inorganic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$Na_{1.67}Mn_{2.17}(MoO_4)_3$

Chahira Bouzidi, Mohamed Faouzi Zid, Ahmed Driss and Wafa Frigui*

Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis ElManar, 2092 Manar II Tunis, Tunisia Correspondence e-mail: frigui.wafa@gmail.com

Received 28 February 2014; accepted 19 March 2014

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (Mo–O) = 0.005 Å; disorder in main residue; R factor = 0.030; wR factor = 0.083; data-to-parameter ratio = 13.7

The title compound, disodium dimanganese(II) tris[orthomolybdate(VI)], was prepared by solid-state reactions. The structure can be described as being composed of Mn₂Mo₂O₁₄ double-chains that are interconnected by corner-sharing with MoO₄ tetrahedra, leading to a three-dimensional framework with channels propagating in [100] and [001] in which the Na⁺ counter-cations are located. One of these Na sites is located on an inversion centre, one is partially occupied [occupancy 0.341 (9)], and one is statistically occupied by Na and Mn in a ratio of 0.829 (5):0.171 (5). $Na_{1.67}Mn_{2.17}(MoO_4)_3$ is isotypic with structures of the $Ag_2M_2(MoO_4)_3$ (M = Zn, Mg, Co, Mn) family. A comparative structural description is provided between the structure of the title compound and those of related phases containing $(MXO_8)_n$ chains (M = MO, Mn andX = As) or M_2O_{10} (M = Mo, Mn, Nb, V) dimers.

Related literature

For isotypic compounds, see: Tsyrenova et al. (2004); Gicquel-Mayer et al. (1981); Balsanova et al. (2009). For background to the physico-chemical properties of related compounds, see: Gueho et al. (1993); Piffard et al. (1985); Solodovnikov et al. (1986, 1997, 1998); Prabaharan et al. (1997). For details of structurally related compounds, see: Frigui et al. (2011, 2012); Guesmi & Driss (2012); Belkhiri et al. (2009); Chérif et al. (2011); Ledain et al. (1996); Ezzine Yahmed et al. (2013). For bond lengths and bond-valence sums, see: Souilem et al. (2014); Ennajeh et al. (2013); Brown & Altermatt (1985).

Experimental

Crystal data

$Na_{1.67}Mn_{2.17}(MoO_4)_3$	c = 10.4330 (9) Å
$M_r = 637.43$	$\alpha = 106.501 \ (9)^{\circ}$
Triclinic, $P\overline{1}$	$\beta = 105.361 \ (9)^{\circ}$
u = 7.1072 (7) Å	$\gamma = 102.756 \ (8)^{\circ}$
p = 8.8120 (8) Å	$V = 572.31 (11) \text{ Å}^3$

Data collection

Enraf–Nonius CAD-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.371, \ T_{\max} = 0.540$
3079 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.083$ S = 1.092474 reflections

 $\Delta \rho_{\rm max} = 1.52 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -1.24 \text{ e} \text{ Å}^{-3}$

T = 298 K

 $R_{\rm int} = 0.017$

180 parameters

 $0.28 \times 0.15 \times 0.11 \ \mathrm{mm}$

2474 independent reflections 2206 reflections with $I > 2\sigma(I)$

2 standard reflections every 120 min intensity decay: 1.3%

Table 1

Selected bond lengths (Å).

Mo1-O2	1.726 (4)	Mn2-O5	2.151 (4)
Mo1-O6 ⁱ	1.772 (4)	$Mn2-O7^{v}$	2.153 (4)
Mo1-O10	1.787 (4)	Mn2-O10 ⁱⁱⁱ	2.161 (4)
Mo1-O9	1.812 (4)	Mn2-O8	2.194 (4)
Mo2-O5 ⁱⁱ	1.739 (4)	Mn2-O10vi	2.264 (4)
Mo2-O11	1.777 (4)	Na3-O11 ⁱⁱⁱ	2.212 (4)
Mo2-O4	1.778 (4)	Na3-O1 ^{vii}	2.250 (7)
Mo2-O7	1.795 (4)	Na3-O8 ^{viii}	2.250 (4)
Mo3-O1	1.742 (5)	Na3–O7 ^{ix}	2.279 (4)
Mo3-O3	1.747 (4)	Na1-O2 ^{iv}	2.376 (4)
Mo3-O12	1.757 (5)	$Na1 - O2^{x}$	2.376 (4)
Mo3-O8	1.790 (4)	Na1-O4 ^{xi}	2.430 (4)
Mn1-O12 ⁱⁱⁱ	2.060 (4)	Na1-O4	2.430 (4)
Mn1-O6	2.148 (4)	Na1-O1 ⁱⁱⁱ	2.797 (6)
Mn1-O9	2.193 (4)	Na1-O1 ^{xii}	2.797 (6)
Mn1-O9 ⁱⁱⁱ	2.224 (4)	Na2-O2 ^{xiii}	2.408 (11)
Mn1-O4	2.224 (4)	Na2-O2 ⁱⁱⁱ	2.529 (12)
Mn1-O11 ⁱⁱⁱ	2.226 (4)	Na2-O4 ⁱⁱⁱ	2.815 (13)
Mn2-O3 ^{iv}	2.115 (4)	Na2-O1	2.990 (12)

Symmetry codes: (i) x + 1, y, z; (ii) x, y - 1, z; (iii) -x + 1, -y + 1, -z + 1; (iv) x - 1, y, z; (v) -x, -y + 1, -z; (vi) x - 1, y, z - 1; (vii) -x + 1, -y + 2, -z + 1; (viii) x, y, z + 1; (ix) -x, -y + 1, -z + 1; (x) -x + 1, -y, -z + 1; (xi) -x, -y, -z + 1; (xii) x - 1, y - 1, z; (xiii) x, y + 1, z.

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5009).

References

- Balsanova, L., Mikhailova, D., Senyshyn, A., Trots, D., Fuess, H., Lottermoser, W. & Ehrenberg, H. (2009). Solid State Sci. 11, 1137-1143.
- Belkhiri, S., Kars, M. & Mezaoui, D. (2009). Acta Cryst. E65, i69.
- Brandenburg, K. & Putz, H. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Chérif, S. F., Zid, M. F. & Driss, A. (2011). Acta Cryst. E67, i10.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Ennajeh, I., Zid, M. F. & Driss, A. (2013). Acta Cryst. E69, i54-i55.
- Ezzine Yahmed, S., Nasri, R., Zid, M. F. & Driss, A. (2013). Acta Cryst. E69, i57-i58

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Frigui, W., Ben Amor, F., Zid, M. F., Madani, A. & Driss, A. (2011). Jordan J. Chem. 6, 295–305.
- Frigui, W., Zid, M. F. & Driss, A. (2012). Acta Cryst. E68, i40-i41.
- Gicquel-Mayer, C., Mayer, M. & Pérez, G. (1981). Acta Cryst. B37, 1035–1039.
 Gueho, C., Borel, M. M., Grandin, A., Leclaire, A. & Raveau, B. (1993). J. Solid State Chem. 104, 202–208.
- Guesmi, A. & Driss, A. (2012). Acta Cryst. E68, i58.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Ledain, S., Leclaire, A., Borel, M. M. & Raveau, B. (1996). J. Solid State Chem. 124, 322–328.
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Piffard, Y., Lachgar, A. & Tournoux, M. (1985). J. Solid State Chem. 60, 209–213.

- Prabaharan, S. R. S., Michael, M. S., Radhakrishna, S. & Julien, C. (1997). J. Mater. Chem. 7, 1791–1796.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Solodovnikov, S. F., Klevtsova, R. F., Glinskaya, L. A., Solodovnikova, Z. A., Zolotova, E. S. & Klevtsov, P. V. (1997). J. Struct. Chem. 38, 426–433.
- Solodovnikov, S. F., Klevtsov, P. V. & Klevtsova, R. F. (1986). Kristallografiya, 31, 440–445.
- Solodovnikov, S. F., Klevtsov, P. V., Solodovnikova, Z. A., Glinskaya, L. A. & Klevtsova, R. F. (1998). J. Struct. Chem. 39, 230–237.
- Souilem, A., Zid, M. F. & Driss, A. (2014). Acta Cryst. E70, i9-i10.
- Tsyrenova, G. D., Solodovnikov, S. F., Khaikina, E. G., Khobrakova, E. T., Bazarova, Zh. G. & Solodovnikova, Z. A. (2004). J. Solid State Chem. 177, 2158–2167.

supporting information

Acta Cryst. (2014). E70, i18-i19 [doi:10.1107/S160053681400614X]

$Na_{1.67}Mn_{2.17}(MoO_4)_3$

Chahira Bouzidi, Mohamed Faouzi Zid, Ahmed Driss and Wafa Frigui

S1. Comment

L'élaboration des matériaux à charpente ouvertes formées d'octaèdres et de tétraèdres a connue un essor considérable. En effet, ils ont fait l'objet de très nombreux travaux de recherche au niveau international. Dans ce contexte, les matériaux inorganiques connaissent une forte expansion en raison notamment de leurs propriétés physico-chimiques performentes en relation directe avec leurs structures cristallines ainsi que leurs applications notamment: conduction ionique (Gueho *et al.*, 1993; Prabaharan *et al.*, 1997) et échange d'ions (Piffard *et al.*, 1985). Dans ce cadre, et en vue de synthétiser de nouveaux matériaux à charpente ouvertes, nous avons exploré les systèmes A-Mn-Mo-O (A = ion monovalent) dans lesquels différentes phases ont été précédemment isolées: K₂Mn₂Mo₃O₁₂ (Solodovnikov *et al.*, 1986), K₁₀MnMo₇O₂₇, (Solodovnikov *et al.*, 1997), K₄MnMo₄O₁₅ (Solodovnikov *et al.*, 1998). Nos tentatives de synthèse nous ont permis de trouver une nouvelle phase de formulation Na_{1,67}Mn_{2,17}(MoO₄)₃ qui a été élaborée par réaction à l'état solide à 998 K.

L'unité asymétrique dans Na₁₆₇Mn₂₁₇(MoO₄)₃ est construite par deux octaèdres MnO₆ et trois tétraèdres MoO₄ liés par mise en commun de sommets. La compensation de charges est assurée par les cations Na⁺ (Fig 1). La structure peut être décrite au moyen de chaînes classiques de type Mn(2)Mo(3)O₈ reliées par mise en commun d'arrêtes entre octaèdres pour former des doubles chaînes $Mn(2)_2Mo(3)_2O_{14}$ disposées selon la direction [100] (Fig. 2a). D'autre part, les polyèdres $Mn(1)O_6$ et les tétraèdres $Mo(1)O_4$ se connectent pour conduire à des chaînes $Mn(1)_2Mo(1)_2O_{14}$ dans lesquelles les tétraèdres Mo(1)O₄ se lient pour former des ponts triples 2Mn(1)=O-Mo(1) avec les dimères Mn(1)₂O₁₀ (Fig. 2b). Une disposition particulière de groupements $Mn(1)_2O_{10}$ et $Mn(2)_2O_{10}$ permet, par partage de sommets entre polyèdres de nature différente, la connexion des doubles chaînes $Mn(1)_2Mo(1)_2O_{14}$ et $Mn(2)_2Mo(3)_2O_{14}$. En effet, chaque tétraèdre $Mo(2)O_4$ partage ses quatre sommets avec seulement trois dimères (Fig. 3a). Par contre un tétraèdre $Mo(1)O_4$ lie d'une part deux dimères différents par formation de deux ponts triples de type 2Mn(1)=O-Mo(1) et d'autre part, il se connecte, par pont simple, à un groupement $Mn(1)_2O_{10}$ (Fig. 3 b). Les tétraèdres $Mo(3)O_4$ renforcent d'avantage, la jonction des chaînes par formation de ponts mixtes de type Mn(1)–O–Mo(3) et Mn(2)–O–Mo(3) (Fig. 3c). Il est à signaler que le quatrième sommet, restant libre, dans chaque tétraèdre $Mo(1)O_4$ et $Mo(3)O_4$, forme un groupement molybdyl (Mo-O₁). Il en résulte donc, une charpente tridimensionnelle possédant des canaux où logent les cations Na⁺ (Fig. 4 et 5). Dans chacun de ces tétraèdres, on relève des distances moyennes, d(Mo-O) de l'ordre de 1,768 (2) Å, conforment à celles observées dans la littérature (Souilem et al., 2014; Ennajeh et al., 2013). Concernant les tétraèdres Mo(1)O₄ et Mo(3)O₄ on relève une distance longue pour l'oxygène engagé dans le pont mixte et une plus courte qui correspond aux atomes d'oxygène non reliés par ailleurs (Fig. 3b et 3c). De plus, les distances moyennes Mn–O, et Na–O, égales respectivement à 2,176 (2) Å et 2,492 (2) Å, sont comparables à celles rencontrées dans des travaux antérieurs (Frigui et al., 2012; Guesmi & Driss, 2012). Ainsi, le calcul des différentes valences de liaison (BVS), utilisant la formule empirique de Brown (Brown & Altermatt, 1985), conduit aux valeurs des charges des ions suivants: Mo1 (5,81), Mo2 (5,83), Mo3 (5,94), Mn1 (2,01), Mn2 (2,02), Na1(0,93), Na2(0,61), Na3/Mn3 (1,28), ce qui confirme les degrés d'oxydation des différents ions attendus dans la structure. Un examen bibliographie montre que la phase caractérisée est isostructurale à

celles de formulation $Ag_2M_2(MoO_4)_3$ (M = Mg, Co, Mn) (Tsyrenova et al., 2004) (M = Zn, Fe) (Gicquel-Mayer et al., 1981; Balsanova et al., 2009). Elle est construite à partir de chaînes MnMoO₈. Ce type de chaînes est observé dans d'autres composés rencontrés dans la littérature notamment: K_{1.65}V_{1.78}W_{0.22}O₂(AsO₄)₂ (Belkhiri et al. 2009) et $Ag_{1.09}Mn_{3.46}(AsO_4)_3$ (Frigui *et al.* 2012). En effet, dans l'arséniate $K_{1.65}V_{1.78}W_{0.22}O_2(AsO_4)_2$ les octaèdres MO_6 (M = W/V ou V) et les tétraèdres AsO₄ sont reliés par mise en commun de sommets pour former deux chaînes similaires [MAsO₈] et $VAsO_8$ disposées respectivement selon a et c. Leur connexion est assurée seulement par formation de ponts mixtes entre octaèdres et tétraèdres. Contrairement à notre structure où les chaînes [MnMoO₈] se connectent par mise en commun d'arêtes (Fig. 2a et 2b). Une comparaison avec celle du triarséniate Na_{0.5}K_{0.65}Mn_{3.43}(AsO₄)₃ (Frigui *et al.*, 2011) montre une différence nette dans la charpente et en particulier dans les types de connexion des groupements Mn₂O₁₀ mis en jeu. En effet, on remarque que dans le cas de $Na_{0.5}K_{0.65}Mn_{3.43}(AsO_4)_3$, les dimères Mn_2O_{10} sont liés entre eux par partage d'arêtes pour conduire à des chaînes infinies d'octaèdes connectées avec les tétraèdres AsO4 par mise en commun des sommets. Dans notre cas, les dimères Mn_2O_{10} restent isolés et se lient directement aux tétraèdres MoO_4 par partage de sommets. De plus la recherche de structures présentant des aspects communs avec celle de Na_{1.67}Mn_{2.17}(MoO₄)₃ nous a conduit aux composés $K_{0.12}$ Na_{0.54}Ag_{0.34}Nb₄O₉AsO₄ (Chérif *et al.*, 2011) et LiMo₂O₃(PO₄)₃ (Ledain *et al.*, 1996). En effet, dans $K_{0.12}$ Na_{0.54}Ag_{0.34}Nb₄O₉AsO₄ les dimères Nb₂O₁₀ s'insèrent entre les couches et assurent leur connexion par mise en commun de sommets entre octaèdres. Dans LiMo₂O₃(PO₄)₃, les dimères Mo₂O₁₁ se lient au moyen de sommets pour conduire à une charpente tridimensionnelle. Par contre, dans Li[VMoO₆] (Ezzine Yahmed et al., 2013) les dimères VMoO₁₀ se lient par partage d'arêtes pour former des chaînes doubles disposées en zigzag qui se connectent à leur tour par ponts simples donnant des couches en dents de scie, ce qui mène à une structure bidimensionnelle.

S2. Experimental

Un mélange de Na₂CO₃ (Prolabo, 27778), C₉H₉MnO₆·2H₂O (Fluka, 63538) et (NH₄)₂Mo₄O₁₃ (Fluka, 69858) sont pris dans les proportions Na:Mn:Mo égales à 2:2:3. L'ensemble est finement broyé et mis dans un creuset en porcelaine. Il est préchauffé jusqu'à 623 K afin d'éliminer les produits volatils. Le résidu a été ensuite porté à 998 K (proche de la température de fusion) et maintenu à cette dernière pendant trois semaines pour favoriser la germination et la croissance des cristaux. Un refroidissement lent (5 K/24 h) a été appliqué jusquà 900 K suivi d'un autre plus rapide (50 K/jour) jusqu'à la température ambiante. Des cristaux de couleur jaunâtre ont été séparés par l'eau chaude.

S3. Refinement

L'affinement de tous les paramètres variables conduit à des ellipsoïdes bien définis. Les densités d'électrons maximum et minimum restants dans la Fourier-différence sont situées respectivement à 0,92 Å de Mo3 et à 0,89 Å de Mo2. Il en résulte la composition chimique finale, $Na_{1,67(1)}Mn_{2,17(1)}(MoO_4)_3$ du nouveau matériau obtenu. Le cristal étant de petite taille la correction d'absoption par psi-scan n'a eu aucun effet sur le résultat de l'affinemet final sauf une légère augmentation des valeurs absolues des densités d'électrons maximum (de 0,81 à 1,47) et minimum (de -0,74 à -1,28) situées respectivement à 0,96 Å de Mn1 et à 0,89 Å de Mo1.

Figure 1

Unité asymétrique dans Na_{1,67}Mn_{2,17}(MoO₄)₃. Les éllipsoïdes ont été définis avec 50% de probabilité. [Code de symétrie: (i) x - 1, y - 1, z; (ii) x, y - 1, z; (iii) -x + 1, -y + 1, -z + 1; (iv)x - 1, y, z; (v) -x + 1, -y, -z + 1; (vi) x + 1, y, z; (vii) -x + 2, -y + 1, -z + 1.]

Figure 3

Représentation des environnements des tétraèdres: (a) Mo(2)O₄ (b) Mo(1)O₄ (c) Mo(3)O₄.

Figure 4

Projection de la structure de Na_{1,67}Mn_{2,17}(MoO₄)₃ selon [100].

Figure 5

Projection de la structure de Na_{1,67}Mn_{2,17}(MoO₄)₃ selon [001].

Disodium dimanganese(II) tris[orthomolybdate(VI)]

Crystal data

Na_{1.67}Mn_{2.17}(MoO₄)₃ $M_r = 637.43$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.1072 (7) Å*b* = 8.8120 (8) Å *c* = 10.4330 (9) Å $\alpha = 106.501 \ (9)^{\circ}$ $\beta = 105.361 \ (9)^{\circ}$ $\gamma = 102.756 \ (8)^{\circ}$ $V = 572.31 (11) \text{ Å}^3$

Data collection

Enraf–Nonius CAD-4	2474 independent reflections
diffractometer	2206 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.017$
Graphite monochromator	$\theta_{\rm max} = 27.0^\circ, \ \theta_{\rm min} = 2.2^\circ$
$\omega/2\theta$ scans	$h = -1 \rightarrow 9$
Absorption correction: ψ scan	$k = -11 \rightarrow 11$
(North <i>et al.</i> , 1968)	$l = -13 \rightarrow 13$
$T_{\min} = 0.371, \ T_{\max} = 0.540$	2 standard reflections every 120 min
3079 measured reflections	intensity decay: 1.3%

Z = 2F(000) = 589 $D_{\rm x} = 3.699 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 25 reflections $\theta = 10 - 15^{\circ}$ $\mu = 5.64 \text{ mm}^{-1}$ T = 298 KPrism, yellow $0.28 \times 0.15 \times 0.11 \text{ mm}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.030$	$w = 1/[\sigma^2(F_o^2) + (0.0429P)^2 + 1.7705P]$
$wR(F^2) = 0.083$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{ m max} < 0.001$
2474 reflections	$\Delta \rho_{\rm max} = 1.52 \text{ e} \text{ Å}^{-3}$
180 parameters	$\Delta \rho_{\rm min} = -1.24 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: SHELXL97 (Sheldrick,
Primary atom site location: structure-invariant	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
direct methods	Extinction coefficient: 0.0295 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Mol	0.89052 (6)	0.41054 (5)	0.66707 (4)	0.01200 (14)	
Mo2	0.21772 (6)	0.16273 (5)	0.26393 (4)	0.01185 (14)	
Mo3	0.59566 (6)	0.76438 (5)	0.12859 (4)	0.01514 (14)	
Mn1	0.37898 (12)	0.45559 (10)	0.60871 (8)	0.01386 (18)	
Mn2	0.04434 (12)	0.70486 (9)	0.01860 (8)	0.01258 (18)	
Na3	0.2869 (3)	0.7921 (2)	0.80026 (18)	0.0198 (5)	0.829 (5)
Mn3	0.2869 (3)	0.7921 (2)	0.80026 (18)	0.0198 (5)	0.171 (5)
Na1	0.0000	0.0000	0.5000	0.0534 (13)	
Na2	0.5195 (17)	0.9729 (14)	0.4581 (10)	0.054 (4)	0.341 (9)
O1	0.7228 (9)	0.9722 (6)	0.2412 (6)	0.0554 (16)	
O2	0.8393 (8)	0.1999 (5)	0.5790 (5)	0.0320 (10)	
O3	0.7536 (7)	0.6998 (6)	0.0365 (5)	0.0320 (10)	
O4	0.2232 (6)	0.2013 (5)	0.4419 (4)	0.0205 (8)	
O5	0.1747 (7)	0.9506 (5)	0.1815 (5)	0.0282 (9)	
O6	0.1209 (6)	0.5181 (5)	0.6519 (4)	0.0206 (8)	
O7	0.0200 (6)	0.2252 (5)	0.1661 (4)	0.0213 (8)	
O8	0.3534 (6)	0.7437 (6)	0.0055 (4)	0.0247 (9)	
O9	0.6776 (5)	0.4713 (5)	0.5818 (4)	0.0169 (7)	
O10	0.9224 (6)	0.4447 (5)	0.8498 (4)	0.0169 (7)	
O11	0.4624 (6)	0.2725 (5)	0.2679 (4)	0.0197 (8)	
O12	0.5617 (8)	0.6484 (7)	0.2375 (5)	0.0443 (13)	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.0137 (2)	0.0142 (2)	0.0126 (2)	0.00713 (17)	0.00657 (16)	0.00746 (17)
Mo2	0.0132 (2)	0.0107 (2)	0.0131 (2)	0.00356 (16)	0.00512 (16)	0.00613 (16)
Mo3	0.0143 (2)	0.0171 (2)	0.0151 (2)	0.00401 (17)	0.00602 (17)	0.00724 (17)
Mn1	0.0142 (4)	0.0157 (4)	0.0155 (4)	0.0055 (3)	0.0078 (3)	0.0083 (3)
Mn2	0.0154 (4)	0.0126 (4)	0.0138 (4)	0.0062 (3)	0.0072 (3)	0.0073 (3)
Na3	0.0175 (9)	0.0210 (9)	0.0236 (9)	0.0081 (7)	0.0113 (7)	0.0070 (7)
Mn3	0.0175 (9)	0.0210 (9)	0.0236 (9)	0.0081 (7)	0.0113 (7)	0.0070 (7)
Na1	0.100 (4)	0.0235 (18)	0.080 (3)	0.031 (2)	0.076 (3)	0.031 (2)
Na2	0.032 (5)	0.046 (7)	0.061 (8)	-0.012 (4)	-0.015 (5)	0.032 (6)
01	0.049 (3)	0.028 (3)	0.055 (3)	-0.010 (2)	0.016 (3)	-0.013 (2)
O2	0.050 (3)	0.018 (2)	0.031 (2)	0.016 (2)	0.017 (2)	0.0072 (18)
O3	0.021 (2)	0.046 (3)	0.034 (2)	0.016 (2)	0.0123 (18)	0.014 (2)
O4	0.026 (2)	0.0176 (18)	0.0165 (17)	0.0023 (16)	0.0092 (16)	0.0071 (15)
05	0.037 (2)	0.0133 (18)	0.031 (2)	0.0050 (17)	0.0146 (19)	0.0034 (16)
O6	0.0193 (19)	0.027 (2)	0.0203 (19)	0.0108 (16)	0.0111 (16)	0.0099 (16)
O7	0.0162 (18)	0.030(2)	0.024 (2)	0.0058 (16)	0.0070 (16)	0.0189 (17)
08	0.020 (2)	0.037 (2)	0.030(2)	0.0175 (18)	0.0116 (17)	0.0197 (19)
O9	0.0131 (17)	0.0257 (19)	0.0167 (17)	0.0078 (15)	0.0070 (14)	0.0116 (15)
O10	0.0221 (19)	0.0181 (18)	0.0162 (17)	0.0076 (15)	0.0091 (15)	0.0116 (15)
O11	0.0185 (18)	0.0196 (18)	0.0232 (19)	0.0075 (15)	0.0088 (16)	0.0086 (15)
O12	0.037 (3)	0.067 (4)	0.036 (3)	0.010 (3)	0.006 (2)	0.040 (3)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Mo1—O2	1.726 (4)	Mn2—O7 ^v	2.153 (4)
Mo1—O6 ⁱ	1.772 (4)	Mn2—O10 ⁱⁱⁱ	2.161 (4)
Mo1-010	1.787 (4)	Mn2—08	2.194 (4)
Mo1-09	1.812 (4)	Mn2—O10 ^{vi}	2.264 (4)
Mo2—O5 ⁱⁱ	1.739 (4)	Na3—O11 ⁱⁱⁱ	2.212 (4)
Mo2—O11	1.777 (4)	Na3—O1 ^{vii}	2.250 (7)
Mo2—O4	1.778 (4)	Na3—O8 ^{viii}	2.250 (4)
Mo2—O7	1.795 (4)	Na3—O7 ^{ix}	2.279 (4)
Mo3—O1	1.742 (5)	Na3—O6	2.296 (4)
Mo3—O3	1.747 (4)	Na1—O2 ^{iv}	2.376 (4)
Mo3-012	1.757 (5)	Na1—O2 ^x	2.376 (4)
Mo3—O8	1.790 (4)	Na1—O4 ^{xi}	2.430 (4)
Mn1—O12 ⁱⁱⁱ	2.060 (4)	Na1—O4	2.430 (4)
Mn1—06	2.148 (4)	Na1—O1 ⁱⁱⁱ	2.797 (6)
Mn1—09	2.193 (4)	Na1—O1 ^{xii}	2.797 (6)
Mn1—O9 ⁱⁱⁱ	2.224 (4)	Na2—O2 ^{xiii}	2.408 (11)
Mn1—O4	2.224 (4)	Na2—O2 ⁱⁱⁱ	2.529 (12)
Mn1—O11 ⁱⁱⁱ	2.226 (4)	Na2—O4 ⁱⁱⁱ	2.815 (13)
Mn2—O3 ^{iv}	2.115 (4)	Na2—O1	2.990 (12)
Mn2—O5	2.151 (4)		

O2-Mo1-O6 ⁱ	107.4 (2)	O7 ^v —Mn2—O8	83.66 (15)
O2-Mo1-O10	108.02 (19)	O10 ⁱⁱⁱ —Mn2—O8	95.72 (15)
O6 ⁱ —Mo1—O10	110.69 (18)	O3 ^{iv} —Mn2—O10 ^{vi}	93.72 (16)
O2—Mo1—O9	108.4 (2)	O5-Mn2-O10 ^{vi}	177.23 (16)
O6 ⁱ —Mo1—O9	110.42 (17)	O7 ^v —Mn2—O10 ^{vi}	82.20 (14)
O10—Mo1—O9	111.77 (17)	O10 ⁱⁱⁱ —Mn2—O10 ^{vi}	79.09 (14)
O5 ⁱⁱ —Mo2—O11	107.62 (19)	O8—Mn2—O10 ^{vi}	92.25 (15)
O5 ⁱⁱ —Mo2—O4	108.4 (2)	O11 ⁱⁱⁱ —Na3—O1 ^{vii}	104.9 (2)
O11—Mo2—O4	109.13 (18)	O11 ⁱⁱⁱ —Na3—O8 ^{viii}	100.10 (15)
O5 ⁱⁱ —Mo2—O7	110.2 (2)	O1 ^{vii} —Na3—O8 ^{viii}	130.52 (19)
O11—Mo2—O7	110.29 (17)	O11 ⁱⁱⁱ —Na3—O7 ^{ix}	162.72 (17)
O4—Mo2—O7	111.16 (19)	O1 ^{vii} —Na3—O7 ^{ix}	87.64 (19)
O1—Mo3—O3	107.7 (3)	O8 ^{viii} —Na3—O7 ^{ix}	79.60 (15)
O1—Mo3—O12	107.1 (3)	O11 ⁱⁱⁱ —Na3—O6	79.28 (15)
O3—Mo3—O12	110.1 (3)	O1 ^{vii} —Na3—O6	129.81 (19)
O1—Mo3—O8	110.5 (3)	O8 ^{viii} —Na3—O6	96.19 (16)
O3—Mo3—O8	110.2 (2)	O7 ^{ix} —Na3—O6	83.56 (15)
O12—Mo3—O8	111.1 (2)	O2 ^{iv} —Na1—O2 ^x	180.000 (1)
O12 ⁱⁱⁱ —Mn1—O6	94.94 (19)	O2 ^{iv} —Na1—O4 ^{xi}	90.01 (15)
O12 ⁱⁱⁱ —Mn1—O9	93.48 (18)	O2 ^x —Na1—O4 ^{xi}	89.99 (15)
O6—Mn1—O9	163.16 (15)	O2 ^{iv} —Na1—O4	89.99 (15)
O12 ⁱⁱⁱ —Mn1—O9 ⁱⁱⁱ	169.9 (2)	O2 ^x —Na1—O4	90.01 (15)
O6—Mn1—O9 ⁱⁱⁱ	92.19 (14)	O4 ^{xi} —Na1—O4	180.0
O9—Mn1—O9 ⁱⁱⁱ	81.49 (14)	O2 ^{iv} —Na1—O1 ⁱⁱⁱ	101.44 (16)
O12 ⁱⁱⁱ —Mn1—O4	89.8 (2)	O2 ^x —Na1—O1 ⁱⁱⁱ	78.56 (16)
O6—Mn1—O4	101.04 (16)	O4 ^{xi} —Na1—O1 ⁱⁱⁱ	80.94 (15)
O9—Mn1—O4	93.54 (15)	O4—Na1—O1 ⁱⁱⁱ	99.06 (15)
O9 ⁱⁱⁱ —Mn1—O4	81.83 (14)	O2 ^{iv} —Na1—O1 ^{xii}	78.56 (16)
O12 ⁱⁱⁱ —Mn1—O11 ⁱⁱⁱ	103.0 (2)	O2 ^x —Na1—O1 ^{xii}	101.44 (16)
O6—Mn1—O11 ⁱⁱⁱ	82.21 (15)	O4 ^{xi} —Na1—O1 ^{xii}	99.06 (15)
O9—Mn1—O11 ⁱⁱⁱ	81.69 (14)	O4—Na1—O1 ^{xii}	80.94 (15)
O9 ⁱⁱⁱ —Mn1—O11 ⁱⁱⁱ	84.99 (14)	O1 ⁱⁱⁱ —Na1—O1 ^{xii}	180.0
O4—Mn1—O11 ⁱⁱⁱ	166.52 (14)	O2 ^{xiii} —Na2—O2 ⁱⁱⁱ	156.6 (5)
O3 ^{iv} —Mn2—O5	88.82 (18)	Na2 ^{vii} —Na2—O4 ⁱⁱⁱ	104.7 (13)
$O3^{iv}$ —Mn2— $O7^{v}$	93.21 (17)	O2 ^{xiii} —Na2—O4 ⁱⁱⁱ	80.8 (3)
$O5$ — $Mn2$ — $O7^{v}$	98.77 (16)	O2 ⁱⁱⁱ —Na2—O4 ⁱⁱⁱ	104.7 (4)
O3 ^{iv} —Mn2—O10 ⁱⁱⁱ	89.32 (17)	Na2 ^{vii} —Na2—O1	154.6 (14)
O5—Mn2—O10 ⁱⁱⁱ	99.87 (16)	O2 ^{xiii} —Na2—O1	74.3 (3)
O7 ^v —Mn2—O10 ⁱⁱⁱ	161.24 (15)	O2 ⁱⁱⁱ —Na2—O1	128.2 (4)
O3 ^{iv} —Mn2—O8	172.82 (18)	O4 ⁱⁱⁱ —Na2—O1	86.6 (4)
O5—Mn2—O8	85.29 (17)		

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*, *y*-1, *z*; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) *x*-1, *y*, *z*; (v) -*x*, -*y*+1, -*z*; (vi) *x*-1, *y*, *z*-1; (vii) -*x*+1, -*y*+2, -*z*+1; (viii) *x*, *y*, *z*+1; (ix) -*x*, -*y*+1, -*z*+1; (x) -*x*+1, -*y*, -*z*+1; (xii) -*x*, -*y*, -*z*+1; (xii) *x*-1, *y*-1, *z*; (xiii) *x*, *y*+1, *z*.