Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(4-Bromobenzyl)-2-(4-bromophenyl)-1*H*-benzimidazole

Hua-Jun Ma and Zhi-Rong Qu*

Key Laboratory of Organosilicon Chemistry and Material Technology of the Ministry of Education, Hangzhou Normal University, No. 58, Haishu Road, Hangzhou, 311121, People's Republic of China Correspondence e-mail: guzr@hznu.edu.cn

Received 4 April 2014; accepted 22 April 2014

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.041; wR factor = 0.128; data-to-parameter ratio = 18.7.

There are two molecules in the asymmetric unit of the title compound, $C_{20}H_{14}Br_2N_2$. In the first, the dihedral angles between the mean plane of the benzimidazole group and those of the 4-bromobenzyl and 4-chlorophenyl groups are 50.72 (17) and 71.29 (16)°, respectively, while the corresponding angles in the second molecule are 42.09 (16) and 89.05 (17)°. The 4-bromobenzyl and 4-bromophenyl groups make an angle of 68.1 (2) and 85.1 (21)° with each other in the two molecules. In the crystal, weak C-H···N and C-H···Br hydrogen bonds link the molecules along the *c*-axis direction. Br···Br interactions [3.5733 (9)Å] are also observed.

Related literature

For the chemistry of benzimidazoles, see: Steel (1990); Bhattacharya & Chaudhuri (2008); Horton *et al.* (2003); Boiani & González (2005); Bai *et al.* (2001); Hasegawa *et al.* (1999); Bouwman *et al.* (1990); Pujar & Bharamgoudar (1988). For their use in sunthesis, see: Sasaki *et al.* (1991); Wan *et al.* (2009).

 $\gamma = 75.621 \ (2)^{\circ}$ V = 1756.6 (3) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.26 \times 0.20 \text{ mm}$

22195 measured reflections

8094 independent reflections

5171 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 4.62 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.034$

433 parameters

 $\Delta \rho_{\rm max} = 0.78 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$

Z = 4

Experimental

Crystal data

 $\begin{array}{l} C_{20}H_{14}Br_2N_2 \\ M_r = 442.15 \\ \text{Triclinic, } P\overline{1} \\ a = 9.7537 \ (9) \ \text{\AA} \\ b = 10.5758 \ (10) \ \text{\AA} \\ c = 17.8255 \ (17) \ \text{\AA} \\ \alpha = 83.435 \ (2)^{\circ} \\ \beta = 81.702 \ (2)^{\circ} \end{array}$

Data collection

```
Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
```

```
T_{\min} = 0.258, T_{\max} = 0.398
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.128$ S = 1.038094 reflections

Table 1

Hydrogen-bond	geometry	(Å,	°)
---------------	----------	-----	----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C13-H13···Br3 ⁱ	0.93	2.85	3.433 (4)	122
$C26-H26\cdots N4^{ii}$	0.93	2.62	3.513 (4)	161

Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) -x, -y + 2, -z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by a start-up grant from Hangzhou Normal University to Z-RQ.

Supporting information for this paper is available from the IUCr electronic archives (Reference: BX2457).

References

- Bai, Y., Lu, J., Shi, Z. & Yang, B. (2001). Synlett, 12, 544-546.
- Bhattacharya, S. & Chaudhuri, P. (2008). Curr. Med. Chem. 15, 1762-1777.
- Boiani, M. & González, M. (2005). Mini Rev. Med. Chem. 5, 409-424.
- Bouwman, E., Driessen, W. L. & Reedjik, J. (1990). Coord. Chem. Rev. 104, 143-172.
- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hasegawa, E., Yoneoka, A., Suzuki, K., Kato, T., Kitazume, T. & Yangi, K. (1999). *Tetrahedron*, **55**, 12957–12968.
- Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.
 Pujar, M. A. & Bharamgoudar, T. D. (1988). Transition Met. Chem. 13, 423–425.
- Sasaki, C., Nakajima, K. & Kojima, M. (1991). Bull. Chem. Soc. Jpn, 64, 1318– 1324.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steel, P. J. (1990). Coord. Chem. Rev. 106, 227-265.
- Wan, J.-P., Gan, S.-F., Wu J.-M. & Pan, Y.-J. (2009). Green Chem. 11, 1633–1637.

supporting information

Acta Cryst. (2014). E70, o610-o611 [doi:10.1107/S1600536814009076]

1-(4-Bromobenzyl)-2-(4-bromophenyl)-1*H*-benzimidazole

Hua-Jun Ma and Zhi-Rong Qu

S1. Comment

Organic ligands containing multiple heterocyclic rings are very useful tools in the self-assembly of metallosupramolecular compounds (Steel, 1990). Functionalized benzimidazoles represent an important class of N-containing heterocyclic compounds and have received considerable attention in recent times because their derivatives bear versatile pharmacological properties (Bhattacharya & Chaudhuri, 2008) based on their presence in both clinical medicines (Horton *et al.*, 2003) and compounds of broad biological functions (Boiani *et al.*, 2005). They are important intermediates in many organic reactions (Bai *et al.*, 2001; Hasegawa *et al.*, 1999), and act as ligands to transition metals for modelling biological systems (Bouwman *et al.*, 1990; Pujar *et al.*, 1988). Herein, we report the synthesis and crystal structure of a new benzimidazole derivative 1-(4-bromobenzyl)-2-(4-bromophenyl)-1*H*-benzimidazole (Fig. 1)·In the title compound $C_{20}H_{14}N_2Br_2$, there are two molecules in the asymmetric unit. The dihedral angles between the least-squares plane of the benzimidazole group and those of the 4-bromobenzyl and 4-chlorophenyl groups are 50.72 (17); 42.09 (16) and 71.29 (16);89.05 (17) respectively. The 4-bromobenzyl and 4-bromophenyl groups make an angle of 68.1 (2); 85.1 (2) (1) with each other. Weak intramolecular hydrogen bonds of C—H···N and Br···Br interactions are observed.

S2. Experimental

1.0 mmol 4-bromobenzaldehyde and 2 ml water were located in a round bottom flask, and 0.5 mmol benzene-1, 2-diamine was then added. Finally, 0.5 mmol TMSCl was injected to the mixture. The reaction was stirred at room temperature for 5 h to form homogeneous suspension. The suspension was then filtered and the residue was washed with 10 ml water to give product. The crude product was recrystallized with ethanol.

S3. Refinement

All H atoms were placed in calculated positions with C(sp3)—H = 0.97 and C(sp2)—H = 0.93 \%A, and torsion angles were refined. In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Figure 1

A view of the asymmetric unit of the title compoud with atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. [Symmetry codes: (i) x, y, z; (ii) -x, -y, -z].

1-(4-Bromobenzyl)-2-(4-bromophenyl)-1*H*-benzimidazole

Crystal data	
$C_{20}H_{14}Br_{2}N_{2}$ $M_{r} = 442.15$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 9.7537 (9) Å b = 10.5758 (10) Å c = 17.8255 (17) Å $a = 83.435 (2)^{\circ}$ $\beta = 81.702 (2)^{\circ}$ $\gamma = 75.621 (2)^{\circ}$	$V = 1756.6 (3) Å^{3}$ Z = 4 F(000) = 872 $D_{x} = 1.672 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 Å \mu = 4.62 mm^{-1} T = 293 K Block, colorless $0.30 \times 0.26 \times 0.20 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004) $T_{\min} = 0.258, T_{\max} = 0.398$	22195 measured reflections 8094 independent reflections 5171 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 27.6^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -12 \rightarrow 12$ $k = -13 \rightarrow 13$ $l = -23 \rightarrow 23$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.128$	neighbouring sites
S = 1.03	H-atom parameters constrained
8094 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0682P)^2 + 0.0252P]$
433 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.78 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.51 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	-0.15730 (5)	0.89638 (4)	0.54077 (3)	0.08072 (17)
Br2	-0.16242 (6)	0.32973 (6)	0.10730 (4)	0.1089 (2)
N1	0.3305 (3)	0.4230 (3)	0.32967 (15)	0.0433 (6)
N2	0.3833 (3)	0.3609 (3)	0.44875 (15)	0.0500 (7)
C1	0.3026 (3)	0.4476 (3)	0.40547 (18)	0.0428 (7)
C2	0.4706 (3)	0.2743 (3)	0.3994 (2)	0.0501 (8)
C3	0.5784 (4)	0.1635 (4)	0.4142 (2)	0.0675 (11)
Н3	0.5986	0.1356	0.4636	0.081*
C4	0.6537 (4)	0.0968 (4)	0.3541 (3)	0.0782 (13)
H4	0.7261	0.0228	0.3629	0.094*
C5	0.6235 (4)	0.1382 (4)	0.2798 (3)	0.0742 (12)
Н5	0.6784	0.0922	0.2400	0.089*
C6	0.5146 (4)	0.2452 (4)	0.2633 (2)	0.0621 (10)
H6	0.4926	0.2709	0.2140	0.075*
C7	0.4402 (3)	0.3118 (3)	0.32494 (19)	0.0471 (8)
C8	0.1638 (3)	0.4571 (3)	0.23018 (17)	0.0411 (7)
C9	0.1261 (3)	0.3402 (3)	0.25350 (19)	0.0478 (8)
Н9	0.1660	0.2877	0.2940	0.057*
C10	0.0299 (4)	0.3001 (4)	0.2176 (2)	0.0602 (10)
H10	0.0055	0.2207	0.2331	0.072*
C11	-0.0294 (4)	0.3804 (4)	0.1582 (2)	0.0625 (10)
C12	0.0032 (4)	0.4980 (4)	0.1359 (2)	0.0652 (10)
H12	-0.0391	0.5520	0.0965	0.078*
C13	0.0992 (4)	0.5355 (4)	0.1723 (2)	0.0547 (9)
H13	0.1211	0.6161	0.1574	0.066*

C14	0.1930 (3)	0.5584 (3)	0.43392 (17)	0.0431 (7)
C15	0.2257 (3)	0.6373 (3)	0.4824 (2)	0.0525 (8)
H15	0.3189	0.6218	0.4937	0.063*
C16	0.1234 (4)	0.7384 (4)	0.5144 (2)	0.0584 (9)
H16	0.1461	0.7903	0.5473	0.070*
C17	-0.0147 (3)	0.7600 (3)	0.49573 (19)	0.0495 (8)
C18	-0.0515 (3)	0.6844 (3)	0.44837 (19)	0.0523 (9)
H18	-0.1451	0.6999	0.4377	0.063*
C19	0.0526 (3)	0.5847 (3)	0.41662 (18)	0.0479 (8)
H19	0.0292	0.5341	0.3832	0.057*
C20	0.2732 (3)	0.5045 (3)	0.26516 (18)	0.0477 (8)
H20A	0.3518	0.5118	0.2261	0.057*
H20B	0.2297	0.5917	0.2810	0.057*
Br3	0.63928 (5)	1.35816 (5)	-0.04992 (2)	0.07448 (16)
Br4	0.74016 (4)	0.49101 (4)	0.33062 (3)	0.07748 (16)
N3	0.2139 (3)	0.9848 (2)	0.18779 (14)	0.0400 (6)
N4	0.1287 (3)	1.0167 (3)	0.07537 (15)	0.0472 (6)
C21	0.2261 (3)	1.0367 (3)	0.11357 (17)	0.0417 (7)
C22	0.0980 (3)	0.9287 (3)	0.19718 (17)	0.0403 (7)
C23	0.0326 (4)	0.8664 (3)	0.2605 (2)	0.0530 (9)
H23	0.0673	0.8531	0.3075	0.064*
C24	-0.0858 (4)	0.8261 (4)	0.2497 (2)	0.0593 (9)
H24	-0.1333	0.7851	0.2907	0.071*
C25	-0.1374 (4)	0.8444 (4)	0.1792 (2)	0.0605 (10)
H25	-0.2176	0.8148	0.1744	0.073*
C26	-0.0721(3)	0.9056 (4)	0.1164 (2)	0.0542 (9)
H26	-0.1060	0.9171	0.0694	0.065*
C27	0.0471 (3)	0.9493 (3)	0.12673 (18)	0.0441 (7)
C28	0.3296 (3)	1.1121 (3)	0.07887 (17)	0.0428 (7)
C29	0.4738 (3)	1.0776 (3)	0.08827 (19)	0.0498 (8)
H29	0.5086	1.0045	0.1204	0.060*
C30	0.5661 (4)	1.1508 (4)	0.0504 (2)	0.0526 (8)
H30	0.6623	1.1272	0.0568	0.063*
C31	0.5138 (4)	1.2583 (4)	0.00333 (19)	0.0518 (8)
C32	0.3721 (4)	1.2963 (4)	-0.0070(2)	0.0583 (9)
H32	0.3386	1.3704	-0.0387	0.070*
C33	0.2796 (4)	1.2225 (3)	0.03065 (19)	0.0523 (8)
H33	0.1836	1.2468	0.0237	0.063*
C34	0.4011 (3)	0.8685 (3)	0.26853 (17)	0.0405 (7)
C35	0.4468 (4)	0.8454 (4)	0.33915 (19)	0.0593 (10)
H35	0.4098	0.9070	0.3745	0.071*
C36	0.5462 (4)	0.7330 (4)	0.3592 (2)	0.0663 (11)
H36	0.5747	0.7180	0.4077	0.080*
C37	0.6015 (3)	0.6445 (3)	0.3062 (2)	0.0499 (8)
C38	0.5589 (3)	0.6633 (3)	0.23460 (19)	0.0490 (8)
H38	0.5971	0.6018	0.1992	0.059*
C39	0.4581 (3)	0.7755 (3)	0.21666 (18)	0.0468 (8)
H39	0.4277	0.7890	0.1686	0.056*

supporting information

C40	0.2950 (3)	0.9941 (3)	0.24839 (18)	0.0459 (8)
H40A	0.2292	1.0191	0.2934	0.055*
H40B	0.3456	1.0628	0.2331	0.055*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0788 (3)	0.0672 (3)	0.0755 (3)	0.0185 (2)	0.0038 (2)	-0.0161 (2)
Br2	0.0928 (4)	0.1135 (4)	0.1374 (5)	-0.0157 (3)	-0.0652 (3)	-0.0351 (4)
N1	0.0403 (14)	0.0471 (15)	0.0417 (15)	-0.0073 (11)	-0.0073 (11)	-0.0042 (12)
N2	0.0452 (15)	0.0564 (17)	0.0450 (15)	-0.0001 (13)	-0.0116 (12)	-0.0090 (13)
C1	0.0391 (16)	0.0477 (19)	0.0423 (17)	-0.0088 (14)	-0.0080 (13)	-0.0056 (14)
C2	0.0403 (17)	0.052 (2)	0.056 (2)	-0.0013 (15)	-0.0109 (15)	-0.0112 (16)
C3	0.055 (2)	0.065 (2)	0.076 (3)	0.0094 (19)	-0.0206 (19)	-0.012 (2)
C4	0.060(2)	0.062 (3)	0.108 (4)	0.009 (2)	-0.017 (2)	-0.031 (2)
C5	0.061 (2)	0.079 (3)	0.077 (3)	0.003 (2)	-0.001 (2)	-0.038 (2)
C6	0.057 (2)	0.070 (3)	0.059 (2)	-0.0081 (19)	-0.0032 (17)	-0.0253 (19)
C7	0.0357 (16)	0.054 (2)	0.053 (2)	-0.0091 (14)	-0.0043 (14)	-0.0145 (16)
C8	0.0412 (16)	0.0445 (18)	0.0340 (16)	-0.0038 (13)	-0.0007 (13)	-0.0067 (13)
C9	0.0463 (18)	0.0428 (19)	0.052 (2)	-0.0029 (14)	-0.0135 (15)	-0.0013 (15)
C10	0.052 (2)	0.047 (2)	0.083 (3)	-0.0071 (16)	-0.0150 (19)	-0.0115 (19)
C11	0.048 (2)	0.070 (3)	0.071 (3)	-0.0017 (18)	-0.0218 (18)	-0.022 (2)
C12	0.067 (2)	0.075 (3)	0.051 (2)	-0.007 (2)	-0.0215 (18)	0.0022 (19)
C13	0.056 (2)	0.053 (2)	0.050 (2)	-0.0093 (16)	-0.0040 (16)	0.0083 (16)
C14	0.0463 (17)	0.0454 (18)	0.0344 (16)	-0.0051 (14)	-0.0062 (13)	-0.0010 (13)
C15	0.0433 (18)	0.057 (2)	0.056 (2)	-0.0050 (15)	-0.0127 (15)	-0.0088 (17)
C16	0.063 (2)	0.052 (2)	0.060 (2)	-0.0064 (17)	-0.0101 (18)	-0.0136 (17)
C17	0.0503 (19)	0.0428 (18)	0.0465 (19)	0.0003 (15)	0.0011 (15)	0.0001 (15)
C18	0.0434 (18)	0.058 (2)	0.0468 (19)	0.0004 (15)	-0.0058 (15)	0.0036 (16)
C19	0.0468 (18)	0.053 (2)	0.0421 (18)	-0.0064 (15)	-0.0083 (14)	-0.0032 (15)
C20	0.0546 (19)	0.0498 (19)	0.0389 (17)	-0.0142 (15)	-0.0045 (14)	-0.0022 (14)
Br3	0.0869 (3)	0.1047 (4)	0.0508 (2)	-0.0628 (3)	-0.0016 (2)	-0.0045 (2)
Br4	0.0602 (3)	0.0730 (3)	0.0883 (3)	0.0071 (2)	-0.0228 (2)	0.0056 (2)
N3	0.0405 (13)	0.0419 (14)	0.0366 (14)	-0.0078 (11)	-0.0078 (10)	0.0007 (11)
N4	0.0477 (15)	0.0530 (17)	0.0406 (15)	-0.0120 (12)	-0.0097 (12)	0.0033 (12)
C21	0.0403 (16)	0.0435 (18)	0.0386 (17)	-0.0061 (13)	-0.0054 (13)	0.0004 (13)
C22	0.0399 (16)	0.0381 (17)	0.0387 (17)	-0.0034 (13)	-0.0041 (13)	0.0010 (13)
C23	0.059 (2)	0.0447 (19)	0.0473 (19)	-0.0027 (16)	-0.0013 (16)	0.0022 (15)
C24	0.052 (2)	0.057 (2)	0.063 (2)	-0.0135 (17)	0.0059 (17)	0.0041 (18)
C25	0.0438 (19)	0.058 (2)	0.079 (3)	-0.0147 (17)	-0.0080 (18)	0.005 (2)
C26	0.0481 (19)	0.059 (2)	0.057 (2)	-0.0134 (16)	-0.0150 (16)	0.0036 (17)
C27	0.0417 (17)	0.0449 (18)	0.0428 (18)	-0.0078 (14)	-0.0041 (14)	0.0024 (14)
C28	0.0454 (17)	0.0474 (18)	0.0381 (17)	-0.0148 (14)	-0.0061 (13)	-0.0033 (14)
C29	0.0490 (19)	0.051 (2)	0.0502 (19)	-0.0103 (16)	-0.0106 (15)	-0.0028 (16)
C30	0.0422 (17)	0.068 (2)	0.053 (2)	-0.0191 (16)	-0.0050 (15)	-0.0127 (18)
C31	0.058 (2)	0.065 (2)	0.0413 (18)	-0.0330 (18)	0.0018 (15)	-0.0090 (16)
C32	0.068 (2)	0.058 (2)	0.051 (2)	-0.0204 (19)	-0.0123 (18)	0.0050 (17)
C33	0.0518 (19)	0.057 (2)	0.049 (2)	-0.0173 (16)	-0.0104(15)	0.0078 (16)

supporting information

C34	0.0406 (16)	0.0464 (18)	0.0355 (16)	-0.0124 (13)	-0.0041 (12)	-0.0032 (13)
C35	0.058 (2)	0.078 (3)	0.0351 (18)	0.0038 (18)	-0.0091 (15)	-0.0170 (17)
C36	0.057 (2)	0.094 (3)	0.0408 (19)	0.001 (2)	-0.0134 (16)	-0.0055 (19)
C37	0.0405 (17)	0.054 (2)	0.052 (2)	-0.0066 (15)	-0.0065 (15)	0.0020 (16)
C38	0.0515 (19)	0.0449 (19)	0.0494 (19)	-0.0077 (15)	-0.0072 (15)	-0.0060 (15)
C39	0.0542 (19)	0.0493 (19)	0.0395 (17)	-0.0134 (15)	-0.0133 (14)	-0.0022 (14)
C40	0.0537 (19)	0.0464 (19)	0.0378 (17)	-0.0095 (15)	-0.0083 (14)	-0.0053 (14)

Geometric parameters (Å, °)

Br1—C17	1.899 (3)	Br3—C31	1.895 (3)
Br2—C11	1.895 (4)	Br4—C37	1.890 (3)
N1—C1	1.381 (4)	N3—C21	1.374 (4)
N1—C7	1.381 (4)	N3—C22	1.383 (4)
N1—C20	1.448 (4)	N3—C40	1.453 (4)
N2—C1	1.308 (4)	N4—C21	1.316 (4)
N2—C2	1.385 (4)	N4—C27	1.379 (4)
C1—C14	1.460 (4)	C21—C28	1.464 (5)
C2—C7	1.394 (5)	C22—C27	1.391 (4)
C2—C3	1.395 (4)	C22—C23	1.395 (4)
C3—C4	1.368 (6)	C23—C24	1.372 (5)
С3—Н3	0.9300	С23—Н23	0.9300
C4—C5	1.397 (6)	C24—C25	1.396 (5)
C4—H4	0.9300	C24—H24	0.9300
C5—C6	1.382 (5)	C25—C26	1.382 (5)
С5—Н5	0.9300	С25—Н25	0.9300
C6—C7	1.386 (5)	C26—C27	1.395 (5)
С6—Н6	0.9300	С26—Н26	0.9300
C8—C13	1.372 (4)	C28—C29	1.392 (4)
C8—C9	1.378 (5)	C28—C33	1.396 (4)
C8—C20	1.519 (5)	C29—C30	1.384 (5)
C9—C10	1.379 (5)	С29—Н29	0.9300
С9—Н9	0.9300	C30—C31	1.369 (5)
C10—C11	1.380 (5)	С30—Н30	0.9300
C10—H10	0.9300	C31—C32	1.373 (5)
C11—C12	1.361 (6)	C32—C33	1.389 (5)
C12—C13	1.368 (5)	С32—Н32	0.9300
C12—H12	0.9300	С33—Н33	0.9300
С13—Н13	0.9300	C34—C35	1.371 (4)
C14—C15	1.387 (5)	C34—C39	1.386 (4)
C14—C19	1.400 (4)	C34—C40	1.509 (4)
C15—C16	1.382 (5)	C35—C36	1.382 (5)
C15—H15	0.9300	С35—Н35	0.9300
C16—C17	1.392 (5)	C36—C37	1.366 (5)
C16—H16	0.9300	С36—Н36	0.9300
C17—C18	1.366 (5)	C37—C38	1.376 (5)
C18—C19	1.380 (5)	C38—C39	1.379 (4)
C18—H18	0.9300	C38—H38	0.9300

С19—Н19	0.9300	С39—Н39	0.9300
C20—H20A	0.9700	C40—H40A	0.9700
C20—H20B	0.9700	C40—H40B	0.9700
C1—N1—C7	106.3 (2)	C21—N3—C22	106.3 (2)
C1—N1—C20	128.2 (3)	C21—N3—C40	128.8 (3)
C7—N1—C20	125.0 (3)	C22—N3—C40	124.7 (2)
C1—N2—C2	104.9 (3)	C21—N4—C27	105.3 (3)
N2-C1-N1	113.1 (3)	N4—C21—N3	112.6 (3)
N2-C1-C14	123.8 (3)	N4—C21—C28	121.6 (3)
N1-C1-C14	123.1 (3)	N3—C21—C28	125.7 (3)
N2—C2—C7	110.5 (3)	N3—C22—C27	105.6 (3)
N2—C2—C3	130.0 (3)	N3—C22—C23	132.0 (3)
C7—C2—C3	119.5 (3)	C27—C22—C23	122.4 (3)
C4—C3—C2	118.4 (4)	C24—C23—C22	116.2 (3)
С4—С3—Н3	120.8	C24—C23—H23	121.9
С2—С3—Н3	120.8	С22—С23—Н23	121.9
C3—C4—C5	121.0 (4)	C23—C24—C25	122.2 (3)
C3—C4—H4	119.5	C23—C24—H24	118.9
C5—C4—H4	119.5	C25—C24—H24	118.9
C6—C5—C4	122.1 (4)	C26—C25—C24	121.5 (3)
С6—С5—Н5	118.9	C26—C25—H25	119.2
C4—C5—H5	118.9	C24—C25—H25	119.2
C5—C6—C7	115.9 (4)	C_{25} C_{26} C_{27}	117.1 (3)
C5—C6—H6	122.0	C25—C26—H26	121.5
C7—C6—H6	122.0	C27—C26—H26	121.5
N1-C7-C6	131 7 (3)	N4—C27—C22	121.3 110.2 (3)
N1-C7-C2	105.2(3)	N4—C27—C26	129.3(3)
C6-C7-C2	103.2(3) 123.0(3)	C^{22} C^{27} C^{26}	129.5(3) 120.6(3)
C13 - C8 - C9	1185(3)	C_{29} C_{28} C_{33}	120.0(3) 1187(3)
$C_{13} = C_{8} = C_{20}$	117.9(3)	$C_{29} = C_{28} = C_{21}$	1244(3)
C9 - C8 - C20	1237(3)	$C_{23} = C_{28} = C_{21}$	124.4(3) 1169(3)
C_{8} C_{9} C_{10}	123.7(3) 121.0(3)	C_{30} C_{29} C_{28}	120.8(3)
$C_8 - C_9 - H_9$	110 5	C_{30} C_{29} H_{29}	110.6
C10-C9-H9	119.5	C_{28} C_{29} H_{29}	119.6
$C_{10} - C_{10} - C_{11}$	119.5	$C_{20} = C_{20} = C_{20}$	119.0 110.1(3)
C_{9} C_{10} H_{10}	120.7	$C_{31} = C_{30} = C_{23}$	120.4
C_{11} C_{10} H_{10}	120.7	$C_{20} = C_{30} = H_{30}$	120.4
$C_{11} = C_{10} = 110$	120.7	$C_{29} = C_{30} = 1150$	120.4 121.0(3)
$C_{12} = C_{11} = C_{10}$	121.5(3) 1186(3)	$C_{30} = C_{31} = C_{32}$	121.9(3) 110.6(3)
$C_{12} = C_{11} = B_{12}$	110.0(3)	$C_{30} = C_{31} = B_{13}$	119.0(3) 118.5(3)
$C_{11} = C_{12} = C_{13}$	120.1(3) 1100(3)	$C_{32} = C_{31} = D_{13}$	110.5(3)
$C_{11} = C_{12} = C_{13}$	119.0 (3)	$C_{31} = C_{32} = C_{33}$	119.0 (3)
$C_{11} - C_{12} - H_{12}$	120.5	$C_{31} - C_{32} - H_{32}$	120.5
$C_{13} = C_{12} = 1112$	120.3	$C_{33} = C_{32} = C_{132}$	120.3 120.5(2)
$C_{12} - C_{13} - C_{0}$	121.0 (4)	$C_{32} = C_{33} = C_{20}$	120.3 (3)
$C_{12} - C_{13} - \Pi_{13}$	119.2	$C_{32} = C_{33} = D_{33}$	119./
$C_{15} = C_{13} = C_{15}$	117.2	$C_{20} = C_{33} = D_{33}$	117./
013-014-019	110.3 (3)	(3)-(34-(3)	110.0(3)

C15—C14—C1	119.6 (3)	C35—C34—C40	120.1 (3)
C19—C14—C1	122.0 (3)	C39—C34—C40	121.9 (3)
C16—C15—C14	121.7 (3)	C34—C35—C36	121.9 (3)
C16—C15—H15	119.2	С34—С35—Н35	119.1
C14—C15—H15	119.2	С36—С35—Н35	119.1
C15—C16—C17	117.8 (3)	C37—C36—C35	118.4 (3)
C_{15} C_{16} H_{16}	121.1	C37—C36—H36	120.8
C17 - C16 - H16	121.1	C35—C36—H36	120.8
C_{18} $-C_{17}$ $-C_{16}$	121.1 122.4(3)	$C_{36} - C_{37} - C_{38}$	121.8 (3)
$C_{18} - C_{17} - Br_{1}$	122.4(3) 119.3(3)	$C_{36} - C_{37} - Br_{4}$	121.0(3) 119.8(3)
C_{16} C_{17} B_{r1}	119.3(3)	C_{38} C_{37} B_{r4}	119.0(3)
$C_{10} - C_{17} - D_{11}$	118.5(5) 118.8(3)	$C_{38} - C_{37} - D_{14}$	118.4(3)
C17 - C18 - C19	110.0 (5)	$C_{37} = C_{38} = U_{38}$	110.4 (5)
C10 C18 H18	120.6	$C_{3} = C_{3} = H_{3}$	120.8
	120.6	C39—C38—H38	120.8
	121.0 (3)	$C_{38} = C_{39} = C_{34}$	121.5 (3)
C18—C19—H19	119.5	C38—C39—H39	119.2
C14—C19—H19	119.5	С34—С39—Н39	119.2
N1—C20—C8	115.7 (3)	N3—C40—C34	113.7 (3)
N1—C20—H20A	108.4	N3—C40—H40A	108.8
C8—C20—H20A	108.4	C34—C40—H40A	108.8
N1—C20—H20B	108.4	N3—C40—H40B	108.8
C8—C20—H20B	108.4	C34—C40—H40B	108.8
H20A—C20—H20B	107.4	H40A—C40—H40B	107.7
C2-N2-C1-N1	0.5 (4)	C27—N4—C21—N3	0.5 (3)
C2—N2—C1—C14	179.8 (3)	C27—N4—C21—C28	-176.9 (3)
C7—N1—C1—N2	-1.0(4)	C22—N3—C21—N4	-0.7(3)
C20—N1—C1—N2	-173.0(3)	C40—N3—C21—N4	-175.6 (3)
C7—N1—C1—C14	179.7 (3)	C22—N3—C21—C28	176.6 (3)
C20—N1—C1—C14	7.7 (5)	C40—N3—C21—C28	1.6 (5)
C1—N2—C2—C7	0.1 (4)	C21—N3—C22—C27	0.6 (3)
C1 - N2 - C2 - C3	179.3 (4)	C40—N3—C22—C27	175.8 (3)
N_{2} C2 C3 C4	-177.4(4)	C_{21} N_{3} C_{22} C_{23}	-177.3(3)
C7 - C2 - C3 - C4	17(6)	C40-N3-C22-C23	-2.1(5)
$C_{2}^{2} = C_{3}^{2} = C_{4}^{2} = C_{5}^{2}$	-0.2(7)	N3-C22-C23-C24	177.6(3)
C_{3} C_{4} C_{5} C_{6}	-1.8(7)	C_{27} C_{22} C_{23} C_{24}	0.1(5)
C_{4} C_{5} C_{6} C_{7}	21(6)	C^{22} C^{23} C^{24} C^{25}	0.1(5)
C1 N1 C7 C6	-177 A (A)	$C_{22} = C_{23} = C_{24} = C_{25} = C_{26}$	-0.5(6)
$C_{1} = N_{1} = C_{1} = C_{0}$	-5.1(6)	$C_{23} = C_{24} = C_{23} = C_{20}$	-0.6(5)
$C_{20} = N_1 = C_7 = C_0$	-3.1(0)	$C_{24} = C_{25} = C_{20} = C_{27}$	-0.0(3)
$C_1 = N_1 = C_2 = C_2$	1.0(4)	$C_{21} = N_{4} = C_{27} = C_{22}$	-0.1(4)
$C_{20} = N_1 = C_1 = C_2$	1/3.3(3)	$C_{21} = N_{4} = C_{27} = C_{20}$	1/8.8(3)
$C_{5} - C_{6} - C_{7} - N_{1}$	1//.6 (4)	$N_{3} = C_{22} = C_{27} = N_{4}$	-0.3(3)
C_{2}	-0.5 (6)	$U_{23} - U_{22} - U_{27} - N_{4}$	1//.8(3)
N2-C2-C/-N1	-0.7 (4)	N3-C22-C27-C26	-1/9.3 (3)
C3—C2—C7—N1	-180.0(3)	C23—C22—C27—C26	-1.1 (5)
N2-C2-C7-C6	177.9 (3)	C25—C26—C27—N4	-177.4 (3)
C3—C2—C7—C6	-1.4 (6)	C25—C26—C27—C22	1.4 (5)
C13—C8—C9—C10	2.6(5)	N4—C21—C28—C29	-137.9(3)

C_{20} C_{8} C_{9} C_{10}	-177.6(3)	N3_C21_C28_C29	45.0(5)
$C_{20} = C_{10} = C_{10}$	-0.8(5)	$N_{1} = C_{21} = C_{20} = C_{23}$	+3.0(3)
$C_{0} = C_{10} = C_{11} = C_{12}$	-1.3(6)	$N_{1} = C_{21} = C_{20} = C_{33}$	-137.0(3)
$C_{9} = C_{10} = C_{11} = C_{12}$	1.5(0)	$N_{3} = C_{21} = C_{20} = C_{33}$	137.9(3)
C9—C10—C11—Bf2	-1/9.9 (3)	C33—C28—C29—C30	-0.3 (5)
C10—C11—C12—C13	1.4 (6)	C21—C28—C29—C30	176.7 (3)
Br2—C11—C12—C13	-180.0 (3)	C28—C29—C30—C31	0.1 (5)
C11—C12—C13—C8	0.5 (6)	C29—C30—C31—C32	0.4 (5)
C9—C8—C13—C12	-2.5 (5)	C29—C30—C31—Br3	-179.2 (3)
C20-C8-C13-C12	177.7 (3)	C30—C31—C32—C33	-0.8 (6)
N2-C1-C14-C15	49.0 (5)	Br3—C31—C32—C33	178.8 (3)
N1-C1-C14-C15	-131.8 (3)	C31—C32—C33—C28	0.6 (5)
N2-C1-C14-C19	-128.0 (4)	C29—C28—C33—C32	-0.1 (5)
N1—C1—C14—C19	51.2 (5)	C21—C28—C33—C32	-177.3 (3)
C19—C14—C15—C16	1.1 (5)	C39—C34—C35—C36	-0.3 (6)
C1-C14-C15-C16	-176.1 (3)	C40—C34—C35—C36	-178.5 (4)
C14—C15—C16—C17	-0.7 (5)	C34—C35—C36—C37	1.2 (6)
C15—C16—C17—C18	0.9 (5)	C35—C36—C37—C38	-1.3 (6)
C15—C16—C17—Br1	178.8 (3)	C35—C36—C37—Br4	178.9 (3)
C16—C17—C18—C19	-1.4 (5)	C36—C37—C38—C39	0.4 (5)
Br1-C17-C18-C19	-179.3 (2)	Br4—C37—C38—C39	-179.7 (3)
C17—C18—C19—C14	1.7 (5)	C37—C38—C39—C34	0.6 (5)
C15—C14—C19—C18	-1.6 (5)	C35—C34—C39—C38	-0.6 (5)
C1-C14-C19-C18	175.5 (3)	C40—C34—C39—C38	177.6 (3)
C1—N1—C20—C8	-107.0 (4)	C21—N3—C40—C34	-106.7 (3)
C7—N1—C20—C8	82.3 (4)	C22—N3—C40—C34	79.2 (4)
C13—C8—C20—N1	175.6 (3)	C35—C34—C40—N3	-156.4 (3)
C9—C8—C20—N1	-4.2 (4)	C39—C34—C40—N3	25.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C13—H13…Br3 ⁱ	0.93	2.85	3.433 (4)	122
C26—H26…N4 ⁱⁱ	0.93	2.62	3.513 (4)	161

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*; (ii) -*x*, -*y*+2, -*z*.