Structure Reports

Online
ISSN 1600-5368

2,5-Dioxopyrrolidin-1-yl 2-methylprop-2-enoate

Wayne H. Pearson, ${ }^{\text {a }}$ Shirley Lin ${ }^{\text {a }}$ and Lyle Isaacs ${ }^{\text {b }}$
${ }^{\text {a Chemistry Department, United States Naval Academy, } 572 \mathrm{M} \text { Holloway Road, }}$ Annapolis, Maryland 21401, USA, and ${ }^{\mathbf{b}}$ Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
Correspondence e-mail: wpearson@usna.edu

Received 24 January 2014; accepted 6 March 2014

Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.036 ; w R$ factor $=0.085$; data-to-parameter ratio $=13.4$.

In the title compound, $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{4}$, the pyrrolidine ring (r.m.s. deviation $0.014 \AA$) is almost normal to the mean plane of the propenoate group (r.m.s deviation $0.028 \AA$), making a dihedral angle of $86.58(4)^{\circ}$. In the crystal, molecules are linked via pairs of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming inversion dimers which stack along the c axis.

Related literature

For synthetic procedures, see: Batz et al. (1972); Rathfon \& Tew (2008). For free radical polymerization and controlled free radical (ATRP) polymerizations to form homo- and copolymers, see: Batz et al. (1972); Rathfon \& Tew (2008). For a background on post-polymerization modification to create functional polymers, see: Gauthier et al. (2009). For a review of topochemical polymerization in crystals, see: Matsumoto (2003). For a disscussion addressing the conformation of methyl substituents on alkenes, see: Deslongchamps \& Deslongchamps (2011).

Experimental

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{4}$

$$
M_{r}=183.16
$$

Monoclinic, $P 2_{1} / c$
$a=9.6137$ (8) A
$b=10.9317$ (9) \AA
$c=8.4911$ (7) \AA
$\beta=102.522$ (2) ${ }^{\circ}$
$V=871.14(12) \AA^{3}$

Data collection

Bruker Kappa APEXII DUO diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)
$T_{\min }=0.884, T_{\max }=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.085$
$S=1.06$
1595 reflections
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
$0.24 \times 0.14 \times 0.07 \mathrm{~mm}$

20817 measured reflections 1595 independent reflections 1353 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.042$

119 parameters

H -atom parameters constrained
$\Delta \rho_{\max }=0.19 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.17 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\left(\mathrm{A},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O} 2^{\mathrm{i}}$	0.98	2.54	$3.393(2)$	145
Symmetry code: (i) $-x+1,-y+1,-z$.				

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

WHP and SL thank Joseph Urban for his assistance in interpreting the conformational nature of the methyl H atoms in this structure. SL thanks NSF CHE1110911 for sabbatical support through the ROA program. LI thanks the NSF (grant No. CHE-1110911) for financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZQ2217).

References

Batz, H., Franzmann, G. \& Ringsdorf, H. (1972). Angew. Chem. Int. Ed. Engl. 11, 1103-1104.
Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Deslongchamps, G. \& Deslongchamps, P. (2011). Org. Biomol. Chem. 9, 53215333.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Gauthier, M. A., Gibson, M. I. \& Klok, H. A. (2009). Angew. Chem. Int. Ed. 48, 48-58.
Matsumoto, A. (2003). Polym. J. 35(2), 93-121.
Rathfon, J. M. \& Tew, G. N. (2008). Polymer, 49, 1761-1769.
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2014). E70, o446 [doi:10.1107/S1600536814005170]

2,5-Dioxopyrrolidin-1-yl 2-methylprop-2-enoate

Wayne H. Pearson, Shirley Lin and Lyle Isaacs

S1. Comment

The title compound is a monomer for free radical polymerization (Batz et al., 1972) and controlled free radical (ATRP) polymerizations (Rathfon \& Tew, 2008) to form homo- and copolymers. After preliminary polymerization, these polymers serve as candidates to undergo post-polymerization modification to create functional polymers (Gauthier et al., 2009). A structure determination was undertaken to investigate the possibility of free radical, topochemical polymerization of this monomer while being exposed to X-ray radiation (Matsumoto, 2003). The molecular unit is shown in Figure 1. The crystal structure reveals that no polymerization has taken place. The asymmetric unit consists of a single monomer unit packed into a monoclinic cell with a volume of $871 \AA^{3}$. While analysis of the intermolecular contacts within the unit cell reveals a close contact of $3.487 \AA$ between the carbons of adjacent double bonds (C6 and C8), this contact occurs between a pair of adjacent molecules but is not maintained with additional molecules in order to achieve a favorable pathway for polymerization. Figure 2 shows the packing in the unit cell. The molecule is composed of two planar regions. Least-squares planar analysis reveals r.m.s. deviation from planarity for the pyrrolidine ring of $0.014 \AA$ and $0.028 \AA$ for the propenoate portion. The two planes are essentially normal to each other with an angle of 86.58 (4) degrees between least-squares planes. The conformation of the methyl H atoms is found to be syn to the vinylic proton. This is the preferred configuration by approximately $2 \mathrm{kcal} / \mathrm{mol}$ (Deslongchamps \& Deslongchamps, 2011).

S2. Experimental

Crystals of the title compound, $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{4}$, were grown unintentionally from slow evaporation of a solution of the compound in 1:4 ethyl acetate:hexanes at $0^{\circ} \mathrm{C}$.

S3. Refinement

Although all of the H -atoms were located in difference maps, H -atoms were placed at idealized positions and refined with a riding model having $U_{\text {iso }}(\mathrm{H})=1.2$ times $U_{\text {eq }}(\mathrm{C})$.

Figure 1
The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms

Figure 2

Unit cell view along the $+a$ axis showing the lack of proper stacking for polymerization to occur.

2,5-Dioxopyrrolidin-1-yl 2-methylprop-2-enoate

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{4}$
$M_{r}=183.16$
Monoclinic, $P 2_{1} / c$
$a=9.6137$ (8) \AA
$b=10.9317$ (9) \AA
$c=8.4911$ (7) \AA
$\beta=102.522$ (2) ${ }^{\circ}$
$V=871.14$ (12) \AA^{3}
$Z=4$
$F(000)=384$

Data collection

Bruker Kappa APEXII DUO

diffractometer
Radiation source: a micro-focus source with Xray optics for beam focussing and collimation Graphite monochromator
Detector resolution: 512 pixels mm^{-1}
combination of ω and phi scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)

$$
\begin{aligned}
& D_{\mathrm{x}}=1.397 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \quad D_{\mathrm{m}}=1.337(2) \mathrm{Mg} \mathrm{~m}^{-3} \\
& D_{\mathrm{m}} \text { measured by flotation } \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 8309 \text { reflections } \\
& \theta=2.2-25.3^{\circ} \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=173 \mathrm{~K} \\
& \text { Parallelpiped, colourless } \\
& 0.24 \times 0.14 \times 0.07 \mathrm{~mm} \\
& \\
& T_{\min }=0.884, T_{\max }=1.000 \\
& 20817 \text { measured reflections } \\
& 1595 \text { independent reflections } \\
& 1353 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.042 \\
& \theta_{\max }=25.3^{\circ}, \theta_{\min }=2.2^{\circ} \\
& h=-11 \rightarrow 11 \\
& k=-13 \rightarrow 13 \\
& l=-10 \rightarrow 10
\end{aligned}
$$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.085$
$S=1.06$
1595 reflections
119 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0278 P)^{2}+0.472 P\right]$
where $P=\left(F_{o}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.17 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) $e t c$. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger. CheckCIF detected one Alert level C stating that a large K value of 2.279 was detected in the Analysis of Variance. Examination of the SHELX output does reveal one large K value (1.967) for the $\mathrm{Fc} / \mathrm{Fc}$ (max of 0.000). Examination of the K values as a function of resolution shows no large K values from inf to $0.83 \AA$. Our conclusion is that the large K value results from very weak relections in the $0.80-0.60 \mathrm{~A}$ region and should have a neglibile effect upon the final structural results while the inclusion of the data would minimize termination effects in the calculation of electron density.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} / U_{\mathrm{eq}}$
C1	$0.82074(17)$	$0.05447(15)$	$0.09507(19)$	$0.0323(4)$
H1A	0.8376	0.0287	-0.0110	0.039^{*}
H1B	0.7895	-0.0176	0.1490	0.039^{*}
C2	$0.95609(18)$	$0.10915(15)$	$0.19895(19)$	$0.0326(4)$
H2A	0.9894	0.0594	0.2973	0.039^{*}
H2B	1.0329	0.1126	0.1380	0.039^{*}
C3	$0.91646(17)$	$0.23566(15)$	$0.24251(18)$	$0.0301(4)$
C4	$0.71008(17)$	$0.15357(14)$	$0.07441(18)$	$0.0283(4)$
C5	$0.72829(16)$	$0.44523(14)$	$0.06764(17)$	$0.0261(3)$
C6	$0.66346(16)$	$0.56484(14)$	$0.09024(18)$	$0.0270(4)$
C7	$0.6865(2)$	$0.66054(16)$	$-0.0276(2)$	$0.0420(4)$
H7A	0.6435	0.7377	-0.0037	0.063^{*}
H7B	0.6422	0.6342	-0.1373	0.063^{*}
H7C	0.7890	0.6723	-0.0188	0.063^{*}
C8	$0.59118(17)$	$0.58160(15)$	$0.20439(19)$	$0.0324(4)$
H8A	0.5800	0.5160	0.2740	0.039^{*}
H8B	0.5504	0.6592	0.2168	0.039^{*}
N1	$0.77548(14)$	$0.25062(11)$	$0.16597(15)$	$0.0289(3)$
O1	$0.98688(13)$	$0.31280(11)$	$0.32386(15)$	$0.0441(3)$
O2	$0.58963(13)$	$0.15423(11)$	$-0.00275(15)$	$0.0408(3)$
O3	$0.70452(12)$	$0.35922(9)$	$0.17939(13)$	$0.0319(3)$
O4	$0.79410(13)$	$0.42090(11)$	$-0.03174(14)$	$0.0402(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0440(10)$	$0.0246(8)$	$0.0283(8)$	$0.0082(7)$	$0.0076(7)$	$-0.0019(7)$
C2	$0.0377(9)$	$0.0288(9)$	$0.0328(8)$	$0.0099(7)$	$0.0108(7)$	$0.0026(7)$
C3	$0.0382(9)$	$0.0269(9)$	$0.0264(8)$	$0.0032(7)$	$0.0097(7)$	$0.0037(7)$
C4	$0.0385(9)$	$0.0254(8)$	$0.0234(7)$	$0.0048(7)$	$0.0118(7)$	$0.0025(6)$
C5	$0.0296(8)$	$0.0246(8)$	$0.0225(7)$	$0.0025(6)$	$0.0021(6)$	$0.0002(6)$
C6	$0.0273(8)$	$0.0210(8)$	$0.0281(8)$	$0.0019(6)$	$-0.0042(6)$	$-0.0022(6)$
C7	$0.0430(10)$	$0.0295(9)$	$0.0516(11)$	$0.0068(8)$	$0.0064(8)$	$0.0112(8)$
C8	$0.0356(9)$	$0.0258(8)$	$0.0321(8)$	$0.0068(7)$	$-0.0009(7)$	$-0.0079(7)$
N1	$0.0389(8)$	$0.0183(7)$	$0.0296(7)$	$0.0104(5)$	$0.0078(6)$	$0.0001(5)$
O1	$0.0487(8)$	$0.0335(7)$	$0.0470(7)$	$-0.0019(6)$	$0.0033(6)$	$-0.0072(6)$
O2	$0.0366(7)$	$0.0415(7)$	$0.0429(7)$	$0.0065(5)$	$0.0053(6)$	$-0.0038(6)$
O3	$0.0460(7)$	$0.0209(6)$	$0.0323(6)$	$0.0125(5)$	$0.0164(5)$	$0.0030(5)$
O4	$0.0551(8)$	$0.0342(7)$	$0.0370(7)$	$0.0107(6)$	$0.0226(6)$	$0.0050(5)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 4$	$1.502(2)$	$\mathrm{C} 5-\mathrm{O} 4$	$1.1894(18)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.527(2)$	$\mathrm{C} 5-\mathrm{O} 3$	$1.3895(18)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9900	$\mathrm{C} 5-\mathrm{C} 6$	$1.479(2)$

C1-H1B	0.9900	C6-C8	1.322 (2)
C2-C3	1.502 (2)	C6-C7	1.497 (2)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900	C7-H7A	0.9800
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9900	C7- H 7 B	0.9800
C3-O1	1.202 (2)	C7-H7C	0.9800
C3-N1	1.380 (2)	C8-H8A	0.9500
$\mathrm{C} 4-\mathrm{O} 2$	1.2005 (19)	C8-H8B	0.9500
C4-N1	1.383 (2)	$\mathrm{N} 1-\mathrm{O} 3$	1.3862 (15)
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 2$	106.17 (13)	O4-C5-C6	126.43 (14)
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.5	O3-C5-C6	111.92 (12)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.5	C8-C6-C5	121.40 (15)
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.5	C8-C6-C7	124.80 (15)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.5	C5-C6-C7	113.80 (14)
H1A-C1-H1B	108.7	C6-C7-H7A	109.5
C3-C2-C1	105.84 (13)	C6-C7-H7B	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.6	H7A-C7-H7B	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.6	C6-C7-H7C	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110.6	H7A-C7-H7C	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110.6	H7B-C7-H7C	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.7	C6-C8-H8A	120.0
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{N} 1$	124.12 (15)	C6-C8-H8B	120.0
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$	130.27 (15)	H8A-C8-H8B	120.0
N1-C3-C2	105.60 (13)	C3-N1-C4	117.01 (13)
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{N} 1$	124.70 (14)	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{O} 3$	120.89 (13)
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 1$	130.03 (15)	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{O} 3$	122.09 (13)
N1-C4-C1	105.28 (13)	N1-O3-C5	111.51 (11)
$\mathrm{O} 4-\mathrm{C} 5-\mathrm{O} 3$	121.65 (14)		
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	3.14 (16)	$\mathrm{O} 1-\mathrm{C} 3-\mathrm{N} 1-\mathrm{O} 3$	-0.2 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 1$	179.04 (17)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1-\mathrm{O} 3$	-179.34 (12)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	-1.86 (16)	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3$	-177.73 (15)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4-\mathrm{O} 2$	176.76 (16)	$\mathrm{C} 1-\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3$	2.28 (18)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4-\mathrm{N} 1$	-3.24 (16)	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{N} 1-\mathrm{O} 3$	1.3 (2)
O4-C5-C6-C8	179.43 (16)	$\mathrm{C} 1-\mathrm{C} 4-\mathrm{N} 1-\mathrm{O} 3$	-178.65 (12)
O3-C5-C6-C8	-0.8 (2)	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{O} 3-\mathrm{C} 5$	84.50 (16)
O4-C5-C6-C7	0.1 (2)	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{O} 3-\mathrm{C} 5$	-94.54 (16)
O3-C5-C6-C7	179.94 (13)	$\mathrm{O} 4-\mathrm{C} 5-\mathrm{O} 3-\mathrm{N} 1$	4.8 (2)
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4$	178.91 (15)	C6-C5-O3-N1	-175.03 (11)
C2-C3-N1-C4	-0.25 (18)		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7 — \mathrm{H} 7 A \cdots \mathrm{O} 2^{\mathrm{i}}$	0.98	2.54	$3.393(2)$	145

Symmetry code: (i) $-x+1,-y+1,-z$.

