

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-Bromo-2,7-dimethyl-3-(3-methylphenylsulfonyl)-1-benzofuran

Hong Dae Choi,^a Pil Ja Seo^a and Uk Lee^{b*}

^aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and ^bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea

Correspondence e-mail: uklee@pknu.ac.kr

Received 27 March 2014; accepted 11 April 2014

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.031; wR factor = 0.081; data-to-parameter ratio = 19.0.

In the title compound, C₁₇H₁₅BrO₃S, the dihedral angle between the mean planes of the benzofuran and 3-methylphenyl rings is 77.37 (5)°. In the crystal, molecules are linked via pairs of $Br \cdots O [Br \cdots O = 3.335(2) Å]$ contacts into inversion dimers. These dimers are further linked by C-H···O hydrogen bonds and $\pi - \pi$ interactions between the benzene and furan rings of neighbouring molecules [centroidcentroid separation = 3.884(3) Å] into supramolecular chains running along the *a*-axis direction.

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2011, 2012, 2013). For a review of halogen bonding, see: Politzer et al. (2007).

26392 measured reflections

 $R_{\rm int} = 0.043$

3831 independent reflections

3188 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

C ₁₇ H ₁₅ BrO ₃ S	V = 1539.26 (8) Å ³
$M_r = 379.26$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 8.8813 (3) Å	$\mu = 2.82 \text{ mm}^{-1}$
b = 6.5976 (2) Å	T = 296 K
c = 26.5044 (8) Å	$0.50 \times 0.46 \times 0.15 \text{ mm}$
$\beta = 97.635 \ (1)^{\circ}$	

Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.379, \ T_{\max} = 0.746$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	202 parameters
$wR(F^2) = 0.081$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.56 \ {\rm e} \ {\rm \AA}^{-3}$
3831 reflections	$\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C10-H10B\cdots O2^{i}$	0.96	2.54	3.338 (3) 3.357 (3)	141
C1/=H1/C···O3	0.90	2.41	3.337 (3)	170

Symmetry codes: (i) x, y - 1, z; (ii) x + 1, y, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supporting information for this paper is available from the IUCr electronic archives (Reference: BH2497).

References

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, 03208.

Choi, H. D., Seo, P. J. & Lee, U. (2013). Acta Cryst. E69, 0720.

Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o1279.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2014). E70, o567 [doi:10.1107/S1600536814008149]

5-Bromo-2,7-dimethyl-3-(3-methylphenylsulfonyl)-1-benzofuran

Hong Dae Choi, Pil Ja Seo and Uk Lee

S1. Experimental

S1.1. Synthesis and crystallization

3-Chloroperoxybenzoic acid (77%, 448 mg, 2.0 mmol) was added in small portions to a stirred solution of 5-bromo-2,7dimethyl-3-(3-methylphenylsulfanyl)-1-benzofuran (312 mg, 0.9 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 8 h., the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 4:1 ν/ν) to afford the title compound as a colorless solid [yield 68%, m.p. 438–439 K; R_f = 0.51 (hexane–ethyl acetate, 4:1 ν/ν)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

S1.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms, respectively. U_{iso} (H) = $1.2U_{eq}$ (C) for aryl and $1.5U_{eq}$ (C) for methyl H atoms. The positions of methyl hydrogens were optimized using the SHELXL-97's command AFIX 137 (Sheldrick, 2008).

S2. Results and discussion

As a part of our ongoing study of 5-bromo-2,7-dimethyl-1-benzofuran derivatives containing cyclohexylsulfonyl (Choi *et al.*, 2011), 4-fluorophenylsulfonyl (Choi *et al.*, 2012) and 4-methylphenylsulfinyl (Choi *et al.*, 2013) substituents in the 3-position, we report here on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran ring system is essentially planar, with a mean deviation of 0.010 (2) Å from the least-squares plane defined by the nine constituent atoms. The 3-methylphenyl ring is essentially planar, with a mean deviation of 0.004 (1) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzofuran ring system and the 3-methylphenyl ring is 77.37 (5)°. In the crystal structure (Fig. 2), molecules are linked by pairs of Br···O halogen-bondings (Politzer *et al.* 2007) between the bromine and the O atom of the O=S=O unit [Br1···O2ⁱⁱⁱ = 3.335 (2) Å, C4—Br1···O2ⁱⁱⁱ = 168.67 (6)°, symmetry code: (iii) -*x*+1, -*y*+2, -*z*+1]. These dimers are further linked by C—H···O hydrogen bonds (Table 1), and by π ··· π interactions between the benzene and furan rings of neighbouring molecules, with a Cg1···Cg2^{iv} distance of 3.884 (3) Å and an interplanar distance of 3.440 (3) Å resulting in a slippage of 1.804 (3) Å (Cg1 and Cg2 are the centroids of the C2–C7 benzene ring and the C1/C2/C7/O1/C8 furan ring, respectively), forming supramolecular chains running along the *a*–axis direction.

Figure 1

The molecular structure of the title molecule with the atom numbering scheme The displacement ellipsoids are drawn at the 50% probability level. The hydrogen atoms are presented as small spheres of arbitrary radius.

Figure 2

A view of the C—H···O, Br···O and π ··· π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x, y - 1, z; (ii) x + 1, y, z; (iii) - x + 1, -y + 2, -z + 1; (iv) - x, -y + 1, -z + 1.]

5-Bromo-2,7-dimethyl-3-(3-methylphenylsulfonyl)-1-benzofuran

Crystal data	
C ₁₇ H ₁₅ BrO ₃ S $M_r = 379.26$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.8813 (3) Å b = 6.5976 (2) Å c = 26.5044 (8) Å $\beta = 97.635$ (1)° V = 1539.26 (8) Å ³ 7 = 4	F(000) = 768 $D_x = 1.637 \text{ Mg m}^{-3}$ Melting point = 439–438 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9774 reflections $\theta = 2.3-28.2^{\circ}$ $\mu = 2.82 \text{ mm}^{-1}$ T = 296 K Block, colourless $0.50 \times 0.46 \times 0.15 \text{ mm}$
Data collection Bruker SMART APEXII CCD diffractometer Radiation source: rotating anode Graphite multilayer monochromator Detector resolution: 10.0 pixels mm ⁻¹ φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009) $T_{\min} = 0.379, T_{\max} = 0.746$	26392 measured reflections 3831 independent reflections 3188 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 28.3^\circ, \ \theta_{min} = 1.6^\circ$ $h = -11 \rightarrow 11$ $k = -8 \rightarrow 8$ $l = -35 \rightarrow 35$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.081$	H-atom parameters constrained
S = 1.07	$w = 1/[\sigma^2(F_o^2) + (0.0364P)^2 + 0.7777P]$
3831 reflections	where $P = (F_o^2 + 2F_c^2)/3$
202 parameters	$(\Delta/\sigma)_{\rm max} = 0.002$
0 restraints	$\Delta ho_{ m max} = 0.56 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.45 \ {\rm e} \ {\rm \AA}^{-3}$
direct methods	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.46068 (3)	0.80654 (4)	0.428686 (8)	0.04118 (9)	
S1	0.26202 (5)	0.72154 (8)	0.641971 (18)	0.02783 (11)	
01	0.09711 (16)	0.2852 (2)	0.55049 (5)	0.0314 (3)	
O2	0.27849 (16)	0.9169 (2)	0.61959 (5)	0.0352 (3)	
03	0.16243 (16)	0.7009 (3)	0.68033 (6)	0.0380 (4)	
C1	0.2041 (2)	0.5514 (3)	0.59334 (7)	0.0284 (4)	
C2	0.2454 (2)	0.5613 (3)	0.54261 (7)	0.0277 (4)	
C3	0.3313 (2)	0.6908 (3)	0.51640 (7)	0.0305 (4)	
Н3	0.3777	0.8062	0.5314	0.037*	
C4	0.3435 (2)	0.6375 (4)	0.46673 (7)	0.0318 (4)	
C5	0.2756 (2)	0.4660 (4)	0.44286 (7)	0.0347 (5)	
Н5	0.2888	0.4380	0.4093	0.042*	
C6	0.1884 (2)	0.3360 (3)	0.46849 (8)	0.0325 (4)	
C7	0.1763 (2)	0.3932 (3)	0.51806 (7)	0.0291 (4)	
C8	0.1157 (2)	0.3850 (3)	0.59611 (7)	0.0302 (4)	
C9	0.1153 (3)	0.1474 (4)	0.44553 (8)	0.0415 (5)	
H9A	0.1709	0.0312	0.4596	0.062*	
H9B	0.1157	0.1499	0.4093	0.062*	
H9C	0.0125	0.1399	0.4529	0.062*	
C10	0.0370 (3)	0.2911 (3)	0.63612 (9)	0.0368 (5)	
H10A	0.0463	0.3777	0.6655	0.055*	
H10B	0.0821	0.1619	0.6454	0.055*	
H10C	-0.0685	0.2730	0.6235	0.055*	
C11	0.4444 (2)	0.6401 (3)	0.66941 (7)	0.0283 (4)	
C12	0.5609 (2)	0.7803 (3)	0.67428 (7)	0.0314 (4)	
H12	0.5452	0.9090	0.6603	0.038*	
C13	0.7026 (2)	0.7273 (4)	0.70039 (8)	0.0389 (5)	
C14	0.7213 (3)	0.5329 (4)	0.71966 (8)	0.0461 (6)	
H14	0.8152	0.4950	0.7369	0.055*	
C15	0.6045 (3)	0.3937 (4)	0.71410 (8)	0.0444 (6)	
H15	0.6208	0.2638	0.7274	0.053*	
C16	0.4631 (2)	0.4458 (4)	0.68888 (8)	0.0367 (5)	
H16	0.3834	0.3533	0.6852	0.044*	
C17	0.8290 (2)	0.8819 (5)	0.70728 (10)	0.0535 (7)	

supporting information

H17A	0.8362	0.9388	0.7409	0.080*
H17B	0.8078	0.9877	0.6825	0.080*
H17C	0.9233	0.8176	0.7029	0.080*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.04301 (14)	0.04977 (17)	0.03230 (13)	0.01099 (10)	0.01067 (9)	0.00424 (9)
S1	0.0264 (2)	0.0325 (3)	0.0236 (2)	0.00823 (19)	-0.00028 (17)	-0.00524 (18)
01	0.0345 (7)	0.0306 (8)	0.0276 (7)	0.0047 (6)	-0.0014 (6)	-0.0037 (6)
02	0.0379 (7)	0.0294 (8)	0.0352 (8)	0.0090 (6)	-0.0061 (6)	-0.0033 (6)
03	0.0309 (7)	0.0511 (11)	0.0329 (8)	0.0049 (7)	0.0072 (6)	-0.0131 (7)
C1	0.0293 (9)	0.0319 (11)	0.0229 (9)	0.0079 (8)	-0.0007 (7)	-0.0030(7)
C2	0.0272 (9)	0.0315 (11)	0.0228 (9)	0.0105 (8)	-0.0028 (7)	-0.0035 (7)
C3	0.0295 (9)	0.0333 (12)	0.0276 (9)	0.0086 (8)	-0.0002 (7)	-0.0019 (8)
C4	0.0314 (9)	0.0382 (12)	0.0255 (9)	0.0132 (8)	0.0027 (7)	0.0025 (8)
C5	0.0359 (10)	0.0439 (13)	0.0230 (9)	0.0166 (9)	-0.0016 (8)	-0.0055 (8)
C6	0.0328 (10)	0.0336 (12)	0.0288 (10)	0.0137 (8)	-0.0049 (8)	-0.0061 (8)
C7	0.0295 (9)	0.0304 (11)	0.0253 (9)	0.0100 (8)	-0.0033 (7)	-0.0012 (8)
C8	0.0317 (9)	0.0304 (11)	0.0271 (9)	0.0100 (8)	-0.0012 (7)	-0.0028 (8)
С9	0.0484 (12)	0.0394 (13)	0.0332 (11)	0.0111 (10)	-0.0072 (9)	-0.0118 (9)
C10	0.0409 (11)	0.0353 (13)	0.0343 (11)	0.0029 (9)	0.0052 (9)	-0.0013 (9)
C11	0.0283 (9)	0.0390 (11)	0.0174 (8)	0.0115 (8)	0.0025 (7)	-0.0011 (7)
C12	0.0287 (9)	0.0419 (13)	0.0239 (9)	0.0067 (8)	0.0044 (7)	-0.0019 (8)
C13	0.0285 (10)	0.0651 (16)	0.0235 (9)	0.0108 (10)	0.0057 (8)	-0.0055 (10)
C14	0.0348 (11)	0.0774 (19)	0.0253 (10)	0.0247 (12)	0.0005 (8)	0.0031 (11)
C15	0.0542 (13)	0.0508 (15)	0.0275 (10)	0.0248 (12)	0.0033 (10)	0.0101 (10)
C16	0.0405 (11)	0.0430 (13)	0.0266 (9)	0.0113 (9)	0.0050 (8)	0.0036 (9)
C17	0.0263 (10)	0.086 (2)	0.0482 (14)	0.0016 (12)	0.0042 (9)	-0.0118 (14)

Geometric parameters (Å, °)

Br1—C4	1.903 (2)	С9—Н9А	0.9600
Br1-O2 ⁱ	3.3350 (16)	С9—Н9В	0.9600
S1—O2	1.4341 (17)	С9—Н9С	0.9600
S1—O3	1.4400 (15)	C10—H10A	0.9600
S1—C1	1.735 (2)	C10—H10B	0.9600
S1—C11	1.7687 (19)	C10—H10C	0.9600
O1—C8	1.368 (2)	C11—C12	1.381 (3)
O1—C7	1.379 (3)	C11—C16	1.383 (3)
C1—C8	1.358 (3)	C12—C13	1.398 (3)
C1—C2	1.441 (3)	C12—H12	0.9300
C2—C7	1.387 (3)	C13—C14	1.382 (4)
C2—C3	1.391 (3)	C13—C17	1.510 (4)
C3—C4	1.381 (3)	C14—C15	1.379 (4)
С3—Н3	0.9300	C14—H14	0.9300
C4—C5	1.394 (3)	C15—C16	1.385 (3)
C5—C6	1.392 (3)	C15—H15	0.9300

С5—Н5	0.9300	C16—H16	0.9300
C6—C7	1.385 (3)	C17—H17A	0.9600
C6—C9	1.495 (3)	C17—H17B	0.9600
C8—C10	1.481 (3)	C17—H17C	0.9600
C4—Br1—O2 ⁱ	168.67 (6)	Н9А—С9—Н9В	109.5
O2—S1—O3	118.89 (9)	С6—С9—Н9С	109.5
O2—S1—C1	108.10 (9)	Н9А—С9—Н9С	109.5
O3—S1—C1	108.30 (10)	H9B—C9—H9C	109.5
O2—S1—C11	107.76 (10)	C8—C10—H10A	109.5
O3—S1—C11	107.20 (9)	C8—C10—H10B	109.5
C1—S1—C11	105.88 (9)	H10A—C10—H10B	109.5
C8-01-C7	106.91 (16)	C8—C10—H10C	109.5
C8-C1-C2	107.93 (17)	H10A—C10—H10C	109.5
C8-C1-S1	126.84 (15)	H10B—C10—H10C	109.5
$C_{2} = C_{1} = S_{1}$	125.22 (16)	C_{12} C_{11} C_{16}	122,29 (19)
$C_{7} - C_{2} - C_{3}$	119 64 (18)	C12 - C11 - S1	117.95 (16)
C7 - C2 - C1	104 47 (18)	C16-C11-S1	119 54 (17)
$C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	135 88 (19)	C_{11} C_{12} C_{13}	119.5+(17) 119.5(2)
C_{4} C_{3} C_{2}	115.00(1)	$C_{11} = C_{12} = C_{13}$	119.5 (2)
$C_{4} = C_{3} = C_{2}$	113.9 (2)	C13 - C12 - H12	120.2
$C_1 = C_2 = H_2$	122.0	$C_{13} - C_{12} - III_2$	120.2 118 1 (2)
$C_2 = C_3 = \Pi_3$	122.0 122.7(2)	C14 - C13 - C12	110.1(2)
$C_{3} - C_{4} - C_{3}$	123.7(2)	C14 - C13 - C17	122.1(2)
C_{3} C_{4} B_{1}	118.20(17) 117.00(15)	C12 - C13 - C17	119.8(2)
C3-C4-BF1	117.99 (15)	C15 - C14 - C13	121.8 (2)
$C_{0} = C_{0} = C_{4}$	120.94 (18)	C15—C14—H14	119.1
С6—С5—Н5	119.5	C13—C14—H14	119.1
C4—C5—H5	119.5	C14—C15—C16	120.5 (2)
C/C6C5	114.4 (2)	C14—C15—H15	119.8
С7—С6—С9	122.0 (2)	C16—C15—H15	119.8
C5—C6—C9	123.63 (19)	C11—C16—C15	117.8 (2)
O1—C7—C6	124.08 (19)	C11—C16—H16	121.1
O1—C7—C2	110.57 (16)	C15—C16—H16	121.1
C6—C7—C2	125.3 (2)	C13—C17—H17A	109.5
C1—C8—O1	110.12 (17)	C13—C17—H17B	109.5
C1—C8—C10	135.10 (19)	H17A—C17—H17B	109.5
O1—C8—C10	114.78 (19)	C13—C17—H17C	109.5
С6—С9—Н9А	109.5	H17A—C17—H17C	109.5
С6—С9—Н9В	109.5	H17B—C17—H17C	109.5
O2—S1—C1—C8	-149.32 (17)	C3—C2—C7—O1	179.96 (16)
O3—S1—C1—C8	-19.3 (2)	C1—C2—C7—O1	0.1 (2)
C11—S1—C1—C8	95.42 (18)	C3—C2—C7—C6	2.0 (3)
O2—S1—C1—C2	32.05 (18)	C1—C2—C7—C6	-177.80 (18)
O3—S1—C1—C2	162.10 (16)	C2-C1-C8-O1	0.2 (2)
C11—S1—C1—C2	-83.20 (18)	S1-C1-C8-O1	-178.57 (14)
C8—C1—C2—C7	-0.2 (2)	C2-C1-C8-C10	-179.5 (2)
S1—C1—C2—C7	178.62 (14)	S1-C1-C8-C10	1.7 (3)

C8—C1—C2—C3	180.0 (2)	C7—O1—C8—C1	-0.2 (2)
S1—C1—C2—C3	-1.2 (3)	C7—O1—C8—C10	179.60 (16)
C7—C2—C3—C4	-1.2 (3)	O2—S1—C11—C12	12.15 (17)
C1—C2—C3—C4	178.6 (2)	O3—S1—C11—C12	-116.91 (15)
C2—C3—C4—C5	0.1 (3)	C1—S1—C11—C12	127.64 (16)
C2-C3-C4-Br1	-179.53 (13)	O2—S1—C11—C16	-173.10 (15)
O2 ⁱ —Br1—C4—C3	58.1 (4)	O3—S1—C11—C16	57.84 (18)
O2 ⁱ —Br1—C4—C5	-121.5 (3)	C1—S1—C11—C16	-57.62 (18)
C3—C4—C5—C6	0.4 (3)	C16—C11—C12—C13	-1.1 (3)
Br1-C4-C5-C6	-179.97 (15)	S1—C11—C12—C13	173.54 (15)
C4—C5—C6—C7	0.2 (3)	C11—C12—C13—C14	1.2 (3)
C4—C5—C6—C9	-178.61 (19)	C11—C12—C13—C17	-178.06 (19)
C8—O1—C7—C6	177.97 (18)	C12—C13—C14—C15	-0.6 (3)
C8—O1—C7—C2	0.0 (2)	C17—C13—C14—C15	178.7 (2)
C5—C6—C7—O1	-179.12 (17)	C13—C14—C15—C16	-0.3 (3)
C9—C6—C7—O1	-0.3 (3)	C12-C11-C16-C15	0.2 (3)
C5—C6—C7—C2	-1.5 (3)	S1—C11—C16—C15	-174.34 (15)
C9—C6—C7—C2	177.39 (19)	C14-C15-C16-C11	0.5 (3)

Symmetry code: (i) -x+1, -y+2, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
С10—Н10В…О2 ^{іі}	0.96	2.54	3.338 (3)	141
С17—Н17С…ОЗііі	0.96	2.41	3.357 (3)	170

Symmetry codes: (ii) *x*, *y*–1, *z*; (iii) *x*+1, *y*, *z*.