organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Nitrobenzyl methanesulfonate

Venkatramu Anuradha,^a S. Madan Kumar,^b B. P. Siddaraiu,^c N. K. Lokanath^b and P. Nagendra^c*

^aDepartment of Physics, Dr M. G. R. Educational and Research Institute, Maduravoyal, Chennai, India, ^bDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^cDepartment of Chemistry, BET Academy of Higher Education, Bharathi College, Bharthi Nagara, Mandya 571 422. India

Correspondence e-mail: nagendra088@yahoo.co.in

Received 8 April 2014; accepted 21 April 2014

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.112; data-to-parameter ratio = 12.1.

In the title compound, $C_8H_9NO_5S$, the dihedral angle between the benzene ring and the nitro group is $5.86 (15)^{\circ}$ and the C-C-O-S group adopts an *anti* conformation [torsion angle = $-168.44 (15)^{\circ}$]. In the crystal, molecules are linked by C- $H \cdots O$ hydrogen bonds, generating a three-dimensional network.

Related literature

For background to nitrobenzene derivatives, see: Ranu & Banerjee (2005); Ballini et al. (2005). For a related structure, see: Khan et al. (2008).

Experimental

Crystal data C₈H₉NO₅S $M_r = 231.23$

Monoclinic, $P2_1/c$ a = 12.414 (3) Å

b = 7.967 (2) Å	
c = 10.994 (3) Å	
$\beta = 112.235 \ (11)^{\circ}$	
V = 1006.5 (5) Å ³	
Z = 4	

Data collection

Bruker X8 Proteum CCD	6524 measured reflections
diffractometer	1663 independent reflections
Absorption correction: multi-scan	1541 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2013)	$R_{\rm int} = 0.047$
$T_{\rm min} = 0.552, \ T_{\rm max} = 0.578$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	138 parameters
$wR(F^2) = 0.112$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.41 \ {\rm e} \ {\rm \AA}^{-3}$
1663 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2-H2\cdots O1^{i}$	0.93	2.54	3.266 (3)	135
C3-H3···O2 ⁱⁱ	0.93	2.53	3.335 (3)	145
$C7 - H7B \cdots O4^{iii}$	0.97	2.58	3.539 (3)	169
$C8-H8A\cdots O4^{iii}$	0.96	2.42	3.374 (4)	172

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x, y + 1, z; (iii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

We are grateful to the IOE, University of Mysore, for providing the single-crystal X-ray diffraction facility. PN thanks the BET Academy of Higher Education for research facilities.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7217).

References

- Ballini, R., Bosica, G., Fiorini, D., Palmieri, A. & Petrini, M. (2005). Chem. Rev. 105, 933-971.
- Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Khan, G. S., Clark, G. R. & Barker, D. (2008). Acta Cryst. E64, 01470.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood,
- P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Ranu, B. C. & Banerjee, S. (2005). Org. Lett. 7, 3049-3052.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Cu Ka radiation $\mu = 2.94 \text{ mm}^{-1}$

 $0.23 \times 0.22 \times 0.21 \text{ mm}$

T = 296 K

supporting information

Acta Cryst. (2014). E70, o616 [doi:10.1107/S160053681400899X]

2-Nitrobenzyl methanesulfonate

Venkatramu Anuradha, S. Madan Kumar, B. P. Siddaraju, N. K. Lokanath and P. Nagendra

S1. Comment

Nitroalkenes have been used as substrates for Michael addition reactions (Ranu & Banerjee, 2005) and for the synthesis of many organic molecules (Ballini *et al.*, 2005).

The *ORTEP* of the title molecule is shown in figure 1. The molecules in the crystal structure are connected with C— $H^{...}O$ hydrogen bonds (Table 1). The C8—H8B····O4 hydrogen bond exhibits ring motifs of the type $R^2_2(8)$. The overall geometry of the title compound is similar to the 3,5-dinitrobenzyl methanesulfonate (Khan *et al.*, 2008). Overall packing of the molecule is shown in figure 2.

S2. Experimental

Red blocks were obtained from slow evaporation of a solution of ethanol.

S3. Refinement

The hydrogen atom were fixed geometrically (C—H= 0.93–0.96 Å) and allowed to ride on their parent atoms with $U_{iso}(H) = 1.5U_{eq}(C)$ and $U_{eq}(C)$.

Figure 1

A view of the title molecule, with displacement ellipsoids drawn at the 50% probability level.

Figure 2

A viewed along the *b* axis of the crystal packing of the title compound.

2-Nitrobenzyl methanesulfonate

Crystal data

C₈H₉NO₅S $M_r = 231.23$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 12.414 (3) Å b = 7.967 (2) Å c = 10.994 (3) Å $\beta = 112.235$ (11)° V = 1006.5 (5) Å³ Z = 4

Data collection

Bruker X8 Proteum CCD diffractometer Radiation source: Bruker MicroStar microfocus rotating anode Helios multilayer optics monochromator Detector resolution: 10.7 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2013)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.112$ S = 1.081663 reflections 138 parameters F(000) = 480 $D_x = 1.526 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 1663 reflections $\theta = 3.8-64.5^{\circ}$ $\mu = 2.94 \text{ mm}^{-1}$ T = 296 KBlock, red $0.23 \times 0.22 \times 0.21 \text{ mm}$

 $T_{\min} = 0.552, T_{\max} = 0.578$ 6524 measured reflections 1663 independent reflections 1541 reflections with $I > 2\sigma(I)$ $R_{int} = 0.047$ $\theta_{max} = 64.5^{\circ}, \theta_{min} = 3.9^{\circ}$ $h = -14 \rightarrow 13$ $k = -8 \rightarrow 9$ $l = -12 \rightarrow 9$

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0554P)^2 + 0.5912P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.41$ e Å⁻³

Special details

$$\begin{split} &\Delta \rho_{\rm min} = -0.32 \ e \ Å^{-3} \\ & {\rm Extinction \ correction: \ } SHELXL97 \ ({\rm Sheldrick,} \\ & 2008), \ {\rm FC}^* = {\rm KFC} [1 + 0.001 {\rm XFC}^2 \Lambda^3 / {\rm SIN}(2\Theta)]^{-1/4} \\ & {\rm Extinction \ coefficient: \ } 0.0114 \ (9) \end{split}$$

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
S 1	0.08637 (5)	0.25179 (7)	0.06271 (5)	0.0405 (2)
O1	0.43500 (18)	0.3906 (3)	0.69206 (16)	0.0672 (7)
O2	0.36003 (19)	0.2381 (2)	0.52088 (19)	0.0601 (7)
O3	0.16548 (14)	0.3941 (2)	0.15092 (14)	0.0458 (5)
O4	0.05351 (17)	0.3133 (3)	-0.06740 (15)	0.0592 (7)
O5	0.14617 (16)	0.0958 (2)	0.09607 (18)	0.0584 (6)
N1	0.38559 (15)	0.3744 (2)	0.57357 (17)	0.0376 (6)
C1	0.35397 (16)	0.5255 (2)	0.49184 (19)	0.0295 (6)
C2	0.3940 (2)	0.6755 (3)	0.5560 (2)	0.0411 (7)
C3	0.3686 (2)	0.8231 (3)	0.4862 (3)	0.0523 (9)
C4	0.3040 (2)	0.8185 (3)	0.3534 (3)	0.0533 (9)
C5	0.2634 (2)	0.6678 (3)	0.2901 (2)	0.0424 (7)
C6	0.28708 (17)	0.5157 (3)	0.35717 (19)	0.0310 (6)
C7	0.2405 (2)	0.3532 (3)	0.2870 (2)	0.0387 (7)
C8	-0.0341 (2)	0.2504 (3)	0.1059 (3)	0.0526 (9)
H2	0.43780	0.67660	0.64580	0.0490*
Н3	0.39490	0.92490	0.52830	0.0630*
H4	0.28730	0.91790	0.30560	0.0640*
Н5	0.21920	0.66820	0.20030	0.0510*
H7A	0.30420	0.28170	0.28830	0.0460*
H7B	0.19630	0.29430	0.32990	0.0460*
H8A	-0.01050	0.22110	0.19700	0.0790*
H8B	-0.08950	0.16960	0.05320	0.0790*
H8C	-0.06920	0.35980	0.09150	0.0790*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0457 (4)	0.0446 (4)	0.0265 (3)	-0.0009 (2)	0.0083 (3)	-0.0091 (2)
01	0.0821 (13)	0.0607 (13)	0.0332 (10)	0.0016 (10)	-0.0071 (9)	0.0119 (8)
O2	0.0803 (13)	0.0282 (9)	0.0564 (12)	0.0036 (8)	0.0083 (10)	0.0025 (7)

O3	0.0555 (10)	0.0432 (9)	0.0289 (8)	-0.0069 (7)	0.0050 (7)	-0.0037 (7)
O4	0.0670 (11)	0.0806 (14)	0.0262 (9)	-0.0037 (10)	0.0134 (8)	-0.0061 (8)
O5	0.0595 (11)	0.0463 (11)	0.0559 (11)	0.0051 (8)	0.0065 (9)	-0.0161 (8)
N1	0.0376 (9)	0.0337 (10)	0.0345 (10)	0.0023 (7)	0.0056 (8)	0.0053 (8)
C1	0.0322 (10)	0.0256 (10)	0.0298 (10)	0.0008 (8)	0.0106 (8)	0.0013 (8)
C2	0.0463 (12)	0.0365 (12)	0.0349 (12)	-0.0059 (10)	0.0090 (10)	-0.0070 (9)
C3	0.0668 (16)	0.0272 (12)	0.0591 (16)	-0.0085 (11)	0.0197 (13)	-0.0070 (11)
C4	0.0712 (16)	0.0295 (12)	0.0571 (16)	-0.0019 (11)	0.0220 (13)	0.0121 (11)
C5	0.0531 (13)	0.0382 (13)	0.0325 (11)	-0.0006 (10)	0.0123 (10)	0.0058 (9)
C6	0.0339 (10)	0.0299 (11)	0.0303 (10)	-0.0002 (8)	0.0135 (9)	-0.0014 (8)
C7	0.0465 (12)	0.0361 (12)	0.0279 (11)	-0.0004 (9)	0.0079 (9)	-0.0034 (8)
C8	0.0529 (15)	0.0635 (18)	0.0402 (14)	-0.0060 (11)	0.0163 (12)	-0.0060 (11)

Geometric parameters (Å, °)

<u>S1—03</u>	1.5715 (17)	C4—C5	1.384 (3)	
S1—O4	1.4181 (18)	C5—C6	1.391 (3)	
S1—O5	1.4227 (18)	C6—C7	1.506 (3)	
S1—C8	1.732 (3)	C2—H2	0.9300	
O1—N1	1.219 (2)	С3—Н3	0.9300	
O2—N1	1.215 (2)	C4—H4	0.9300	
O3—C7	1.469 (3)	С5—Н5	0.9300	
N1—C1	1.464 (2)	C7—H7A	0.9700	
C1—C2	1.381 (3)	C7—H7B	0.9700	
C1—C6	1.399 (3)	C8—H8A	0.9600	
C2—C3	1.374 (3)	C8—H8B	0.9600	
C3—C4	1.375 (4)	C8—H8C	0.9600	
O3—S1—O4	104.31 (11)	O3—C7—C6	107.68 (18)	
O3—S1—O5	109.14 (10)	C1—C2—H2	120.00	
O3—S1—C8	103.78 (11)	C3—C2—H2	120.00	
O4—S1—O5	119.00 (13)	С2—С3—Н3	120.00	
O4—S1—C8	109.28 (14)	С4—С3—Н3	120.00	
O5—S1—C8	110.13 (12)	C3—C4—H4	120.00	
S1—O3—C7	118.41 (14)	C5—C4—H4	120.00	
O1—N1—O2	122.6 (2)	C4—C5—H5	119.00	
O1—N1—C1	118.59 (18)	С6—С5—Н5	119.00	
O2—N1—C1	118.77 (17)	O3—C7—H7A	110.00	
N1—C1—C2	115.91 (17)	O3—C7—H7B	110.00	
N1—C1—C6	121.17 (17)	С6—С7—Н7А	110.00	
C2—C1—C6	122.93 (18)	С6—С7—Н7В	110.00	
C1—C2—C3	119.6 (2)	H7A—C7—H7B	108.00	
C2—C3—C4	119.3 (2)	S1—C8—H8A	109.00	
C3—C4—C5	120.8 (2)	S1—C8—H8B	110.00	
C4—C5—C6	121.7 (2)	S1—C8—H8C	110.00	
C1—C6—C5	115.73 (19)	H8A—C8—H8B	109.00	
C1—C6—C7	123.31 (19)	H8A—C8—H8C	109.00	
C5—C6—C7	120.95 (18)	H8B—C8—H8C	109.00	

O4—S1—O3—C7	-163.22 (18)	C2-C1-C6-C5	0.5 (3)	
O5—S1—O3—C7	-35.1 (2)	C2-C1-C6-C7	-178.4 (2)	
C8—S1—O3—C7	82.36 (19)	N1—C1—C6—C7	1.5 (3)	
S1—O3—C7—C6	-168.44 (15)	C1—C2—C3—C4	-0.2 (4)	
O1—N1—C1—C2	6.4 (3)	C2—C3—C4—C5	0.8 (4)	
O2—N1—C1—C2	-174.7 (2)	C3—C4—C5—C6	-0.7 (4)	
O2—N1—C1—C6	5.4 (3)	C4—C5—C6—C1	0.1 (4)	
O1—N1—C1—C6	-173.6 (2)	C4—C5—C6—C7	179.0 (2)	
C6—C1—C2—C3	-0.4(4)	C1—C6—C7—O3	174.4 (2)	
N1-C1-C6-C5	-179.6 (2)	C5—C6—C7—O3	-4.4 (3)	
N1—C1—C2—C3	179.7 (2)			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
C2—H2···O1 ⁱ	0.93	2.54	3.266 (3)	135
С3—Н3…О2іі	0.93	2.53	3.335 (3)	145
C7—H7 <i>B</i> ···O4 ⁱⁱⁱ	0.97	2.58	3.539 (3)	169
C8—H8A····O4 ⁱⁱⁱ	0.96	2.42	3.374 (4)	172

Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (ii) x, y+1, z; (iii) x, -y+1/2, z+1/2.