (4)	
C21	0.3266 (3)	-0.20668 (18)	0.35423 (16)	0.0176 (4)	
C22	0.2150 (3)	0.15395 (18)	0.52060 (16)	0.0174 (4)	
C23	0.1895 (3)	0.36186 (19)	0.52667 (18)	0.0233 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C24	0.2266 (3)	0.44432 (19)	0.45232 (18)	0.0233 (5)
H1	0.5688	0.1723	0.3288	0.0179*
H2	-0.0066	0.2145	0.0403	0.0212*
H3	-0.2852	0.0731	0.0398	0.0244*
H4	-0.2973	-0.0681	0.1442	0.0242*
Н5	-0.0315	-0.0638	0.2531	0.0203*
H6	0.2342	-0.0384	0.5851	0.0222*
H7	0.3602	-0.1101	0.1314	0.0209*
H8	0.4194	-0.3092	0.0534	0.0251*
H9	0.4203	-0.4472	0.1620	0.0277*
H10	0.3601	-0.3847	0.3462	0.0266*
H11A	0.9685	0.4372	0.1379	0.0257*
H12B	0.9410	0.5304	0.2579	0.0257*
H13A	0.7940	0.6446	0.1684	0.0336*
H14B	0.8083	0.5484	0.0476	0.0336*
H15C	0.9925	0.6435	0.1257	0.0336*
H16A	0.2689	0.4041	0.6001	0.0280*
H17B	0.0578	0.3469	0.5402	0.0280*
H18A	0.1391	0.4052	0.3829	0.0279*
H19B	0.3539	0.4514	0.4338	0.0279*
H20C	0.2109	0.5301	0.4918	0.0279*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0248 (8)	0.0220 (8)	0.0254 (8)	0.0006 (6)	-0.0014 (6)	0.0159 (6)
O2	0.0185 (7)	0.0263 (8)	0.0259 (8)	-0.0008 (6)	-0.0013 (6)	0.0135 (7)
O3	0.0173 (7)	0.0230 (8)	0.0266 (8)	-0.0041 (6)	0.0017 (6)	0.0151 (7)
O4	0.0323 (9)	0.0269 (8)	0.0198 (8)	0.0061 (7)	0.0080 (7)	0.0095 (7)
O5	0.0333 (9)	0.0193 (7)	0.0195 (8)	0.0094 (7)	0.0091 (6)	0.0088 (6)
N1	0.0132 (8)	0.0161 (8)	0.0155 (8)	0.0018 (6)	0.0009 (6)	0.0085 (7)
N2	0.0180 (9)	0.0231 (9)	0.0247 (9)	0.0027 (7)	0.0017 (7)	0.0151 (8)
C1	0.0135 (9)	0.0149 (9)	0.0156 (9)	0.0023 (7)	0.0022 (7)	0.0048 (8)
C2	0.0142 (9)	0.0157 (9)	0.0143 (9)	0.0024 (7)	0.0019 (7)	0.0049 (7)
C3	0.0163 (9)	0.0129 (9)	0.0151 (9)	0.0021 (7)	0.0015 (7)	0.0049 (7)
C4	0.0200 (10)	0.0177 (9)	0.0171 (9)	0.0064 (8)	0.0029 (8)	0.0070 (8)
C5	0.0158 (9)	0.0265 (11)	0.0192 (10)	0.0070 (8)	0.0008 (8)	0.0073 (9)
C6	0.0147 (9)	0.0241 (11)	0.0209 (10)	0.0020 (8)	0.0029 (8)	0.0079 (9)
C7	0.0163 (9)	0.0190 (10)	0.0169 (9)	0.0019 (8)	0.0040 (7)	0.0093 (8)
C8	0.0153 (9)	0.0146 (9)	0.0134 (9)	0.0038 (8)	0.0024 (7)	0.0042 (7)
C9	0.0135 (9)	0.0157 (9)	0.0142 (9)	0.0044 (7)	0.0017 (7)	0.0053 (8)
C10	0.0168 (9)	0.0139 (9)	0.0158 (9)	0.0007 (7)	0.0037 (7)	0.0051 (7)
C11	0.0155 (10)	0.0217 (10)	0.0268 (11)	-0.0013 (8)	0.0047 (8)	0.0116 (9)
C12	0.0221 (11)	0.0270 (12)	0.0379 (13)	0.0001 (9)	0.0045 (10)	0.0189 (10)
C13	0.0149 (9)	0.0248 (10)	0.0180 (9)	0.0030 (8)	0.0008 (8)	0.0119 (8)
C14	0.0123 (9)	0.0199 (10)	0.0179 (10)	0.0004 (7)	-0.0002 (7)	0.0100 (8)
C15	0.0120 (9)	0.0171 (9)	0.0180 (9)	-0.0001 (7)	-0.0006 (7)	0.0098 (8)
C16	0.0130 (9)	0.0194 (10)	0.0206 (10)	0.0006 (8)	0.0019 (7)	0.0102 (8)

supporting information

C17	0.0166 (10)	0.0206 (10)	0.0234 (10)	0.0015 (8)	0.0040 (8)	0.0062 (8)	
C18	0.0182 (10)	0.0176 (10)	0.0332 (12)	0.0040 (8)	0.0026 (9)	0.0083 (9)	
C19	0.0183 (10)	0.0205 (10)	0.0319 (12)	0.0029 (8)	0.0024 (9)	0.0159 (9)	
C20	0.0109 (9)	0.0165 (9)	0.0199 (10)	0.0001 (7)	-0.0005 (7)	0.0083 (8)	
C21	0.0137 (9)	0.0178 (10)	0.0216 (10)	0.0000 (8)	-0.0004 (8)	0.0101 (8)	
C22	0.0131 (9)	0.0220 (10)	0.0167 (9)	0.0001 (8)	-0.0003 (7)	0.0092 (8)	
C23	0.0271 (11)	0.0204 (10)	0.0243 (11)	0.0090 (9)	0.0090 (9)	0.0068 (9)	
C24	0.0229 (11)	0.0223 (11)	0.0252 (11)	0.0062 (9)	0.0014 (9)	0.0085 (9)	

Geometric parameters (Å, °)

01—C3	1.234 (3)	C16—C17	1.368 (3)
O2—C10	1.210 (3)	C16—C20	1.419 (3)
O3—C10	1.340 (3)	C17—C18	1.419 (4)
O3—C11	1.462 (3)	C18—C19	1.365 (4)
O4—C22	1.206 (3)	C19—C21	1.410 (3)
O5—C22	1.332 (3)	C20—C21	1.422 (4)
O5—C23	1.456 (3)	C23—C24	1.504 (4)
N1—C1	1.353 (3)	C1—H1	0.950
N1—C9	1.402 (3)	C4—H2	0.950
N1—C15	1.445 (3)	С5—Н3	0.950
N2	1.312 (3)	C6—H4	0.950
N2	1.377 (3)	С7—Н5	0.950
C1—C2	1.372 (3)	C11—H11A	0.990
C2—C3	1.457 (3)	C11—H12B	0.990
C2—C10	1.490 (3)	C12—H13A	0.980
C3—C8	1.484 (3)	C12—H14B	0.980
C4—C5	1.374 (3)	С12—Н15С	0.980
C4—C8	1.405 (3)	С13—Н6	0.950
C5—C6	1.400 (4)	С16—Н7	0.950
C6—C7	1.379 (3)	С17—Н8	0.950
С7—С9	1.401 (3)	С18—Н9	0.950
C8—C9	1.399 (3)	C19—H10	0.950
C11—C12	1.506 (4)	C23—H16A	0.990
C13—C14	1.429 (4)	С23—Н17В	0.990
C14—C15	1.377 (3)	C24—H18A	0.980
C14—C22	1.493 (3)	C24—H19B	0.980
C15—C20	1.418 (3)	C24—H20C	0.980
O1…O3	2.721 (2)	C16…H3 ^{ix}	3.2503
O1…C4	2.797 (3)	C16····H4 ^{iv}	2.6347
O1…C10	3.054 (3)	C16…H15C ^{xii}	2.9958
O2…C1	2.728 (3)	C17…H4 ^{iv}	2.8881
O2…C11	2.668 (4)	C17···H13A ^x	3.3009
O3…C1	3.580 (3)	C17…H14B ⁱⁱ	3.1314
O3…C3	2.872 (3)	C17···H15C ^{xii}	2.9258
O4…C13	2.788 (3)	C18····H11A ^{xii}	3.3525
O4…C23	2.679 (4)	C18····H12B ^{xii}	3.5459

O5…N1	2.649 (3)	C18····H13A ^x	2.9809
O5…C1	3.000 (3)	C18…H14B ⁱⁱ	3.1837
O5…C9	3.113 (3)	C18····H15C ^{xii}	3.1156
O5…C15	2.850 (3)	C19····H11A ^{xii}	3.5303
N1…C3	2.862 (3)	C19····H12B ^{xii}	3.1146
N1…C16	2.862 (3)	С19…Н15С ^{хіі}	3.3449
N1…C22	3.053 (3)	C19····H16A ^{vii}	3.3374
N2…C15	2.818 (4)	C19H18A ^x	3.5463
C1···C8	2 765 (3)	C19···H19B ^x	3 3639
C1C14	3.285 (4)	C19···H20C ^x	3.3479
C1C16	3 485 (3)	C20···H4 ^{iv}	3 4608
C1C20	3 269 (3)	C20····H6 ^{vii}	3 3943
$C_2 \cdots C_9$	2,834(3)	C_{20} ···H15 C_{xii}	3 2647
C4···C7	2 791 (4)	$C21\cdots H12B^{xii}$	3 4887
C5C9	2 773 (3)	C_{21} ····H15 C_{xii}	3 4265
C6C8	2.775 (3)	C_{21} H17B ^{vi}	3 4823
C7C14	2.794(3) 3.482(3)	C22H5 ^{vi}	3.5442
C7C15	2.828(3)	C22H6 ^{vi}	3.3442
C7C20	2.020(3)	C22H10 ^{vii}	2 5672
C_{1}	3.422(4)		2.5622
C9C14	5.340(4)	С23Ц12Рх	5.5022 2.0250
C9C18	3.430(4)	C22 H10Dy	2.9230
C12 C10	5.280 (4) 2.581 (4)	C22 H20Cxiii	3.3003 2.4950
	3.581 (4)	C23····H20C ^A	3.4856
C13···C20	2.740(3)	C24···H10 ^m	2./110
	2.773 (3)		3.4851
C16···C19	2.792 (4)	C24…H19B ^v	3.1740
C17···C21	2.805 (3)	C24···H20C ^{xm}	3.4241
C18···C20	2.805 (3)		2.7418
$O1 \cdots C12^{i}$	3.487 (4)	H1···C6 ^{iv}	3.4832
O1…C17 ⁱⁱ	3.440 (3)	H1···C13 ^{vii}	3.0655
O1…C18 ⁱⁱⁱ	3.285 (3)	H1···H4 ^{iv}	3.3676
O2···C4 ^{iv}	3.419 (3)	H1…H6 ^{vii}	2.7266
O2····C5 ^{iv}	3.400 (3)	H1···H20C ^v	3.4058
O2…C23 ^v	3.424 (3)	H2…O3 ^{viii}	3.5373
O2····C24 ^{iv}	3.366 (3)	H2····C6 ^{ix}	3.3689
O2…C24 ^v	3.378 (3)	H2…C7 ^{ix}	3.3674
O3…C17 ⁱⁱ	3.552 (3)	H2…C11 ^{viii}	3.3478
O4…N2 ^{vi}	3.526 (3)	$H2\cdots C12^{i}$	3.5014
O4····C7 ^{vi}	3.363 (3)	H2…C16 ^{ix}	3.5155
O4…C13 ^{vi}	3.256 (3)	H2…H7 ^{ix}	3.0777
O4…C14 ^{vi}	3.366 (3)	H2…H11A ^{viii}	2.4907
O4…C19 ^{vii}	3.506 (3)	H2…H14B ⁱ	3.2824
N2…O4 ^{vi}	3.526 (3)	H2…H15C ⁱ	2.9882
N2…C1 ^{vii}	3.579 (3)	H3…C2 ^{viii}	3.3558
N2…C14 ^{vii}	3.324 (3)	H3…C8 ^{ix}	3.3698
N2…C15 ^{vii}	3.570 (3)	H3…C9 ^{ix}	3.4764
C1…N2 ^{vii}	3.579 (3)	H3…C10 ^{viii}	3.2903
C4…O2 ^{viii}	3.419 (3)	H3…C16 ^{ix}	3.2503

C4····C5 ^{ix}	3.444 (3)	H3····H3 ^{xiv}	3.2050
C4···C6 ^{ix}	3.445 (3)	H3····H7 ^{viii}	3.4521
C5…O2 ^{viii}	3.400 (3)	H3····H7 ^{ix}	2.3788
C5····C4 ^{ix}	3.444 (3)	H3····H8 ^{ix}	3.5271
C5····C8 ^{ix}	3.362 (3)	H4···O1 ^{ix}	3.3409
C5…C10 ^{viii}	3.414 (3)	H4····C1 ^{viii}	3.5997
C6…C4 ^{ix}	3.445 (3)	H4····C3 ^{ix}	3.5833
C6…C16 ^{viii}	3.550 (3)	H4····C16 ^{viii}	2.6347
C7…O4 ^{vi}	3.363 (3)	H4····C17 ^{viii}	2.8881
C8····C5 ^{ix}	3.362 (3)	H4····C20 ^{viii}	3.4608
C10C5 ^{iv}	3.414 (3)	H4…H1 ^{viii}	3.3676
C12…O1 ⁱ	3.487 (4)	H4····H6 ^{vi}	3.2171
C13····O4 ^{vi}	3.256 (3)	H4…H7 ^{viii}	2.4759
C13····C13 ^{vii}	3.585 (3)	H4····H8 ^{viii}	2.9084
C13····C14 ^{vii}	3.524 (3)	H4····H13A ^{xii}	3.5528
C13····C15 ^{vii}	3.527 (3)	H5····O4 ^{vi}	2.4848
C13····C22 ^{vi}	3.422 (3)	H5…C13 ^{vi}	3.5802
C14····O4 ^{vi}	3.366 (3)	H5…C22 ^{vi}	3.5442
C14····N2 ^{vii}	3.324 (3)	H5…H6 ^{vi}	2.7225
C14····C13 ^{vii}	3.524 (3)	H5…H13A ^{xii}	3.0760
C14····C21 ^{vii}	3.591 (3)	H5…H15C ^{xii}	3.2508
C15····N2 ^{vii}	3.570 (3)	H6…O4 ^{vi}	3.5171
C15…C13 ^{vii}	3.527 (3)	H6…C1 ^{vii}	3.5653
C16…C6 ^{iv}	3.550 (3)	H6···C6 ^{vi}	3.3152
C17…O1 ⁱⁱ	3.440 (3)	H6…C7 ^{vi}	3.0373
C17…O3 ⁱⁱ	3.552 (3)	H6…C15 ^{vii}	3.4641
C18…O1 ^x	3.285 (3)	H6…C20 ^{vii}	3.3943
C19····O4 ^{vii}	3.506 (3)	H6…C22 ^{vi}	3.3471
C19…C22 ^{vii}	3.548 (3)	H6…H1 ^{vii}	2.7266
C21····C14 ^{vii}	3.591 (3)	H6…H4 ^{vi}	3.2171
C21····C22 ^{vii}	3.530 (3)	H6…H5 ^{vi}	2.7225
C22···C13 ^{vi}	3.422 (3)	H6…H17B ^{vi}	3.5016
C22····C19 ^{vii}	3.548 (3)	H7···C4 ^{ix}	3.4854
C22····C21 ^{vii}	3.530 (3)	H7···C5 ^{ix}	3,1398
C_{23} $O_{2^{v}}$	3.424 (3)	H7···C6 ^{iv}	3,3133
C24····O2 ^{viii}	3.366 (3)	H7···H2 ^{ix}	3.0777
$C24\cdots O2^{v}$	3.378 (3)	H7···H3 ^{iv}	3.4521
01…H2	2.5024	H7···H3 ^{ix}	2.3788
02…H1	2.3541	H7···H4 ^{iv}	2.4759
02···H11A	2.8600	$H7\cdots H15C^{xii}$	3.4211
02…H12B	2.4509	H8…O1 ⁱⁱ	2.6034
O3…H13A	2.6002	H8···O3 ⁱⁱ	2.6912
O3…H14B	2.5486	H8···C3 ⁱⁱ	3.3404
O3…H15C	3.2399	H8…C10 ⁱⁱ	3.5754
O4…H6	2.4392	H8…C11 ⁱⁱ	3.3825
O4…H16A	2.6354	H8…C12 ⁱⁱ	3 4407
04…H17B	2.6916	H8···H3 ^{ix}	3 5271
05…H1	3.2272	H8····H4 ^{iv}	2.9084

O5…H18A	2.6002	H8…H11A ⁱⁱ	3.3950
O5…H19B	2.5194	H8···H13A ^x	3.2930
O5…H20C	3.2261	H8…H14B ⁱⁱ	2.7242
N1…H5	2.6148	H8…H15C ^{xii}	3.3256
N1…H7	2.5433	H9…O1 ^x	2.4059
N2…H10	2.5667	H9…O3 ^x	2.9268
С1…Н7	3.0427	H9…C3 ^x	3.2308
C1…H19B	3.4704	H9…C12 ^x	3.3470
C2…H19B	3.2896	H9…H11A ^{xii}	3.2888
С3…Н1	3.3018	H9…H13A ^x	2.7331
С3…Н2	2.6493	H9…H14B ^x	3.2979
C3…H18A	3.4876	H9…H14B ⁱⁱ	2.8269
C3…H19B	3.5909	H9…H16A ^{vii}	3.5282
C4…H4	3.2566	H10····O5 ^{vii}	3.4783
С5…Н5	3.2740	H10····C22 ^{vii}	3.5672
С6…Н2	3.2599	H10····C23 ^{vii}	3.5622
С7…Н3	3.2681	H10C24 ^x	2.7110
С7…Н7	3.4234	H10···H11A ^{xii}	3.5777
C8…H3	3.2732	H10···H12B ^{xii}	3.0917
C8…H5	3.2941	H10…H16A ^{vii}	2.8818
C8…H18A	3.3630	H10···H17B ^{vi}	3.5483
C9…H1	3.2388	H10···H18A ^x	2.7485
C9…H2	3.2679	H10…H19B ^x	2.4185
C9…H4	3.2564	H10···H20C ^x	2.5150
С9…Н7	2.9583	H11A…O1 ^{iv}	3.2773
C10…H1	2.4837	H11A····C4 ^{iv}	3.0440
C10…H11A	2.7433	H11A····C12 ^{xi}	3.5332
C10…H12B	2.5328	H11A····C18 ^{xv}	3.3525
C14…H1	3.2488	H11A····C19 ^{xv}	3.5303
C14…H5	2.9872	H11A…H2 ^{iv}	2.4907
C15…H1	2.5425	H11A…H8 ⁱⁱ	3 3950
C15H5	2.4890	H11A…H9 ^{xv}	3.2888
C15H6	3.2376	H11A…H10 ^{xv}	3.5777
C15H7	2.6946	H11A…H14B ^{xi}	2.9576
C16…H5	3.4501	H11A…H15C ^{xi}	3.2071
С16…Н9	3.2684	H11A…H18A ^{iv}	3.4247
C17…H10	3.2702	H12B····O4 ^v	3.5621
C18…H7	3 2742	H12B····C18 ^{xv}	3 5459
C19····H8	3 2649	H12B···C19 ^{xv}	3 1146
C20H1	3 2870	H12B···C21 ^{xv}	3 4887
C20···H5	2.9435	H12B···C23 ^v	2.9250
C20···H8	3 2797	H12B···H10 ^{xv}	3 0917
C20···H10	3 2989	$H12B$ ··· $H16A^{v}$	2,4860
С21…Н6	3.1519	H12B···H17B ^v	2.4932
C21···H7	3 3053	H12B····H18A ^{iv}	2.9489
C21H9	3 2729	H12B···H20C ^{iv}	3 4795
С22…Н6	2 5672	H13A01 ⁱ	3 4433
C22···H16A	2.6191	H13A····O4 ^v	2.8541

C22…H17B	2.6478	H13A…C17 ⁱⁱⁱ	3.3009
H1…H7	3.3618	H13A…C18 ⁱⁱⁱ	2.9809
Н2…Н3	2.3180	H13A…H4 ^{xv}	3.5528
Н3…Н4	2.3455	H13A····H5 ^{xv}	3.0760
H4…H5	2.3310	H13A…H8 ⁱⁱⁱ	3.2930
Н5…Н7	3.4322	H13A…H9 ⁱⁱⁱ	2.7331
H7…H8	2.3115	H13A…H16A ^v	3.1643
Н8…Н9	2.3664	H14B…O1 ⁱ	2.8415
H9…H10	2.3060	H14B…C17 ⁱⁱ	3.1314
H11A…H13A	2.8577	H14B…C18 ⁱⁱ	3.1837
H11A…H14B	2.3845	$H14B\cdots H2^{i}$	3.2824
H11A…H15C	2.3470	$H14B\cdots H8^{ii}$	2.7242
H12B…H13A	2.3474	H14B…H9 ⁱⁱⁱ	3.2979
H12B…H14B	2.8576	H14B…H9 ⁱⁱ	2.8269
H12B…H15C	2.3843	H14B····H11A ^{xi}	2.9576
H16A…H18A	2.8558	$H14B$ ···· $H14B^{xi}$	3.4237
H16A…H19B	2.3937	H14B····H15C ^{xi}	3.2436
H16A…H20C	2.3365	H15C…C16 ^{xv}	2.9958
H17B…H18A	2.3357	H15C…C17 ^{xv}	2.9258
H17B…H19B	2.8557	H15C····C18 ^{xv}	3.1156
H17B…H20C	2.3946	H15C…C19 ^{xv}	3.3449
O1…H4 ^{ix}	3.3409	H15C…C20 ^{xv}	3.2647
01…H8 ⁱⁱ	2.6034	H15C…C21 ^{xv}	3.4265
O1…H9 ⁱⁱⁱ	2.4059	H15C···H2 ⁱ	2.9882
O1…H11A ^{viii}	3.2773	H15C···H5 ^{xv}	3.2508
O1···H13A ⁱ	3.4433	H15C····H7 ^{xv}	3.4211
O1···H14B ⁱ	2.8415	H15C···H8 ^{xv}	3.3256
O2…H16A ^v	2.9985	H15C…H11A ^{xi}	3.2071
O2…H17B ^{iv}	3.4220	H15C····H14B ^{xi}	3.2436
O2…H17B ^v	3.4154	H16A…O2 ^v	2,9985
02…H18A ^{iv}	2.5154	H16A···O3 ^v	2.9902
O2····H20C ^{iv}	3.5896	$H16A\cdots C10^{v}$	2.9668
O2…H20C ^v	2.5977	H16A····C11 ^v	3.0820
03H2 ^{iv}	3 5373	$H16A\cdots C19^{vii}$	3 3374
03····H8 ⁱⁱ	2.6912	H16A····H9 ^{vii}	3.5282
03····H9 ⁱⁱⁱ	2.9268	$H16A\cdots H10^{vii}$	2.8818
03…H16A ^v	2.9902	$H16A\cdots H12B^{v}$	2.4860
04…H5 ^{vi}	2.4848	H16AH13A ^v	3 1643
04…H6 ^{vi}	3 5171	$H16A\cdots H19B^{v}$	3 0400
$O4 \cdots H12B^{v}$	3 5621	H17B····O2 ^{viii}	3 4220
04…H13A ^v	2.8541	$H17B\cdots O2^{v}$	3.4154
O5…H10 ^{vii}	3 4783	$H17B\cdots N2^{vi}$	2.8767
N2…H1 ^{vii}	2.7418	$H17B\cdots C11^{v}$	3 4166
N2…H17B ^{vi}	2.8767	H17B···C13 ^{vi}	3 4118
N2····H20C ^x	3 3870	$H17B$ ···C 21^{vi}	3 4823
C1···H4 ^{iv}	3 5997	H17B···C 24^{xiii}	3 4851
C1···H6 ^{vii}	3 5653	$H17B \cdots H6^{vi}$	3 5016
C2H3 ^{iv}	3 3558	$H17B$ ··· $H10^{vi}$	3 5483
- 11J	2.2220	111/12 1110	5.5105

C3…H4 ^{ix}	3.5833	H17B···H12B ^v	2.4932
С3…Н8 ^{іі}	3.3404	H17B…H18A ^{xiii}	3.3506
С3…Н9 ^{ііі}	3.2308	H17B····H20C ^{xiii}	2.7540
C4…H7 ^{ix}	3.4854	H18A…O2 ^{viii}	2.5154
C4…H11A ^{viii}	3.0440	H18A····C11 ^{viii}	3.5891
C5…H7 ^{ix}	3,1398	H18A···C19 ⁱⁱⁱ	3.5463
C6…H1 ^{viii}	3.4832	H18A···H10 ⁱⁱⁱ	2.7485
C6…H2 ^{ix}	3.3689	H18A···H11A ^{viii}	3.4247
C6···H6 ^{vi}	3 3152	H18A····H12B ^{viii}	2.9489
C6…H7 ^{viii}	3,3133	H18A····H17B ^{xiii}	3.3506
C7…H2 ^{ix}	3.3674	H18A····H20C ^{xiii}	3.2218
C7···H6 ^{vi}	3 0373	H19B···C19 ⁱⁱⁱ	3 3639
C8···H3 ^{ix}	3 3698	H19B···C23 ^v	3 5003
C9···H3 ^{ix}	3 4764	H19B···C24 ^v	3.1740
C10····H3 ^{iv}	3 2903	H19B···H10 ⁱⁱⁱ	2 4185
C10···H8 ⁱⁱ	3 5754	$H19B\cdots H16A^{\vee}$	3 0400
$C10 \cdots H16A^{v}$	2 9668	$H19B\cdots H19B^{v}$	2 4826
C10···H20C ^v	3 2797	$H19B \cdots H20C^{v}$	3 2698
$C11 \cdots H2^{iv}$	3 3478	$H_{20}C_{11}O_{2}V_{11}$	3 5896
C11H8 ⁱⁱ	3 3825	$H_{20}C \cdots O_{2}^{v}$	2 5977
C11H16Av	3.0820	H20C···N2 ⁱⁱⁱ	3 3870
C11····H17B ^v	3 4166	$H20C\cdots C10^{v}$	3 2797
	3 5891	H20C···C19 ⁱⁱⁱ	3 3479
$C12\cdots H2^{i}$	3 5014	H20C····C23 ^{xiii}	3.4856
C12···H8 ⁱⁱ	3 4407	H20C···C24 ^{xiii}	3 4241
C12···H9 ⁱⁱⁱ	3 3470	$H20C H1^{v}$	3 4058
$C12 \cdots H11 A^{xi}$	3 5332	H20C···H10 ⁱⁱⁱ	2 5150
C13···H1 ^{vii}	3.0655	H20C···H12B ^{viii}	3 4795
	3 5802	H20C···H17B ^{xiii}	2 7540
$C13 \cdots H17B^{vi}$	3 4118	H20C···H18A ^{xiii}	3 2218
C15····H6 ^{vii}	3 4641	$H_{20}C \cdots H_{10}B^{v}$	3 2698
C16···H2 ^{ix}	3 5155	H20C···H20C ^{xiii}	3 0947
	5.5155	11200 11200	5.0747
C10-03-C11	116.03 (17)	04-C22-C14	122 8 (2)
$C^{22} - 05 - C^{23}$	116.67 (17)	05-022-011	122.0(2) 113.12(18)
C1-N1-C9	120.57(19)	05 - C23 - C24	106 50 (18)
C1-N1-C15	119 36 (17)	N1-C1-H1	118 012
C9-N1-C15	119.50(17) 120.07(15)	$C^2 - C^1 - H^1$	118.004
C_{13} N2 C_{21}	120.07(15) 117.3(2)	$C_2 = C_1 = H_1$	119.617
$N_1 - C_1 - C_2$	123.98(18)	C_{8} C_{4} H_{2}	119.625
C1 - C2 - C3	120.06 (16)	C4 - C5 - H3	119.029
C1 - C2 - C10	114 17 (18)	C6-C5-H3	119.970
$C_{1} = C_{2} = C_{10}$	125 77 (19)	$C_{0} - C_{0} - H_{4}$	119.571
01 - C3 - C2	125.66 (17)	C7 - C6 - H4	119.697
01 - C3 - C8	119 87 (18)	С6—С7—Н5	120 452
C_{2} C_{3} C_{8}	114 47 (19)	C9-C7-H5	120.452
$C_{2} = C_{3} = C_{3}$	120 8 (2)	O_{3} C_{11} H_{11} A	110 326
C4-C5-C6	120.0(2) 120.1(2)	O_3 C_{11} H_{12B}	110.320
	120.1 (2)	05—011—1112D	110.317

C5—C6—C7	120.61 (18)	C12—C11—H11A	110.316
C6—C7—C9	119.1 (2)	C12—C11—H12B	110.320
C3—C8—C4	119.6 (2)	H11A—C11—H12B	108.569
C3—C8—C9	122.01 (18)	C11—C12—H13A	109.471
C4—C8—C9	118.38 (17)	C11—C12—H14B	109.471
N1-C9-C7	1201(2)	C11—C12—H15C	109 470
N1-C9-C8	118 82 (16)	H13A—C12—H14B	109.471
C7—C9—C8	121.09(19)	H13A - C12 - H15C	109 466
$0^{2}-C_{10}-O_{3}$	123.53(17)	H14B— $C12$ — $H15C$	109.479
02 - C10 - C2	123.33(17) 123.3(2)	N2-C13-H6	117 274
03-C10-C2	113 22 (18)	C14-C13-H6	117.275
03 - C11 - C12	106 99 (18)	C17 - C16 - H7	119.663
N2_C13_C14	125.5(2)	C_{20} C_{16} H_{7}	119.668
C_{13} C_{14} C_{15}	116.96 (19)	$C_{16} - C_{17} - H_8$	119.000
C_{13} C_{14} C_{12}	116.01 (18)	C18 - C17 - H8	119.901
$C_{15} = C_{14} = C_{22}$	127.0(2)	$C_{17} = C_{17} = H_0$	110.031
N1 = C15 = C14	127.0(2) 122.56(18)	$C_{10} = C_{10} = H_0$	119.951
N1 = C15 = C14	122.30(18) 117.10(18)	C19 - C10 - H10	119.919
$C_{14} = C_{15} = C_{20}$	117.19(10) 120.3(2)	$C_{10} = C_{10} = H_{10}$	119.401
C17 - C16 - C20	120.3(2) 120.7(2)	$C_{21} = C_{19} = H_{10}$	119.409
$C_{1} = C_{10} = C_{20}$	120.7(3) 120.2(2)	$05 - C_{23} - H_{10}$	110.420
$C_{10} - C_{17} - C_{18}$	120.2(2)	$C_{23} = C_{23} = H_{1/B}$	110.425
C17 - C18 - C19	120.1(2)	С24—С23—ПІбА	110.423
C18 - C19 - C21	121.1(3)	C24—C23—H17B	110.428
C15 - C20 - C16	123.4(2)	H16A - C23 - H1/B	108.636
C15 - C20 - C21	117.64 (18)	C23—C24—H18A	109.469
C16 - C20 - C21	118.91 (18)	C23—C24—H19B	109.467
N2-C21-C19	118.7 (2)	C23—C24—H20C	109.462
N2—C21—C20	122.31 (18)	H18A—C24—H19B	109.476
C19—C21—C20	119.01 (19)	H18A—C24—H20C	109.473
04—C22—O5	124.09 (19)	H19B—C24—H20C	109.480
C10—O3—C11—C12	-163.33 (14)	C3—C8—C9—N1	1.7 (3)
C10—O3—C11—H11A	76.6	C3—C8—C9—C7	-177.41 (14)
C10—O3—C11—H12B	-43.3	C4—C8—C9—N1	-179.99 (15)
C11—O3—C10—O2	1.9 (3)	C4—C8—C9—C7	0.9 (3)
C11—O3—C10—C2	-178.65 (13)	O3—C11—C12—H13A	63.4
C22—O5—C23—C24	177.74 (14)	O3—C11—C12—H14B	-56.6
C22—O5—C23—H16A	57.8	O3—C11—C12—H15C	-176.6
С22—О5—С23—Н17В	-62.3	H11A—C11—C12—H13A	-176.6
C23—O5—C22—O4	-0.3 (3)	H11A—C11—C12—H14B	63.4
C23—O5—C22—C14	179.11 (13)	H11A—C11—C12—H15C	-56.6
C1—N1—C9—C7	-179.62 (14)	H12B-C11-C12-H13A	-56.6
C1—N1—C9—C8	1.3 (3)	H12B-C11-C12-H14B	-176.6
C9—N1—C1—C2	-2.6 (3)	H12B-C11-C12-H15C	63.4
C9—N1—C1—H1	177.4	N2-C13-C14-C15	-0.1 (3)
C1—N1—C15—C14	88.7 (2)	N2-C13-C14-C22	179.21 (15)
C1—N1—C15—C20	-92.14 (18)	H6-C13-C14-C15	179.9
C15—N1—C1—C2	178.02 (14)	H6-C13-C14-C22	-0.8

C15—N1—C1—H1	-2.0	C13—C14—C15—N1	-179.07 (14)
C9—N1—C15—C14	-90.68 (19)	C13—C14—C15—C20	1.8 (3)
C9—N1—C15—C20	88.5 (2)	C13—C14—C22—O4	-6.1 (3)
C15—N1—C9—C7	-0.2 (3)	C13—C14—C22—O5	174.47 (14)
C15—N1—C9—C8	-179.35 (14)	C15—C14—C22—O4	173.10 (16)
C13—N2—C21—C19	-179.53 (15)	C15—C14—C22—O5	-6.3 (3)
C13—N2—C21—C20	0.3 (3)	C22—C14—C15—N1	1.7 (3)
C21—N2—C13—C14	-0.9 (3)	C22—C14—C15—C20	-177.43 (15)
C21—N2—C13—H6	179.0	N1-C15-C20-C16	-1.1 (3)
N1—C1—C2—C3	0.8 (3)	N1-C15-C20-C21	178.46 (13)
N1-C1-C2-C10	-178.65 (15)	C14—C15—C20—C16	178.09 (15)
H1—C1—C2—C3	-179.2	C14—C15—C20—C21	-2.4 (3)
H1-C1-C2-C10	1.3	C17—C16—C20—C15	178.37 (15)
C1—C2—C3—O1	-178.32 (16)	C17—C16—C20—C21	-1.2 (3)
C1—C2—C3—C8	2.0 (3)	C20-C16-C17-C18	0.7 (3)
C1—C2—C10—O2	-4.8 (3)	С20—С16—С17—Н8	-179.3
C1—C2—C10—O3	175.71 (15)	H7—C16—C17—C18	-179.3
C3—C2—C10—O2	175.77 (16)	H7—C16—C17—H8	0.7
C3—C2—C10—O3	-3.7 (3)	H7—C16—C20—C15	-1.6
C10—C2—C3—O1	1.1 (3)	H7—C16—C20—C21	178.8
C10—C2—C3—C8	-178.61 (15)	C16—C17—C18—C19	0.3 (3)
O1—C3—C8—C4	-1.2 (3)	C16—C17—C18—H9	-179.7
O1—C3—C8—C9	177.06 (15)	H8—C17—C18—C19	-179.7
C2—C3—C8—C4	178.49 (14)	Н8—С17—С18—Н9	0.3
C2—C3—C8—C9	-3.2 (3)	C17—C18—C19—C21	-0.7 (3)
C5—C4—C8—C3	178.51 (15)	C17—C18—C19—H10	179.3
C5—C4—C8—C9	0.2 (3)	H9—C18—C19—C21	179.2
C8—C4—C5—C6	-1.0 (3)	H9—C18—C19—H10	-0.8
С8—С4—С5—Н3	178.9	C18—C19—C21—N2	-179.92 (16)
H2—C4—C5—C6	179.0	C18—C19—C21—C20	0.2 (3)
H2—C4—C5—H3	-1.0	H10-C19-C21-N2	0.1
H2—C4—C8—C3	-1.5	H10-C19-C21-C20	-179.8
H2—C4—C8—C9	-179.8	C15—C20—C21—N2	1.3 (3)
C4—C5—C6—C7	0.9 (3)	C15—C20—C21—C19	-178.85 (14)
C4—C5—C6—H4	-179.1	C16—C20—C21—N2	-179.13 (14)
H3—C5—C6—C7	-179.1	C16—C20—C21—C19	0.7 (3)
Н3—С5—С6—Н4	0.9	O5—C23—C24—H18A	65.3
C5—C6—C7—C9	0.1 (3)	O5—C23—C24—H19B	-54.7
С5—С6—С7—Н5	-179.9	O5—C23—C24—H20C	-174.7
Н4—С6—С7—С9	-179.9	H16A—C23—C24—H18A	-174.8
H4—C6—C7—H5	0.1	H16A—C23—C24—H19B	65.2
C6—C7—C9—N1	179.86 (15)	H16A—C23—C24—H20C	-54.8
C6—C7—C9—C8	-1.0 (3)	H17B—C23—C24—H18A	-54.6
H5—C7—C9—N1	-0.1	H17B—C23—C24—H19B	-174.6
H5—C7—C9—C8	179.0	H17B—C23—C24—H20C	65.4

Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y, -z; (iii) x, y+1, z; (iv) x+1, y, z; (v) -x+1, -y+1, -z+1; (vi) -x, -y, -z+1; (vii) -x+1, -y, -z+1; (viii) x-1, y, z; (ix) -x, -y, -z; (x) x, y-1, z; (xi) -x+2, -y+1, -z; (xii) x-1, y-1, z; (xiii) -x, -y, -z; (xv) x+1, y+1, z.