

 $V = 3851.61 (17) \text{ Å}^3$

 $0.50 \times 0.42 \times 0.34 \text{ mm}$

59694 measured reflections

10997 independent reflections

10267 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation $\mu = 3.20 \text{ mm}^{-1}$

Z = 4

T = 100 K

 $R_{\rm int} = 0.029$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-{2,4,6-Tris(bromomethyl)-3,5-bis[(1,3dioxoisoindolin-2-vl)methvl]benzvl}isoindoline-1,3-dione toluene monosolvate

Niklas Koch, Wilhelm Seichter and Monika Mazik*

Institut für Organische Chemie, echnische Universität Bergakademie Freiberg, Leipziger Strasse 29. D-09596 Freiberg/Sachsen, Germany Correspondence e-mail: monika.mazik@chemie.tu-freiberg.de

Received 29 January 2014; accepted 25 February 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.026; wR factor = 0.057; data-to-parameter ratio = 22.8.

In the title compound, $C_{36}H_{24}Br_3N_3O_6 \cdot C_7H_8$, the toluene solvent molecule is associated with the receptor molecule via $C-H \cdot \cdot \pi$ bonding. The planes of the phthalimido groups are inclined at 77.0 (1), 63.0 (1) and 77.8 (1) $^{\circ}$ with respect to the benzene ring. The molecular conformation is stabilized by C- $H \cdots O$ and $C - H \cdots Br$ hydrogen bonds. The crystal structure features non-classical hydrogen bonds of the C-H···N, C- $H \cdots O$ and $C - H \cdots Br$ type, leading to a three-dimensional cross-linking of molecules. The pattern of non-covalent intermolecular bonding is completed by O...Br halogen bonds [3.306 (3) Å], which link the receptor molecules into infinite strands extending along the *a*-axis direction.

Related literature

For heteroditopic receptors and their applications, see: McConnell & Beer (2012): Kirkovits et al. (2001): Kinnear et al. (1994); Hossain & Schneider (1998); Tsukube et al. (1999); Smith (2010). For $C-H \cdots \pi$ interactions, see: Nishio *et al.* (2009). For non-classic hydrogen bonds, see: Desiraju & Steiner (1999). For halogen bonding, see: Metrangolo & Resnati (2008). For the synthesis and use of the title compound, see: Roelens et al. (2009).

Experimental

Crystal data

C36H24Br3N3O6·C7H8 $M_r = 926.45$ Orthorhombic, Pna21 a = 9.2879 (2) Å b = 39.2730 (11) Å c = 10.5592 (3) Å

Data collection

```
Bruker APEXII CCD area-detector
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2008)
  T_{\min} = 0.298, T_{\max} = 0.410
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.026$ $\Delta \rho_{\rm max} = 0.41 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$ $wR(F^2) = 0.057$ S = 1.06Absolute structure: Flack (1983), 10997 reflections 5205 Friedel pairs 482 parameters Absolute structure parameter: 0.015 (4) 1 restraint H-atom parameters constrained

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are centroids of the C1A-C6A and C21-C26 benzene rings, respectively

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C7−H7 <i>B</i> ···O3	0.99	2.47	3.309 (3)	142
$C8-H8A\cdots O4$	0.99	2.18	3.061 (3)	147
$C8-H8B\cdots O5$	0.99	2.36	3.036 (3)	125
$C8-H8B\cdots O6^{i}$	0.99	2.58	3.477 (3)	151
C9−H9A···O1	0.99	2.54	3.308 (3)	135
C10−H10B···Br3	0.99	2.77	3.519 (2)	133
$C14-H14\cdots O5^{ii}$	0.95	2.49	3.080 (3)	121
C19−H19A···Br1	0.99	2.89	3.642 (2)	133
$C24-H24\cdots O2^{iii}$	0.95	2.43	3.290 (3)	150
$C28-H28A\cdots O6^{i}$	0.99	2.58	3.344 (2)	134
C33-H33···Br2 ^{iv}	0.95	2.77	3.590 (3)	145
$C22-H22\cdots Cg1^{v}$	0.95	2.66	3.599 (3)	169
$C6A - H6A \cdots Cg2$	0.95	2.99	3.795 (3)	143

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z$; (ii) x - 1, y, z - 1; (iii) $-x + 2, -y, z + \frac{1}{2}$; (iv) $x - \frac{1}{2}, -y + \frac{1}{2}, z + 1;$ (v) $-x + 2, -y - 1, z + \frac{1}{2}.$

organic compounds

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97*.

Financial support of the Dr.-Erich-Krüger-Stiftung is gratefully acknowledged.

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5768).

References

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Desiraju, G. R. & Steiner, T. (1999). In *The Weak Hydrogen Bond*. Oxford University Press.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hossain, M. A. & Schneider, H.-J. (1998). J. Am. Chem. Soc. **120**, 11208–11209. Kinnear, K. I., Mousley, D. P., Arafa, E. & Lockhart, J. C. (1994). J. Chem. Soc.
- Dalton Trans. pp. 3637-3643. Kirkovits, G. J., Shriver, J. A., Gale, P. A. & Sessler, J. L. (2001). J. Incl.
- Phenom. Macro. 41, 69–75.
- McConnell, A. J. & Beer, P. D. (2012). Angew. Chem. 124, 5138-5148.
- Metrangolo, P. & Resnati, G. (2008). In Halogen Bonding: Fundamentals and Applications. Berlin: Springer.
- Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). *CrystEngComm*, **11**, 1757–1788.
- Roelens, S., Vacca, A., Francesconi, O. & Venturi, C. (2009). Chem. Eur. J. 15, 8296–8302.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, B. D. (2010). Macrocyclic Chemistry: Current Trends and Future Perspectives, 1st ed., edited by K. Gloe. pp. 137–153. Dordrecht: Springer.
- Tsukube, H., Wada, M., Shinoda, S. & Tamiaki, H. (1999). *Chem. Commun.* pp. 1007–1008.

supporting information

Acta Cryst. (2014). E70, o393-o394 [doi:10.1107/S1600536814004383]

2-{2,4,6-Tris(bromomethyl)-3,5-bis[(1,3-dioxoisoindolin-2-yl)methyl]benzyl}isoindoline-1,3-dione toluene monosolvate

Niklas Koch, Wilhelm Seichter and Monika Mazik

S1. Comment

Our interest in the title compound, $C_{36}H_{24}N_3O_6Br_3$, arises from its use as a precursor in the synthesis of novel heteroditopic artificial receptors containing a hexasubstituted benzene scaffold. The synthesis of ditopic receptors, which interact simultaneously with cationic and anionic guests in so called ion-pair recognition processes, is a rapidly developing area of research (McConnell & Beer, 2012). A number of ditopic receptors based on a macrocylic or acyclic scaffold have been designed and studied (Kinnear et al. (1994), Kirkovits et al. (2001), Hossain & Schneider (1998), Tsukube et al. (1999) and Smith (2010)) Interesting applications, such as binding of amino acids in their zwitterionic state, salt extraction and membrane transport, have been reported in the literature (for a recent review, see McConnell & Beer, 2012). In this context, the title compound is a particularly useful building block for the construction of a large number of receptors with different recognition units, because it provides a base for many synthetic modifications of the molecule structure. Crystallization of the title compound from toluene yields a 1:1 solvent complex (Fig. 1). According to the three-dimensional arrangement of the substituent groups around the periphery of the central arene ring, the conformational isomer of the receptor can be described as 1-down, 3,5-up tris((phthalimidomethyl), 2,4-down, 6-up tris-(bromomethyl)benzene. The mean planes of the phthalimido moieties are inclined at angles of 77.0 (1), 63.0 (1) and 77.8 (1)° with reference to the plane of the benzene ring. The torsion angles given by the atomic sequences C1-C2-C7-Br1, C3-C4-C8-Br2 and C5-C6-C9-Br3 are 93.3 (2), 92.5 (2) and -99.8 (2) °, respectively. The host lattice is stabilized by non-conventional hydrogen bonds of the C-H···N [d(H···N) 2.55 Å], C-H···O [d(H···O) 2.18-2.58 Å] and C—H···Br type [$d(H \cdot \cdot \cdot Br)$ 2.77, 2.89 Å]. Moreover, the intermolecular distance O1···Br2 [3.306 (3) Å], which is less than the sum of van der Waals radii of the respective atoms [3.37 Å], indicates the presence of a weak C=O...Br halogen bond. As depicted in Fig. 2, the interactions between the receptor and the solvent molecule are reduced to weak C—H $\cdots\pi$ contacts with the aromatic ring of the toluene molecule and one of the phthalimido units of the receptor acting as acceptors [C22—H22···cg₁ 2.66 Å, 169 °, C6A—H6A···cg₂ 2.99 Å, 143 °]. Taking into account this kind of interactions, the crystal structure can be regarded as being composed of infinite strands of 1:1 complex units running along the crystallographic a-axis (Fig. 3).

S2. Experimental

The synthesis of the title compound was carried out in a slightly modified literature procedure (Roelens *et al.* 2009). 1,3,5-Tris(phthalimidomethyl)-2,4,6-trimethylbenzene (1.00 g, 1.67 mmol) was dissolved in 1,2-dibromoethane (20 ml) and bromine (0.28 ml, 5.50 mmol) was added. The reaction mixture was stirred for overall 48 h under reflux and irradiation with a halogen bulb (500 W); after 24 h an additional amount of bromine (0.28 ml, 5.50 mmol) was added. The reaction mixture solutions of sodium metabisulfite (2 x 20 ml), sodium bicarbonate (20 ml), and distilled water (20 ml). The organic phase was dried over sodium sulfate and the solvent

removed by distillation. The residue was purified by column chromatography (SiO₂, CH₂Cl₂, R_f = 0.32) and the product obtained as an off-white solid. *Analysis data*: m.p. > 467 K; ¹H NMR (400 MHz, CDCl₃) δ 7.87–7.77 (m, 6H, aryl), 7.75–7.67 (m, 6H, aryl), 5.10 (s, 12H CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 29.26, 36.40, 123.48, 132.03, 134.18, 134.87, 140.32, 168.28; EI—MS (70 eV) *m/z*: 595, 675, 754.

S3. Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.95 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$ for aryl, C—H = 0.99 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$ for methylene and C—H = 0.98 Å and $U_{iso}(H) = 1.5 U_{eq}(C)$ for methyl.

Figure 1

Perspective view of the molecular structure. Displacement ellipsoids of the non-H atoms are drawn at the 50% probability level.

Figure 2

Packing motif of the crystal structure of the complex in which the C—H···O hydrogen bond is displayed as a broken line and C—H··· π contacts as broken double lines.

Figure 3

Packing diagram of the title compound viewed down the *c* axis. The hydrogen atoms are omitted for clarity. N atoms are displayed as blue, O atoms as red and bromine atoms as violet circles. The intermolecular contacts are marked by broken lines.

2-{2,4,6-Tris(bromomethyl)-3,5-bis[(1,3-dioxoisoindolin-2-yl)methyl]benzyl}isoindoline-1,3-dione toluene monosolvate

Crystal data

$C_{36}H_{24}Br_3N_3O_6 \cdot C_7H_8$
$M_r = 926.45$
Orthorhombic, Pna21
Hall symbol: P 2c -2n
<i>a</i> = 9.2879 (2) Å
<i>b</i> = 39.2730 (11) Å
<i>c</i> = 10.5592 (3) Å
$V = 3851.61 (17) Å^3$
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\min} = 0.298, T_{\max} = 0.410$ F(000) = 1856 $D_x = 1.598 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9504 reflections $\theta = 2.6-30.1^{\circ}$ $\mu = 3.20 \text{ mm}^{-1}$ T = 100 KIrregular, colourless $0.50 \times 0.42 \times 0.34 \text{ mm}$

59694 measured reflections 10997 independent reflections 10267 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 29.8^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -12 \rightarrow 12$ $k = -54 \rightarrow 54$ $l = -14 \rightarrow 14$ Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.026$	H-atom parameters constrained
$wR(F^2) = 0.057$	$w = 1/[\sigma^2(F_o^2) + (0.0167P)^2 + 1.9141P]$
S = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
10997 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
482 parameters	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.43 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 5205 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.015 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.87579 (2)	0.101954 (5)	-0.01024 (2)	0.02056 (5)	
Br2	1.31949 (2)	0.203008 (5)	0.23399 (2)	0.01976 (4)	
Br3	0.62645 (2)	0.184625 (6)	0.55424 (2)	0.02518 (5)	
01	0.62966 (17)	0.18819 (4)	0.09052 (18)	0.0237 (4)	
O2	0.50556 (16)	0.07721 (3)	0.15611 (16)	0.0186 (3)	
O3	1.16142 (18)	0.04624 (4)	0.10085 (18)	0.0278 (4)	
O4	1.3171 (2)	0.10168 (4)	0.45440 (17)	0.0289 (4)	
05	1.10398 (16)	0.16994 (4)	0.62809 (16)	0.0188 (3)	
O6	0.81813 (16)	0.26402 (4)	0.58804 (16)	0.0197 (3)	
N1	0.58624 (17)	0.13273 (4)	0.15120 (17)	0.0138 (3)	
N2	1.20917 (17)	0.08138 (4)	0.27224 (17)	0.0144 (3)	
N3	0.97292 (17)	0.21791 (4)	0.57551 (16)	0.0123 (3)	
C1	0.79776 (19)	0.14557 (5)	0.29093 (19)	0.0118 (4)	
C2	0.90990 (19)	0.12503 (4)	0.2461 (2)	0.0120 (3)	
C3	1.0543 (2)	0.13449 (5)	0.26749 (18)	0.0117 (4)	
C4	1.0854 (2)	0.16428 (5)	0.33462 (19)	0.0113 (4)	
C5	0.9733 (2)	0.18575 (4)	0.37434 (19)	0.0109 (4)	
C6	0.8299 (2)	0.17643 (5)	0.35213 (19)	0.0120 (4)	
C7	0.8773 (2)	0.09313 (5)	0.1739 (2)	0.0146 (4)	
H7A	0.7823	0.0842	0.2003	0.017*	
H7B	0.9508	0.0757	0.1935	0.017*	
C8	1.2373 (2)	0.17347 (5)	0.3659 (2)	0.0132 (4)	
H8A	1.2957	0.1525	0.3733	0.016*	

H8B	1.2401	0.1854	0.4484	0.016*
C9	0.7111 (2)	0.19981 (5)	0.3924 (2)	0.0164 (4)
H9A	0.6356	0.2003	0.3263	0.020*
H9B	0.7494	0.2232	0.4021	0.020*
C10	0.6420 (2)	0.13404 (5)	0.2795 (2)	0.0144 (4)
H10A	0.6332	0.1111	0.3176	0.017*
H10B	0.5810	0.1497	0.3297	0.017*
C11	0.5808 (2)	0.16045 (5)	0.0676 (2)	0.0181 (4)
C12	0.5030 (2)	0.14809 (6)	-0.0454(2)	0.0193 (4)
C13	0.4667 (2)	0.16503 (7)	-0.1558 (2)	0.0302 (6)
H13	0.4953	0.1879	-0.1703	0.036*
C14	0.3862 (2)	0.14693 (9)	-0.2448(3)	0.0396 (7)
H14	0.3603	0.1577	-0.3221	0.048*
C15	0.3432(3)	0.11369 (9)	-0.2229(3)	0.0413 (8)
H15	0.2870	0.1022	-0.2848	0.050*
C16	0.3809(2)	0.09660 (8)	-0.1111(3)	0.0302 (6)
H16	0.3523	0.0738	-0.0957	0.036*
C17	0.4624(2)	0.11481 (6)	-0.0243(2)	0.0196 (4)
C18	0.5164(2)	0.10438 (5)	0.1015 (2)	0.0151 (4)
C19	1,1748 (2)	0.11348 (5)	0.20873(19)	0.0132(4)
H19A	1.1484	0.1084	0.1199	0.016*
H19B	1.2630	0.1276	0.2067	0.016*
C20	1.2076 (2)	0.05012 (5)	0.2068(2)	0.0194 (5)
C21	1.2715 (2)	0.02478 (5)	0.2940 (2)	0.0220 (5)
C22	1.2896 (2)	-0.01012 (6)	0.2806 (3)	0.0313 (6)
H22	1.2603	-0.0217	0.2059	0.038*
C23	1.3520 (3)	-0.02728 (6)	0.3804 (4)	0.0386(7)
H23	1.3643	-0.0512	0.3749	0.046*
C24	1.3972 (3)	-0.01038 (6)	0.4888 (4)	0.0392 (7)
H24	1.4407	-0.0229	0.5555	0.047*
C25	1.3799 (3)	0.02466 (6)	0.5013 (3)	0.0327 (6)
H25	1.4109	0.0364	0.5751	0.039*
C26	1.3160 (2)	0.04157 (5)	0.4020 (2)	0.0223 (5)
C27	1.2844 (2)	0.07837 (5)	0.3867 (2)	0.0191 (4)
C28	1.0073 (2)	0.21895 (5)	0.44127 (19)	0.0124 (4)
H28A	1.1110	0.2241	0.4309	0.015*
H28B	0.9520	0.2376	0.4009	0.015*
C29	1.0301 (2)	0.19385 (5)	0.6595 (2)	0.0148 (4)
C30	0.9806 (2)	0.20383 (5)	0.7871 (2)	0.0170 (4)
C31	1.0109 (2)	0.18917 (6)	0.9036 (2)	0.0217 (5)
H31	1.0716	0.1698	0.9110	0.026*
C32	0.9476 (3)	0.20435 (6)	1.0092 (2)	0.0292 (5)
H32	0.9658	0.1953	1.0911	0.035*
C33	0.8587 (3)	0.23229 (6)	0.9963 (3)	0.0299 (5)
H33	0.8164	0.2419	1.0701	0.036*
C34	0.8289 (3)	0.24692 (6)	0.8796 (2)	0.0232 (5)
H34	0.7676	0.2662	0.8721	0.028*
C35	0.8927 (2)	0.23217 (5)	0.7747 (2)	0.0172 (4)

C36	0.8850 (2)	0.24137 (5)	0.6388 (2)	0.0155 (4)	
C1A	0.8364 (2)	0.03354 (5)	0.44059 (17)	0.0507 (9)	
C2A	0.7319 (2)	0.05829 (5)	0.4604 (2)	0.0498 (8)	
H2A	0.6435	0.0573	0.4151	0.060*	
C3A	0.7565 (3)	0.08446 (5)	0.5463 (2)	0.0810 (14)	
H3A	0.6850	0.1014	0.5598	0.097*	
C4A	0.8858 (4)	0.08588 (6)	0.6124 (2)	0.0887 (18)	
H4A	0.9026	0.1038	0.6712	0.106*	
C5A	0.9904 (3)	0.06113 (8)	0.5927 (2)	0.0813 (15)	
H5A	1.0787	0.0621	0.6379	0.098*	
C6A	0.96570 (19)	0.03496 (7)	0.5067 (2)	0.0693 (12)	
H6A	1.0372	0.0180	0.4932	0.083*	
C7A	0.8255 (4)	0.00470 (6)	0.3449 (2)	0.0941 (18)	
H7A1	0.7240	-0.0012	0.3319	0.141*	
H7A2	0.8776	-0.0152	0.3767	0.141*	
H7A3	0.8677	0.0120	0.2642	0.141*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Br1	0.02090 (10)	0.02545 (10)	0.01532 (10)	-0.00046 (8)	-0.00065 (9)	-0.00518 (9)
Br2	0.01633 (8)	0.02241 (9)	0.02055 (10)	-0.00556 (8)	0.00482 (9)	0.00259 (9)
Br3	0.01890 (10)	0.03088 (11)	0.02576 (12)	-0.00392 (8)	0.01001 (10)	-0.01086 (10)
O1	0.0196 (7)	0.0195 (7)	0.0320 (10)	0.0003 (6)	0.0050 (7)	0.0052 (7)
O2	0.0196 (7)	0.0134 (6)	0.0228 (8)	-0.0023 (5)	0.0005 (6)	-0.0051 (6)
O3	0.0283 (9)	0.0211 (8)	0.0340 (10)	0.0060 (6)	-0.0097 (7)	-0.0118 (7)
O4	0.0437 (11)	0.0207 (8)	0.0223 (9)	0.0049 (7)	-0.0119 (7)	-0.0006 (7)
O5	0.0186 (7)	0.0170 (7)	0.0208 (8)	0.0065 (5)	0.0003 (6)	0.0032 (6)
O6	0.0195 (7)	0.0140 (7)	0.0255 (9)	0.0049 (5)	-0.0014 (6)	-0.0022 (6)
N1	0.0108 (8)	0.0153 (7)	0.0152 (9)	-0.0007 (6)	-0.0010 (6)	-0.0015 (6)
N2	0.0132 (8)	0.0125 (7)	0.0176 (9)	0.0024 (6)	0.0003 (6)	-0.0013 (6)
N3	0.0141 (7)	0.0108 (7)	0.0120 (9)	0.0015 (6)	-0.0002 (6)	-0.0023 (6)
C1	0.0089 (8)	0.0136 (8)	0.0130 (10)	-0.0002 (6)	-0.0009(7)	0.0008 (7)
C2	0.0125 (8)	0.0120 (8)	0.0114 (9)	-0.0012 (6)	0.0001 (7)	0.0007 (7)
C3	0.0121 (8)	0.0107 (8)	0.0122 (9)	0.0024 (6)	-0.0002 (7)	0.0019 (7)
C4	0.0099 (8)	0.0124 (8)	0.0116 (10)	0.0004 (6)	-0.0004 (7)	0.0025 (7)
C5	0.0103 (8)	0.0105 (8)	0.0119 (10)	-0.0008 (6)	-0.0003 (7)	0.0011 (7)
C6	0.0105 (8)	0.0134 (8)	0.0121 (9)	0.0014 (6)	-0.0008(7)	-0.0012 (7)
C7	0.0154 (9)	0.0129 (8)	0.0153 (10)	-0.0006 (7)	-0.0003 (8)	-0.0021 (7)
C8	0.0110 (8)	0.0133 (8)	0.0153 (10)	-0.0033 (7)	0.0005 (7)	0.0013 (7)
C9	0.0114 (9)	0.0165 (9)	0.0211 (11)	0.0014 (7)	-0.0001 (8)	-0.0059 (8)
C10	0.0100 (8)	0.0182 (9)	0.0148 (10)	-0.0022 (7)	-0.0003 (7)	-0.0027 (7)
C11	0.0116 (8)	0.0216 (9)	0.0211 (11)	0.0037 (7)	0.0046 (8)	0.0024 (9)
C12	0.0113 (9)	0.0303 (11)	0.0163 (11)	0.0051 (8)	0.0026 (7)	0.0028 (8)
C13	0.0156 (10)	0.0522 (15)	0.0228 (13)	0.0093 (10)	0.0039 (9)	0.0130 (11)
C14	0.0174 (11)	0.082 (2)	0.0198 (13)	0.0076 (12)	-0.0012 (10)	0.0112 (13)
C15	0.0153 (11)	0.089 (2)	0.0190 (13)	-0.0030 (12)	-0.0040 (9)	-0.0087 (14)
C16	0.0153 (11)	0.0512 (15)	0.0242 (13)	-0.0040 (10)	-0.0011 (9)	-0.0113 (11)

C17	0.0124 (9)	0.0274 (10)	0.0189 (11)	0.0051 (7)	-0.0001 (8)	-0.0066 (9)
C18	0.0091 (8)	0.0188 (9)	0.0176 (10)	0.0018 (7)	0.0017 (7)	-0.0067 (8)
C19	0.0122 (8)	0.0132 (8)	0.0142 (11)	0.0009 (7)	0.0015 (7)	-0.0003 (7)
C20	0.0141 (9)	0.0149 (9)	0.0291 (14)	0.0011 (7)	0.0005 (8)	-0.0034 (8)
C21	0.0149 (9)	0.0156 (9)	0.0354 (14)	0.0010 (7)	0.0021 (9)	0.0019 (9)
C22	0.0228 (11)	0.0169 (10)	0.0542 (18)	0.0028 (8)	-0.0008 (11)	0.0001 (10)
C23	0.0284 (13)	0.0144 (10)	0.073 (2)	0.0023 (9)	-0.0004 (13)	0.0116 (12)
C24	0.0355 (14)	0.0264 (12)	0.0558 (19)	0.0055 (10)	-0.0055 (14)	0.0185 (14)
C25	0.0336 (13)	0.0279 (11)	0.0366 (15)	0.0050 (10)	0.0006 (12)	0.0129 (11)
C26	0.0188 (10)	0.0174 (9)	0.0306 (13)	0.0021 (8)	0.0019 (9)	0.0067 (9)
C27	0.0195 (10)	0.0190 (9)	0.0189 (11)	0.0036 (8)	-0.0002 (8)	0.0018 (8)
C28	0.0123 (9)	0.0120 (8)	0.0128 (9)	-0.0003 (7)	-0.0016 (7)	0.0002 (7)
C29	0.0119 (9)	0.0169 (9)	0.0157 (10)	-0.0012 (7)	-0.0012 (8)	0.0018 (8)
C30	0.0155 (9)	0.0205 (10)	0.0150 (10)	-0.0058 (8)	-0.0004 (8)	-0.0003 (8)
C31	0.0207 (11)	0.0261 (11)	0.0184 (11)	-0.0059 (8)	-0.0015 (9)	0.0039 (9)
C32	0.0363 (14)	0.0348 (13)	0.0164 (12)	-0.0132 (10)	0.0043 (10)	-0.0003 (9)
C33	0.0392 (14)	0.0307 (11)	0.0197 (12)	-0.0137 (10)	0.0120 (11)	-0.0092 (11)
C34	0.0257 (11)	0.0197 (10)	0.0241 (13)	-0.0056 (8)	0.0079 (10)	-0.0081 (9)
C35	0.0161 (9)	0.0172 (9)	0.0182 (11)	-0.0049 (7)	0.0005 (8)	-0.0051 (8)
C36	0.0127 (9)	0.0134 (8)	0.0202 (11)	-0.0013 (7)	-0.0001 (8)	-0.0048 (8)
C1A	0.055 (2)	0.059 (2)	0.0382 (19)	-0.0185 (16)	0.0039 (15)	0.0224 (16)
C2A	0.057 (2)	0.0499 (18)	0.042 (2)	-0.0087 (15)	-0.0076 (15)	0.0249 (15)
C3A	0.150 (5)	0.045 (2)	0.048 (2)	0.016 (2)	0.005 (3)	0.0289 (19)
C4A	0.180 (6)	0.055 (2)	0.032 (2)	-0.052 (3)	-0.004 (3)	0.0074 (18)
C5A	0.077 (3)	0.096 (3)	0.071 (3)	-0.053 (3)	-0.007 (2)	0.020 (3)
C6A	0.0417 (19)	0.109 (3)	0.057 (3)	-0.019 (2)	0.0108 (17)	0.028 (2)
C7A	0.171 (6)	0.058 (2)	0.053 (3)	-0.017 (3)	0.016 (3)	0.011 (2)

Geometric parameters (Å, °)

Br1—C7	1.975 (2)	C16—C17	1.387 (3)
Br2—C8	1.967 (2)	C16—H16	0.9500
Br3—C9	1.974 (2)	C17—C18	1.478 (3)
01—C11	1.205 (3)	C19—H19A	0.9900
O2—C18	1.217 (3)	C19—H19B	0.9900
O3—C20	1.208 (3)	C20—C21	1.480 (3)
O4—C27	1.201 (3)	C21—C26	1.380 (3)
O5—C29	1.209 (2)	C21—C22	1.388 (3)
O6—C36	1.210 (2)	C22—C23	1.379 (4)
N1-C18	1.391 (2)	C22—H22	0.9500
N1-C11	1.403 (3)	C23—C24	1.388 (5)
N1-C10	1.451 (3)	С23—Н23	0.9500
N2-C27	1.401 (3)	C24—C25	1.392 (4)
N2-C20	1.409 (3)	C24—H24	0.9500
N2-C19	1.463 (2)	C25—C26	1.376 (4)
N3—C36	1.401 (2)	C25—H25	0.9500
N3—C29	1.401 (3)	C26—C27	1.484 (3)
N3—C28	1.454 (3)	C28—H28A	0.9900

C1—C2	1.400 (3)	C28—H28B	0.9900
C1—C6	1.405 (3)	C29—C30	1.477 (3)
C1—C10	1.521 (3)	C30—C35	1.387 (3)
C2—C3	1.410 (2)	C30—C31	1.387 (3)
C2—C7	1.498 (3)	C31—C32	1.395 (4)
C3—C4	1.398 (3)	C31—H31	0.9500
C3—C19	1.523 (3)	C32—C33	1.380 (4)
C4—C5	1.404 (3)	С32—Н32	0.9500
C4—C8	1.494 (3)	C33—C34	1.388 (4)
C5—C6	1.401 (3)	С33—Н33	0.9500
C5—C28	1.517 (3)	C34—C35	1.383 (3)
С6—С9	1.496 (3)	C34—H34	0.9500
С7—Н7А	0.9900	C35—C36	1.482 (3)
С7—Н7В	0.9900	C1A—C2A	1.3900
C8—H8A	0.9900	C1A—C6A	1.3900
C8—H8B	0.9900	C1A—C7A	1.5213
С9—Н9А	0.9900	C2A—C3A	1.3900
С9—Н9В	0.9900	C2A—H2A	0.9500
C10—H10A	0.9900	C3A—C4A	1.3900
C10—H10B	0.9900	СЗА—НЗА	0.9500
C11—C12	1.476 (3)	C4A—C5A	1.3900
C12—C17	1.378 (3)	C4A—H4A	0.9500
C12—C13	1.384 (3)	C5A—C6A	1.3900
C13—C14	1.396 (4)	C5A—H5A	0.9500
C13—H13	0.9500	С6А—Н6А	0.9500
C14—C15	1.385 (5)	C7A—H7A1	0.9800
C14—H14	0.9500	C7A—H7A2	0.9800
C15—C16	1.402 (4)	С7А—Н7А3	0.9800
C15—H15	0.9500		
C18—N1—C11	111.52 (18)	H19A—C19—H19B	107.4
C18—N1—C10	123.14 (17)	O3—C20—N2	124.61 (19)
C11—N1—C10	124.97 (17)	O3—C20—C21	129.3 (2)
C27—N2—C20	110.78 (17)	N2-C20-C21	106.06 (19)
C27—N2—C19	125.23 (16)	C26—C21—C22	121.3 (2)
C20—N2—C19	121.58 (17)	C26—C21—C20	108.21 (18)
C36—N3—C29	111.29 (17)	C22—C21—C20	130.5 (2)
C36—N3—C28	125.06 (17)	C23—C22—C21	117.1 (3)
C29—N3—C28	123.58 (16)	С23—С22—Н22	121.5
C2—C1—C6	119.64 (16)	C21—C22—H22	121.5
C2-C1-C10	120.62 (17)	C22—C23—C24	121.6 (2)
C6—C1—C10	119.67 (17)	С22—С23—Н23	119.2
C1—C2—C3	120.11 (17)	С24—С23—Н23	119.2
C1—C2—C7	120.26 (16)	C23—C24—C25	121.1 (3)
C3—C2—C7	119.63 (16)	C23—C24—H24	119.5
C4—C3—C2	119.88 (17)	C25—C24—H24	119.5
C4—C3—C19	120.55 (16)	C26—C25—C24	117.1 (3)
C2—C3—C19	119.42 (17)	C26—C25—H25	121.5

C3—C4—C5	120.07 (17)	C24—C25—H25	121.5
C3—C4—C8	120.62 (17)	C25—C26—C21	121.9 (2)
C5—C4—C8	119.31 (17)	C25—C26—C27	129.7 (2)
C6—C5—C4	119.88 (17)	C21—C26—C27	108.4 (2)
C6—C5—C28	120.05 (16)	O4—C27—N2	125.15 (19)
C4-C5-C28	120.07 (16)	04	128.9 (2)
C5-C6-C1	120.26 (17)	N2-C27-C26	105.95(19)
C5-C6-C9	119 51 (17)	N3-C28-C5	112.61 (16)
C1 - C6 - C9	120.22(17)	N3—C28—H28A	109.1
$C_{2}^{}C_{7}^{}Br_{1}^{1}$	120.22(17) 110.86(14)	C_{5} C_{28} H_{28A}	109.1
$C_2 - C_7 - H_7 A$	109 5	N3—C28—H28B	109.1
Br1 - C7 - H7A	109.5	C_{5} C_{28} H_{28B}	109.1
$C_2 - C_7 - H_7B$	109.5	$H_{28} = C_{28} = H_{28} = H$	107.8
Br1H7B	109.5	05-029-N3	107.8 124.4(2)
H7A C7 H7B	109.5	05 - 029 - 030	124.4(2) 120.20(10)
$\Pi/A = C/=\Pi/B$	110.66 (14)	$N_{2}^{3} = C_{2}^{2} = C_{3}^{3} O_{2}^{3}$	129.29 (19)
C4 = C8 = H8A	100.5	$C_{25} = C_{20} = C_{21}$	100.20(10)
$C4 - C6 - \Pi \delta A$	109.5	$C_{33} = C_{30} = C_{31}$	122.4(2)
BI2 - Co - HoA	109.5	$C_{33} = C_{30} = C_{29}$	100.11(10) 120.5(2)
C4 - C8 - H8B	109.5	$C_{31} = C_{30} = C_{29}$	129.5 (2)
Br2 - C8 - H8B	109.5	$C_{30} = C_{31} = C_{32}$	116.5 (2)
$H\delta A = C\delta = H\delta B$	108.1	C30—C31—H31	121.8
C6-C9-Br3	110.74 (14)	C32—C31—H31	121.8
C6—C9—H9A	109.5	$C_{33} = C_{32} = C_{31}$	120.9 (2)
Br3—C9—H9A	109.5	C33—C32—H32	119.5
С6—С9—Н9В	109.5	С31—С32—Н32	119.5
Br3—C9—H9B	109.5	C32—C33—C34	122.4 (2)
Н9А—С9—Н9В	108.1	С32—С33—Н33	118.8
N1—C10—C1	115.09 (17)	С34—С33—Н33	118.8
N1—C10—H10A	108.5	C35—C34—C33	116.9 (2)
C1—C10—H10A	108.5	С35—С34—Н34	121.6
N1—C10—H10B	108.5	С33—С34—Н34	121.6
C1—C10—H10B	108.5	C34—C35—C30	120.9 (2)
H10A—C10—H10B	107.5	C34—C35—C36	130.8 (2)
O1-C11-N1	124.2 (2)	C30—C35—C36	108.36 (18)
O1-C11-C12	130.1 (2)	O6—C36—N3	124.9 (2)
N1—C11—C12	105.73 (17)	O6—C36—C35	129.2 (2)
C17—C12—C13	121.7 (2)	N3—C36—C35	105.89 (17)
C17—C12—C11	108.37 (19)	C2A—C1A—C6A	120.0
C13—C12—C11	129.9 (2)	C2A—C1A—C7A	125.0
C12—C13—C14	116.9 (3)	C6A—C1A—C7A	114.9
C12—C13—H13	121.5	C3A—C2A—C1A	120.0
C14—C13—H13	121.5	C3A—C2A—H2A	120.0
C15—C14—C13	121.5 (3)	C1A—C2A—H2A	120.0
C15—C14—H14	119.3	C2A—C3A—C4A	120.0
C13—C14—H14	119.3	С2А—С3А—Н3А	120.0
C14—C15—C16	121.3 (3)	С4А—С3А—Н3А	120.0
C14—C15—H15	119.4	C5A—C4A—C3A	120.0
C16—C15—H15	119.3	С5А—С4А—Н4А	120.0

C17—C16—C15	116.5 (3)	СЗА—С4А—Н4А	120.0
C17—C16—H16	121.8	C6A—C5A—C4A	120.0
C15—C16—H16	121.8	C6A—C5A—H5A	120.0
C12—C17—C16	122.1 (2)	С4А—С5А—Н5А	120.0
C12—C17—C18	108.37 (19)	C5A—C6A—C1A	120.0
C16—C17—C18	129.5 (2)	С5А—С6А—Н6А	120.0
O2—C18—N1	124.2 (2)	С1А—С6А—Н6А	120.0
O2—C18—C17	129.84 (19)	C1A—C7A—H7A1	109.5
N1—C18—C17	105.98 (17)	C1A—C7A—H7A2	109.5
N2—C19—C3	116.12 (16)	H7A1—C7A—H7A2	109.5
N2—C19—H19A	108.3	С1А—С7А—Н7А3	109.5
C3—C19—H19A	108.3	H7A1—C7A—H7A3	109.5
N2-C19-H19B	108.3	H7A2—C7A—H7A3	109.5
C3-C19-H19B	108.3		10,10
	100.0		
C6—C1—C2—C3	3.0 (3)	C19—N2—C20—O3	-9.9 (3)
C10—C1—C2—C3	-174.19 (18)	C27—N2—C20—C21	7.1 (2)
C6—C1—C2—C7	-176.32(19)	C19—N2—C20—C21	170.34 (17)
C10—C1—C2—C7	6.5 (3)	O3—C20—C21—C26	176.7 (2)
C1—C2—C3—C4	0.6 (3)	N2-C20-C21-C26	-3.6(2)
C7—C2—C3—C4	179.86 (18)	O3—C20—C21—C22	-3.3(4)
C1—C2—C3—C19	-174.93 (18)	N2-C20-C21-C22	176.4 (2)
C7—C2—C3—C19	4.3 (3)	C26—C21—C22—C23	0.9 (4)
C2—C3—C4—C5	-3.7(3)	C20—C21—C22—C23	-179.1 (2)
C19—C3—C4—C5	171.81 (18)	C21—C22—C23—C24	-1.1 (4)
C2—C3—C4—C8	175.78 (18)	C22—C23—C24—C25	0.6 (4)
C19—C3—C4—C8	-8.8 (3)	C23—C24—C25—C26	0.2 (4)
C3—C4—C5—C6	3.2 (3)	C24—C25—C26—C21	-0.4 (4)
C8—C4—C5—C6	-176.28 (18)	C24—C25—C26—C27	-179.3 (2)
C3—C4—C5—C28	-176.88 (18)	C22—C21—C26—C25	-0.1 (4)
C8—C4—C5—C28	3.7 (3)	C20—C21—C26—C25	179.9 (2)
C4—C5—C6—C1	0.4 (3)	C22—C21—C26—C27	179.0 (2)
C28—C5—C6—C1	-179.56 (18)	C20-C21-C26-C27	-1.0(2)
C4—C5—C6—C9	-178.73 (19)	C20—N2—C27—O4	170.9 (2)
C28—C5—C6—C9	1.3 (3)	C19—N2—C27—O4	8.4 (3)
C2-C1-C6-C5	-3.4 (3)	C20—N2—C27—C26	-7.7 (2)
C10-C1-C6-C5	173.72 (18)	C19—N2—C27—C26	-170.18 (18)
C2—C1—C6—C9	175.67 (19)	C25—C26—C27—O4	5.7 (4)
C10-C1-C6-C9	-7.2 (3)	C21—C26—C27—O4	-173.3 (2)
C1—C2—C7—Br1	93.3 (2)	C25—C26—C27—N2	-175.8 (2)
C3—C2—C7—Br1	-85.9 (2)	C21—C26—C27—N2	5.3 (2)
C3—C4—C8—Br2	92.48 (19)	C36—N3—C28—C5	-126.16 (18)
C5—C4—C8—Br2	-88.1 (2)	C29—N3—C28—C5	57.0 (2)
C5—C6—C9—Br3	-99.78 (19)	C6—C5—C28—N3	72.1 (2)
C1-C6-C9-Br3	81.1 (2)	C4—C5—C28—N3	-107.8 (2)
C18—N1—C10—C1	129.25 (19)	C36—N3—C29—O5	176.44 (19)
C11—N1—C10—C1	-58.3 (2)	C28—N3—C29—O5	-6.3 (3)
C2-C1-C10-N1	-68.4 (2)	C36—N3—C29—C30	-3.0 (2)

C(C1 C10 N1	1144(2)	C_{20} N2 C_{20} C_{20}	174 22 (1()
	114.4(2)	$C_{28} = N_{3} = C_{29} = C_{30}$	174.23 (10)
	177.67 (19)	05-029-030-035	-177.2(2)
C10—N1—C11—O1	4.5 (3)	N3—C29—C30—C35	2.2 (2)
C18—N1—C11—C12	-1.2 (2)	O5—C29—C30—C31	3.0 (4)
C10—N1—C11—C12	-174.34 (17)	N3-C29-C30-C31	-177.6 (2)
O1—C11—C12—C17	-177.0 (2)	C35—C30—C31—C32	0.3 (3)
N1-C11-C12-C17	1.7 (2)	C29—C30—C31—C32	-179.9 (2)
O1—C11—C12—C13	0.7 (4)	C30—C31—C32—C33	0.5 (3)
N1-C11-C12-C13	179.4 (2)	C31—C32—C33—C34	-0.7 (4)
C17—C12—C13—C14	0.3 (3)	C32—C33—C34—C35	0.0 (3)
C11—C12—C13—C14	-177.1 (2)	C33—C34—C35—C30	0.8 (3)
C12—C13—C14—C15	0.7 (4)	C33—C34—C35—C36	-179.4 (2)
C13—C14—C15—C16	-1.1 (4)	C31—C30—C35—C34	-1.0(3)
C14—C15—C16—C17	0.4 (4)	C29—C30—C35—C34	179.18 (19)
C13—C12—C17—C16	-1.1 (3)	C31—C30—C35—C36	179.16 (19)
C11—C12—C17—C16	176.8 (2)	C29—C30—C35—C36	-0.7 (2)
C13—C12—C17—C18	-179.57 (19)	C29—N3—C36—O6	-177.11 (19)
C11—C12—C17—C18	-1.6 (2)	C28—N3—C36—O6	5.7 (3)
C15—C16—C17—C12	0.7 (3)	C29—N3—C36—C35	2.6 (2)
C15—C16—C17—C18	178.8 (2)	C28—N3—C36—C35	-174.60 (17)
C11—N1—C18—O2	-179.56 (19)	C34—C35—C36—O6	-1.3 (4)
C10—N1—C18—O2	-6.2 (3)	C30—C35—C36—O6	178.6 (2)
C11—N1—C18—C17	0.2 (2)	C34—C35—C36—N3	179.1 (2)
C10—N1—C18—C17	173.51 (17)	C30-C35-C36-N3	-1.1 (2)
C12—C17—C18—O2	-179.3 (2)	C6A—C1A—C2A—C3A	0.0
C16—C17—C18—O2	2.4 (4)	C7A—C1A—C2A—C3A	-176.9
C12-C17-C18-N1	0.9 (2)	C1A—C2A—C3A—C4A	0.0
C16—C17—C18—N1	-177.4 (2)	C2A—C3A—C4A—C5A	0.0
C27—N2—C19—C3	-74.7 (2)	C3A—C4A—C5A—C6A	0.0
C20—N2—C19—C3	124.55 (19)	C4A—C5A—C6A—C1A	0.0
C4—C3—C19—N2	106.5 (2)	C2A—C1A—C6A—C5A	0.0
C2-C3-C19-N2	-78.0 (2)	C7A—C1A—C6A—C5A	177.2
C27—N2—C20—O3	-173.1 (2)		

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are centroids of the C1A–C6A and C21–C26 benzene rings, respectively.

D—H···A	D—H	H···A	D…A	D—H···A
С7—Н7 <i>В</i> …О3	0.99	2.47	3.309 (3)	142
C8—H8A…O4	0.99	2.18	3.061 (3)	147
C8—H8 <i>B</i> …O5	0.99	2.36	3.036 (3)	125
C8—H8 <i>B</i> ···O6 ⁱ	0.99	2.58	3.477 (3)	151
С9—Н9А…О1	0.99	2.54	3.308 (3)	135
C10—H10 <i>B</i> ···Br3	0.99	2.77	3.519 (2)	133
C14—H14…O5 ⁱⁱ	0.95	2.49	3.080 (3)	121
C19—H19A…Br1	0.99	2.89	3.642 (2)	133
C24—H24…O2 ⁱⁱⁱ	0.95	2.43	3.290 (3)	150
C28—H28A···O6 ⁱ	0.99	2.58	3.344 (2)	134

supporting information

C33—H33····Br2 ^{iv}	0.95	2.77	3.590 (3)	145
C22—H22···Cg1 ^v	0.95	2.66	3.599 (3)	169
C6A—H6A····Cg2	0.95	2.99	3.795 (3)	143

Symmetry codes: (i) x+1/2, -y+1/2, z; (ii) x-1, y, z-1; (iii) -x+2, -y, z+1/2; (iv) x-1/2, -y+1/2, z+1; (v) -x+2, -y-1, z+1/2.