organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4,4'-{[1,2-Phenylenebis(methylene)]bis-(oxy)}dibenzoic acid dimethylformamide disolvate

Zhen-Zhe Qiu, Bi Jing, Qiu-Xia Li and Ai-Xin Zhu*

Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650050, People's Republic of China Correspondence e-mail: zaxchem@126.com

Received 24 March 2014: accepted 27 March 2014

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.132; data-to-parameter ratio = 17.4.

In the title solvate, $C_{22}H_{18}O_6 \cdot 2C_3H_7NO_7$ the complete dicarboxylic acid molecule is generated by a crystallographic twofold axis, which bisects the central benzene ring and one *N*,*N*-dimethylformamide solvent molecule. The dihedral angle between the central and pendant benzene rings is $54.53 (5)^{\circ}$ while that between the pendant rings is $45.44(5)^{\circ}$. In the crystal, the acid molecules are linked to the solvent molecules *via* $O-H \cdots O$ and weak $C-H \cdots O$ hydrogen bonds. Further weak C-H···O interactions link adjacent acid molecules into a three-dimensional network.

Related literature

For multicarboxylic acid ligands and derivatives used in the synthesis of porous metal-organic frameworks, see: Eddaoudi et al. (2002); Eubank et al. (2011); Zhang et al. (2012). For structures constructed by the acid molecule of the title compound, see: Cao et al. (2009a); Hu et al. (2013). For $[Zn(1,2-BAB)(4,4'-bipy)_{1/2}]_n$ (H₂BAB =4,4'-{[1,2-phenylenebis(methylene)]bis(oxy)}dibenzoic acid), see Cao et al. (2009a) and for $[Cd(1,2-BAB)_2(phen)_2]_n$, see: Cao et al. (2009b). For the synthesis of the title compound, see: Cao *et al.* (2009*a*); Rajakumar et al. (2009).

V = 2715.0 (9) Å³

Mo $K\alpha$ radiation

 $0.37 \times 0.26 \times 0.21 \text{ mm}$

12992 measured reflections

3112 independent reflections

2522 reflections with $I > 2\sigma(I)$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.023$

Z = 4

CrossMark

Experimental

Crystal data C22H18O6·2C3H7NO $M_r = 524.56$ Monoclinic, C2/c a = 12.568 (3) Å b = 11.081 (2) Å c = 19.688 (4) Å $\beta = 98.04 \ (3)^{\circ}$

Data collection

Rigaku R-AXIS RAPID IP diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\rm min}=0.783,\;T_{\rm max}=1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	H atoms treated by a mixture of
$wR(F^2) = 0.132$	independent and constrained
S = 1.08	refinement
3112 reflections	$\Delta \rho_{\rm max} = 0.20 \text{ e} \text{ Å}^{-3}$
179 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1A\cdots O4$	0.90 (2)	1.71 (2)	2.6064 (14)	174 (2)
$C3 - H3A \cdots O1^{i}$ $C8 - H8B \cdots O2^{ii}$	0.93 0.97	2.55 2.58	3.3714 (17) 3.4920 (18)	147 157
$C14-H14A\cdots O2$	0.93	2.50	3.2110 (19)	134

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $x + \frac{1}{2}$, $y - \frac{1}{2}$, z.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors thank the Science and Technology Department (2010ZC070, 2011FZ080 and 2012FB141) of Yunnan Province for supporting this work.

Supporting information for this paper is available from the IUCr electronic archives (Reference: BG2524).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Cao, X.-Y., Yao, Y.-G., Batten, S. R., Ma, E., Qin, Y.-Y., Zhang, J., Zhang, R.-B. & Cheng, J.-K. (2009a). CrystEngComm, 11, 1030–1036.

Cao, X.-Y., Yao, Y.-G., Qin, Y.-Y., Lin, Q.-P., Li, Z.-J., Cheng, J.-K. & Zhang, R.-B. (2009b). CrystEngComm, **11**, 1815–1818.

- Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). *Science*, **295**, 469–472.
- Eubank, J. F., Mouttaki, H., Cairns, A. J., Belmabkhout, Y., Wojtas, L., Luebke, R., Alkordi, M. & Eddaoudi, M. (2011). J. Am. Chem. Soc. 133, 14204– 14207.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Hu, F.-L., Wu, W., Liang, P., Gu, Y.-Q., Zhu, L.-G., Wei, H. & Lang, J.-P. (2013). *Cryst. Growth Des.* 13, 5050–5061.
- Rajakumar, P., Sekar, K., Shanmugaiah, V. & Mathivanan, N. (2009). Eur. J. Med. Chem. 44, 3040–3045.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhang, Y.-B., Zhou, H.-L., Lin, R.-B., Zhang, C., Lin, J.-B., Zhang, J.-P. & Chen, X.-M. (2012). Nat. Commun. 3, 642.

supporting information

Acta Cryst. (2014). E70, o534-o535 [doi:10.1107/S1600536814006795]

4,4'-{[1,2-Phenylenebis(methylene)]bis(oxy)}dibenzoic acid dimethylformamide disolvate

Zhen-Zhe Qiu, Bi Jing, Qiu-Xia Li and Ai-Xin Zhu

S1. Comment

In the past few years, multicarboxylic acids and their derivatives have attracted increasing attention as an important class of ligands used for the synthesis of porous metal organic framework compounds (Eddaoudi *et al.* 2002; Eubank *et al.* 2011; Zhang *et al.* 2012). The acid molecule in the title compound, as a conformationally flexible V-shaped long bicarboxylate ligand, has been already used to synthesize entangled frameworks having both polyrotaxane and polycatenane characteristics that also achieve different topological structures in the entangled system (Cao *et al.* 2009*a*; Hu *et al.* 2013). Although there are crystal structure reports in the literature regarding the title multicarboxylic acid, no crystallographic study has been already performed on the ligand itself.

The crystal structure of the title compound is composed of 4,4'-(1,2-phenylenebis(methylene))bis(oxy)dibenzoic (dicarboxylic) acid and *N*,*N*-dimethylformamide and has monoclinic symmetry (space group: C2/c). The acid molecule adopts an *E* configuration, and contains a crystallographic *C*2 axis passing through the central benzene group (Fig. 1). The dihedral angles between the benzene rings are 45.44 (5)° and 54.53 (5)°, values which are significantly smaller than those in metal organic frameworks containing the acid molecules with an E configuration (where the acid molecule loses both protons from the carboxylic groups); for example, $[Zn(1,2-BAB)(4,4'-bipy)_{1/2}]_n (4,4'-bipy = 4,4'-Bipyridine)$ and $[Cd(1,2-BAB)_2(phen)_2]_n$ (phen = 1,10-phenanthroline) the dihedral angles range from 58.2 (1)° to 70.9 (1)° and from 65.6 (1)° to 84.7 (1)°, respectively (Cao *et al.* 2009*a*,*b*).

In the crystal, the acid molecule are linked to the solvent molecules by a strong O—HO and a weak C—HO hydrogen bond [Table 1 (entries 1 and 4) and Fig. 1]. Besides, weak intermolecular C—H…O interactions link the adjacent acid molecules into a three-dimensional network [Table 1 (entries 2 and 3) and Fig 2].

S2. Experimental

The ligand 4,4'-(1,2-phenylenebis(methylene))bis(oxy)dibenzoic acid was synthesized according to the literature method (Cao *et al.* 2009*a*; Rajakumar *et al.* 2009). A mixture of 4,4'-(1,2-phenylenebis(methylene))bis(oxy)dibenzoic acid (37.8 mg, 0.1 mmol) and DMF (4 ml) was placed in a Teflon-lined stainless steel vessel (15 ml) and heated at 368 k for 48 h and then cooled to room temperature at a rate of 5 K h-1. The resulting colorless solution slowly evaporated in air for over two weeks and colorless block crystals of the title compound suitable for X-ray diffraction were obtained.

S3. Refinement

The positions of the hydroxyl hydrogen H1A could be obtained from the difference electron-density map, and the other H atoms were placed in idealized positions (O—H = 0.82 Å and C—H = 0.93–0.97 Å) and refined as riding atoms with $U_{iso}(H) = 1.2U_{eq}(C, N)$ and $U_{iso}(H) = 1.5U_{eq}(O, C_{methyl})$.

Figure 1

ORTEP view of the title compound drawn with 30% probability displacement ellipsoids for the non-H atoms. The intermolecular interactions between the acid and solvent molecules are shown as dashed lines. Symmetry code (A): 1-x, y, -z+1/2.

Figure 2

Packing of the acid molecules in the title compound viewed along the *b*-axis showing the hydrogen bonding interactions with dashed lines. H atoms not involved in H-bonding have been omitted for clarity.

4,4'-{[1,2-Phenylenebis(methylene)]bis(oxy)}dibenzoic acid dimethylformamide disolvate

Crystal data	
$C_{22}H_{18}O_{6} \cdot 2C_{3}H_{7}NO$	Z = 4
$M_r = 524.56$	F(000) = 1112
Monoclinic, $C2/c$	$D_{\rm x} = 1.283 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -C 2yc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 12.568 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 11.081 (2) Å	T = 293 K
c = 19.688 (4) Å	Block, colorless
$\beta = 98.04 \ (3)^{\circ}$	$0.37 \times 0.26 \times 0.21 \text{ mm}$
$V = 2715.0 (9) Å^3$	
Data collection	
Rigaku R-AXIS RAPID IP	Absorption correction: multi-scan
diffractometer	(ABSCOR; Higashi, 1995)
Radiation source: fine-focus sealed tube	$T_{\min} = 0.783, \ T_{\max} = 1.000$
Graphite monochromator	12992 measured reflections
ω scans	3112 independent reflections

2522 reflections with $I > 2\sigma(I)$	$h = -16 \rightarrow 16$
$R_{\rm int} = 0.023$	$k = -14 \rightarrow 14$
$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 3.1^{\circ}$	$l = -25 \rightarrow 24$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H atoms treated by a mixture of independent
$wR(F^2) = 0.132$	and constrained refinement
S = 1.08	$w = 1/[\sigma^2(F_o^2) + (0.0749P)^2 + 0.5159P]$
3112 reflections	where $P = (F_0^2 + 2F_c^2)/3$
179 parameters	$(\Delta/\sigma)_{\rm max} = 0.004$
0 restraints	$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008), Fc*=kFc[1+0.001xFc $^{2}\lambda^{3}/\sin(2\theta)$] ^{-1/4}
map	Extinction coefficient: 0.0067 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.40156 (8)	0.62429 (9)	0.44602 (5)	0.0603 (3)	
H1A	0.3863 (16)	0.701 (2)	0.4567 (11)	0.097 (6)*	
O2	0.25800 (8)	0.64860 (9)	0.36718 (5)	0.0634 (3)	
03	0.40553 (7)	0.12257 (8)	0.29461 (5)	0.0542 (3)	
O4	0.37129 (9)	0.84725 (9)	0.48090 (5)	0.0697 (3)	
N1	0.27647 (9)	1.01724 (11)	0.45297 (6)	0.0612 (3)	
C1	0.33217 (9)	0.58739 (11)	0.39294 (6)	0.0454 (3)	
C2	0.35606 (9)	0.46508 (10)	0.36834 (6)	0.0426 (3)	
C3	0.43792 (10)	0.39435 (11)	0.40211 (6)	0.0466 (3)	
H3A	0.4797	0.4243	0.4412	0.056*	
C4	0.45868 (10)	0.27970 (11)	0.37878 (6)	0.0477 (3)	
H4A	0.5140	0.2333	0.4017	0.057*	
C5	0.39532 (9)	0.23540 (10)	0.32053 (6)	0.0442 (3)	
C6	0.31335 (10)	0.30568 (12)	0.28570 (7)	0.0523 (3)	
H6A	0.2716	0.2758	0.2466	0.063*	
C7	0.29425 (10)	0.41968 (12)	0.30942 (6)	0.0497 (3)	
H7A	0.2398	0.4667	0.2860	0.060*	
C8	0.49311 (10)	0.04951 (11)	0.32584 (6)	0.0477 (3)	
H8A	0.4838	0.0308	0.3728	0.057*	
H8B	0.5604	0.0927	0.3264	0.057*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C9	0.49515 (9)	-0.06479 (10)	0.28507 (6)	0.0431 (3)
C10	0.49017 (10)	-0.17419 (11)	0.31849 (7)	0.0522 (3)
H10A	0.4834	-0.1747	0.3649	0.063*
C11	0.49509 (11)	-0.28268 (11)	0.28426 (7)	0.0574 (3)
H11A	0.4917	-0.3552	0.3076	0.069*
C12	0.33915 (15)	1.08831 (15)	0.50625 (9)	0.0759 (5)
H12A	0.4015	1.0434	0.5255	0.114*
H12B	0.2962	1.1064	0.5416	0.114*
H12C	0.3613	1.1622	0.4869	0.114*
C13	0.18927 (15)	1.07654 (18)	0.40971 (12)	0.0903 (6)
H13A	0.1600	1.0227	0.3737	0.135*
H13B	0.2158	1.1479	0.3901	0.135*
H13C	0.1342	1.0983	0.4367	0.135*
C14	0.29748 (12)	0.90176 (14)	0.44604 (8)	0.0617 (4)
H14A	0.2537	0.8585	0.4126	0.074*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0695 (6)	0.0499 (5)	0.0549 (5)	0.0117 (4)	-0.0139 (4)	-0.0105 (4)
O2	0.0590 (6)	0.0563 (5)	0.0690 (6)	0.0145 (4)	-0.0118 (5)	-0.0082 (4)
O3	0.0496 (5)	0.0479 (5)	0.0597 (5)	0.0077 (4)	-0.0111 (4)	-0.0126 (4)
O4	0.0791 (7)	0.0580 (6)	0.0679 (6)	0.0169 (5)	-0.0038 (5)	-0.0100 (5)
N1	0.0563 (7)	0.0543 (6)	0.0735 (7)	0.0069 (5)	0.0113 (6)	0.0046 (5)
C1	0.0462 (6)	0.0455 (6)	0.0433 (6)	0.0008 (5)	0.0020 (5)	0.0015 (5)
C2	0.0419 (6)	0.0432 (5)	0.0417 (5)	-0.0010 (4)	0.0029 (4)	0.0006 (4)
C3	0.0496 (6)	0.0462 (6)	0.0405 (5)	-0.0010 (5)	-0.0055 (5)	-0.0021 (5)
C4	0.0472 (6)	0.0463 (6)	0.0457 (6)	0.0047 (5)	-0.0069 (5)	0.0002 (5)
C5	0.0422 (6)	0.0433 (6)	0.0456 (6)	-0.0002 (4)	0.0012 (5)	-0.0034 (5)
C6	0.0469 (6)	0.0544 (7)	0.0505 (6)	0.0023 (5)	-0.0108 (5)	-0.0082 (5)
C7	0.0440 (6)	0.0508 (6)	0.0504 (6)	0.0060 (5)	-0.0077 (5)	-0.0013 (5)
C8	0.0475 (6)	0.0476 (6)	0.0457 (6)	0.0048 (5)	-0.0016 (5)	-0.0023 (5)
C9	0.0368 (5)	0.0436 (6)	0.0477 (6)	0.0012 (4)	0.0015 (4)	-0.0005 (4)
C10	0.0530 (7)	0.0503 (6)	0.0535 (6)	0.0002 (5)	0.0078 (5)	0.0066 (5)
C11	0.0549 (7)	0.0422 (6)	0.0753 (8)	-0.0006 (5)	0.0102 (6)	0.0089 (6)
C12	0.0867 (11)	0.0567 (8)	0.0852 (11)	-0.0003 (8)	0.0155 (9)	-0.0087 (8)
C13	0.0650 (10)	0.0815 (11)	0.1215 (16)	0.0154 (9)	0.0034 (10)	0.0215 (11)
C14	0.0602 (8)	0.0604 (8)	0.0635 (8)	0.0056 (6)	0.0056 (6)	-0.0060 (6)

Geometric parameters (Å, °)

01—C1	1.3285 (15)	C6—H6A	0.9300	
O1—H1A	0.90 (2)	С7—Н7А	0.9300	
O2—C1	1.2059 (14)	C8—C9	1.5016 (16)	
O3—C5	1.3633 (14)	C8—H8A	0.9700	
O3—C8	1.4338 (14)	C8—H8B	0.9700	
O4—C14	1.2323 (17)	C9—C10	1.3848 (16)	
N1—C14	1.3175 (19)	C9—C9 ⁱ	1.403 (2)	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C13	1.448 (2)	C10—C11	1.3837 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C12	1.453 (2)	C10—H10A	0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—C2	1.4841 (16)	C11—C11 ⁱ	1.372 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3	1.3868 (16)	C11—H11A	0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C7	1.3966 (16)	C12—H12A	0.9600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4	1.3879 (17)	C12—H12B	0.9600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—НЗА	0.9300	C12—H12C	0.9600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5	1.3911 (16)	C13—H13A	0.9600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—H4A	0.9300	C13—H13B	0.9600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6	1.3929 (16)	C13—H13C	0.9600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C7	1.3794 (18)	C14—H14A	0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1 O1 H1A	109.6 (13)	C0 C8 H8A	110.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{1} = 0_{1} = 1_{1}$	117 65 (9)	C_{3} C_{8} H_{8B}	110.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{14} = N_{1} = C_{13}$	117.03(9) 121.73(14)	C_{0} C_{8} H8B	110.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14 N1 $C12$	121.73(14) 120.34(13)	H_{2} C_{3} H_{2} C_{3} H_{3} H_{3} C_{3} H_{3} H_{3	108.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13 N1 C12	120.34(13) 117.01(14)	$\begin{array}{ccc} 110 & C_{0} & C_{0}^{i} \end{array}$	118 01 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$02 \ 01 \ 01$	117.91(14) 122.70(11)	C_{10} C_{9} C_{8}	118.91(7) 118.63(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02-C1-C2	122.79(11) 123.80(11)	C_{10}^{i}	110.05(11) 122.44(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02 - 01 - 02	123.00(11) 113.41(10)	$C_{3} - C_{3} - C_{3}$	122.44(7) 121.41(12)
C3C2C1110.5 (11)C11C10110.5 (10)C3C2C1122.01 (10)C9C10119.3C7C2121.32 (10)C11 ⁱ C11110.4 (10)C4C3C2121.32 (10)C11 ⁱ C11111.4 (10)C4C3C2121.32 (10)C11 ⁱ C11111.4 (10)C4C3H3A119.3C10C11111.4 (10)C2C3H3A119.3 (10)N1C12H12AC2C3H3A119.3 (10)N1C12H12BC3C4C4C4C10H12A109.5 (10)C3C4H4A120.5 (10)H12AH12B109.5 (10)C3C4H4A120.5 (10)H12AH12C109.5 (10)C3C5C4H4A120.5 (10)H12AH12BC3C5C4H14AH12AH12BH12AC3C5C6H15.48 (10)H12BH12AH13AC4C5H19.81 (10)N1H12AH13BH13AC5C6C6H19.81 (10)N1H13AH13AC5C6H6AH10.1 (10)H13AH13AH13AC5C6C7H13BH13CH13BH13AC5C6H19.81 (10)N1H13AH13CH13AC5C6H6AH10.1 (10)H13AH13CH13CC5C6 </td <td>C_{3} C_{2} C_{7}</td> <td>118 94 (11)</td> <td>$C_{11} - C_{10} - H_{10A}$</td> <td>1193</td>	C_{3} C_{2} C_{7}	118 94 (11)	$C_{11} - C_{10} - H_{10A}$	1193
C3-C2-C1122.01 (10)C3-C10-C10-C10119.3C7-C2-C1119.05 (10)C11 i -C11-C10119.68 (8)C4-C3-C2121.32 (10)C11 i -C11-H11A120.2C4-C3-H3A119.3C10-C11-H11A120.2C2-C3-H3A119.3N1-C12-H12A109.5C3-C4-C5118.90 (10)N1-C12-H12B109.5C3-C4-H4A120.5H12A-C12-H12B109.5C3-C4-H4A120.5N1-C12-H12C109.5C3-C5-C4124.01 (10)H12A-C12-H12C109.5O3-C5-C6115.48 (10)H12B-C12-H12C109.5C4-C5-C6120.49 (11)N1-C13-H13A109.5C7-C6-C5119.81 (10)N1-C13-H13B109.5C7-C6-H6A120.1H13A-C13-H13B109.5C5-C6-H6A120.1N1-C13-H13C109.5C6-C7-C2120.54 (10)H13A-C13-H13C109.5C6-C7-H7A119.7H13B-C13-H13C109.5C2-C7-H7A119.7O4-C14-N1124.37 (14)O3-C8-C9108.45 (9)O4-C14-H14A117.8	C_{3} C_{2} C_{1}	122.01(10)	C_{1} C_{10} H_{10A}	119.3
$C4-C2-C1$ $117.05(10)$ $C11-C11-C10$ $117.05(0)$ $C4-C3-C2$ $121.32(10)$ $C11^{1}-C11-H11A$ 120.2 $C4-C3-H3A$ 119.3 $C10-C11-H11A$ 120.2 $C2-C3-H3A$ 119.3 $N1-C12-H12A$ 109.5 $C3-C4-C5$ $118.90(10)$ $N1-C12-H12B$ 109.5 $C3-C4-H4A$ 120.5 $H12A-C12-H12B$ 109.5 $C3-C4-H4A$ 120.5 $N1-C12-H12C$ 109.5 $C3-C4-H4A$ 120.5 $N1-C12-H12C$ 109.5 $C3-C5-C4$ $124.01(10)$ $H12A-C12-H12C$ 109.5 $C3-C5-C6$ $115.48(10)$ $H12B-C12-H12C$ 109.5 $C4-C5-C6$ $120.49(11)$ $N1-C13-H13A$ 109.5 $C7-C6-C5$ $119.81(10)$ $N1-C13-H13B$ 109.5 $C7-C6-H6A$ 120.1 $H13A-C13-H13B$ 109.5 $C5-C6-H6A$ 120.1 $N1-C13-H13C$ 109.5 $C5-C6-H6A$ 120.1 $N1-C13-H13C$ 109.5 $C6-C7-C2$ $120.54(10)$ $H13A-C13-H13C$ 109.5 $C6-C7-H7A$ 119.7 $04-C14-N1$ $124.37(14)$ $O3-C8-C9$ $108.45(9)$ $O4-C14-H14A$ 117.8	C_{7} C_{2} C_{1}	122.01(10) 119.05(10)	C_{11}^{i} C_{11} C_{10}^{i}	119.5
C4 $-C3 - H3A$ 119.3C10 $-C11 - H11A$ 120.2C2 $-C3 - H3A$ 119.3N1 $-C12 - H12A$ 109.5C3 $-C4 - C5$ 118.90 (10)N1 $-C12 - H12B$ 109.5C3 $-C4 - H4A$ 120.5H12A $-C12 - H12B$ 109.5C5 $-C4 - H4A$ 120.5N1 $-C12 - H12C$ 109.5O3 $-C5 - C4$ 124.01 (10)H12A $-C12 - H12C$ 109.5O3 $-C5 - C6$ 115.48 (10)H12B $-C12 - H12C$ 109.5C4 $-C5 - C6$ 120.49 (11)N1 $-C13 - H13A$ 109.5C7 $-C6 - C5$ 119.81 (10)N1 $-C13 - H13B$ 109.5C7 $-C6 - H6A$ 120.1H13A $-C13 - H13B$ 109.5C5 $-C6 - H6A$ 120.1N1 $-C13 - H13C$ 109.5C5 $-C6 - H6A$ 120.1N1 $-C13 - H13C$ 109.5C6 $-C7 - C2$ 120.54 (10)H13A $-C13 - H13C$ 109.5C6 $-C7 - H7A$ 119.7H13B $-C13 - H13C$ 109.5C6 $-C7 - H7A$ 119.704 $-C14 - N1$ 124.37 (14)O3 $-C8 - C9$ 108.45 (9)04 $-C14 - H14A$ 117.8	$C_{4} - C_{3} - C_{2}^{2}$	121 32 (10)	$C11^{i}$ $C11$ $H11A$	120.2
C1C3C10C11T111T20.2C2-C3-H3A119.3N1-C12-H12A109.5C3-C4-C5118.90 (10)N1-C12-H12B109.5C3-C4-H4A120.5H12A-C12-H12B109.5C5-C4-H4A120.5N1-C12-H12C109.5O3-C5-C4124.01 (10)H12A-C12-H12C109.5O3-C5-C6115.48 (10)H12B-C12-H12C109.5C4-C5-C6120.49 (11)N1-C13-H13A109.5C7-C6-C5119.81 (10)N1-C13-H13B109.5C5-C6-H6A120.1H13A-C13-H13B109.5C5-C6-H6A120.1N1-C13-H13C109.5C6-C7-C2120.54 (10)H13A-C13-H13C109.5C6-C7-H7A119.7H13B-C13-H13C109.5C2-C7-H7A119.7O4-C14-N1124.37 (14)O3-C8-C9108.45 (9)O4-C14-H14A117.8	C4 - C3 - H3A	119.3	C10-C11-H11A	120.2
C2 C3 C4 C5 118.90 (10) N1 C12 H12.1 109.5 C3 C4 C5 118.90 (10) N1 C12 H12.B 109.5 C3 C4 H4A 120.5 H12A C12 H12B 109.5 C5 C4 H4A 120.5 N1 C12 H12C 109.5 O3 C5 C4 124.01 (10) H12A C12 H12C 109.5 O3 C5 C6 115.48 (10) H12B C12 H13A 109.5 C4 C5 C6 120.49 (11) N1 C13 H13A 109.5 C7 C6 C5 119.81 (10) N1 C13 H13B 109.5 C7 C6 H6A 120.1 H13A C13 H13B 109.5 C5 C6 H6A 120.1 N1 C13 H13C 109.5 C6 C7 H6A 120.1 N1 H13A H13C 109.5 C6 C7 H6A <t< td=""><td>$C_2 - C_3 - H_3 A$</td><td>119.3</td><td>N1 - C12 - H12A</td><td>109.5</td></t<>	$C_2 - C_3 - H_3 A$	119.3	N1 - C12 - H12A	109.5
C3C4H4A120.5H12AC12H12B109.5C5C4H4A120.5N1C12H12B109.5O3C5C4124.01 (10)H12AC12H12C109.5O3C5C6115.48 (10)H12BC12H12C109.5O3C5C6120.49 (11)N1C13H13A109.5C4C5C6120.49 (11)N1C13H13B109.5C7C6C5119.81 (10)N1C13H13B109.5C7C6H6A120.1H13A109.5C13H13C109.5C5C6H6A120.1N1C13H13C109.5C6C6C7C2120.54 (10)H13AH13C109.5C6C2C7H7A119.7H13BH13C109.5C14H13C109.5C3C8C8H00N1C14H14AH17.8C14H17.8	$C_3 - C_4 - C_5$	118 90 (10)	N1-C12-H12B	109.5
C5C4HAA120.5N1C12H12B109.5 $O3-C5-C4$ 124.01 (10)H12A-C12-H12C109.5 $O3-C5-C6$ 115.48 (10)H12B-C12-H12C109.5 $C4-C5-C6$ 120.49 (11)N1-C13-H13A109.5 $C7-C6-C5$ 119.81 (10)N1-C13-H13B109.5 $C7-C6-H6A$ 120.1H13A-C13-H13B109.5 $C5-C6-H6A$ 120.1N1-C13-H13C109.5 $C6-C7-C2$ 120.54 (10)H13A-C13-H13C109.5 $C6-C7-H7A$ 119.7H13B-C13-H13C109.5 $C2-C7-H7A$ 119.7O4-C14-N1124.37 (14) $O3-C8-C9$ 108.45 (9)O4-C14-H14A117.8 $O3-C8-H8A$ 110.0N1-C14-H14A117.8	$C_3 - C_4 - H_4 A$	120.5	H12A - C12 - H12B	109.5
O3-C5-C4 124.01 (10) H12A-C12-H12C 109.5 O3-C5-C6 115.48 (10) H12B-C12-H12C 109.5 C4-C5-C6 120.49 (11) N1-C13-H13A 109.5 C7-C6-C5 119.81 (10) N1-C13-H13B 109.5 C7-C6-H6A 120.1 H13A-C13-H13B 109.5 C5-C6-H6A 120.1 N1-C13-H13C 109.5 C6-C7-C2 120.54 (10) H13A-C13-H13C 109.5 C6-C7-H7A 119.7 H13B-C13-H13C 109.5 C2-C7-H7A 119.7 O4-C14-N1 124.37 (14) O3-C8-C9 108.45 (9) O4-C14-H14A 117.8 O3-C8-H8A 110.0 N1-C14-H14A 117.8	C5-C4-H4A	120.5	N1-C12-H12C	109.5
O3-C5-C6 115.48 (10) H12B-C12-H12C 109.5 C4-C5-C6 120.49 (11) N1-C13-H13A 109.5 C7-C6-C5 119.81 (10) N1-C13-H13B 109.5 C7-C6-H6A 120.1 H13A-C13-H13B 109.5 C5-C6-H6A 120.1 N1-C13-H13C 109.5 C6-C7-C2 120.54 (10) H13A-C13-H13C 109.5 C6-C7-H7A 119.7 H13B-C13-H13C 109.5 C2-C7-H7A 119.7 O4-C14-N1 124.37 (14) O3-C8-C9 108.45 (9) O4-C14-H14A 117.8 O3-C8-H8A 110.0 N1-C14-H14A 117.8	03-C5-C4	124.01 (10)	H12A-C12-H12C	109.5
C4—C5—C6 120.49 (11) N1—C13—H13A 109.5 C7—C6—C5 119.81 (10) N1—C13—H13B 109.5 C7—C6—H6A 120.1 H13A—C13—H13B 109.5 C5—C6—H6A 120.1 N1—C13—H13C 109.5 C6—C7—C2 120.54 (10) H13A—C13—H13C 109.5 C6—C7—H7A 119.7 H13B—C13—H13C 109.5 C2—C7—H7A 119.7 O4—C14—N1 124.37 (14) O3—C8—C9 108.45 (9) O4—C14—H14A 117.8 O3—C8—H8A 110.0 N1—C14—H14A 117.8	03-C5-C6	115.48 (10)	H12B— $C12$ — $H12C$	109.5
C7—C6—C5 119.81 (10) N1—C13—H13B 109.5 C7—C6—H6A 120.1 H13A—C13—H13B 109.5 C5—C6—H6A 120.1 N1—C13—H13B 109.5 C6—C7—C2 120.54 (10) H13A—C13—H13C 109.5 C6—C7—H7A 119.7 H13B—C13—H13C 109.5 C2—C7—H7A 119.7 O4—C14—N1 124.37 (14) O3—C8—C9 108.45 (9) O4—C14—H14A 117.8 O3—C8—H8A 110.0 N1—C14—H14A 117.8	C4—C5—C6	120.49 (11)	N1—C13—H13A	109.5
C7—C6—H6A 120.1 H13A—C13—H13B 109.5 C5—C6—H6A 120.1 N1—C13—H13C 109.5 C6—C7—C2 120.54 (10) H13A—C13—H13C 109.5 C6—C7—H7A 119.7 H13B—C13—H13C 109.5 C2—C7—H7A 119.7 O4—C14—N1 124.37 (14) O3—C8—C9 108.45 (9) O4—C14—H14A 117.8 O3—C8—H8A 110.0 N1—C14—H14A 117.8	C7—C6—C5	119.81 (10)	N1—C13—H13B	109.5
C5—C6—H6A 120.1 N1—C13—H13C 109.5 C6—C7—C2 120.54 (10) H13A—C13—H13C 109.5 C6—C7—H7A 119.7 H13B—C13—H13C 109.5 C2—C7—H7A 119.7 O4—C14—N1 124.37 (14) O3—C8—C9 108.45 (9) O4—C14—H14A 117.8 O3—C8—H8A 110.0 N1—C14—H14A 117.8	С7—С6—Н6А	120.1	H13A—C13—H13B	109.5
C6—C7—C2 120.54 (10) H13A—C13—H13C 109.5 C6—C7—H7A 119.7 H13B—C13—H13C 109.5 C2—C7—H7A 119.7 O4—C14—N1 124.37 (14) O3—C8—C9 108.45 (9) O4—C14—H14A 117.8 O3—C8—H8A 110.0 N1—C14—H14A 117.8	С5—С6—Н6А	120.1	N1—C13—H13C	109.5
C6—C7—H7A 119.7 H13B—C13—H13C 109.5 C2—C7—H7A 119.7 O4—C14—N1 124.37 (14) O3—C8—C9 108.45 (9) O4—C14—H14A 117.8 O3—C8—H8A 110.0 N1—C14—H14A 117.8	C6—C7—C2	120.54 (10)	H13A—C13—H13C	109.5
C2—C7—H7A 119.7 O4—C14—N1 124.37 (14) O3—C8—C9 108.45 (9) O4—C14—H14A 117.8 O3—C8—H8A 110.0 N1—C14—H14A 117.8	С6—С7—Н7А	119.7	H13B—C13—H13C	109.5
O3-C8-C9 108.45 (9) O4-C14-H14A 117.8 O3-C8-H8A 110.0 N1-C14-H14A 117.8	С2—С7—Н7А	119.7	O4—C14—N1	124.37 (14)
O3—C8—H8A 110.0 N1—C14—H14A 117.8	03—C8—C9	108.45 (9)	O4—C14—H14A	117.8
	O3—C8—H8A	110.0	N1—C14—H14A	117.8

Symmetry code: (i) -x+1, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
01—H1 <i>A</i> ···O4	0.90 (2)	1.71 (2)	2.6064 (14)	174 (2)
C3—H3A····O1 ⁱⁱ	0.93	2.55	3.3714 (17)	147

			supporting information		
C8—H8 <i>B</i> ···O2 ⁱⁱⁱ	0.97	2.58	3.4920 (18)	157	
C14—H14 <i>A</i> ···O2	0.93	2.50	3.2110 (19)	134	

Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) x+1/2, y-1/2, z.