

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Methyl-2-methylsulfanyl-6-nitro-1Hbenzimidazole

Mohamed El Ghozlani,^a* El Mostapha Rakib,^a Abdelouahid Medaghri-Alaoui,^a Mohamed Saadi^b and Lahcen El Ammari^b

^aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and ^bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco Correspondence e-mail: m_elghozlani@yahoo.fr

Received 27 February 2014; accepted 1 March 2014

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.116; data-to-parameter ratio = 20.4.

The molecule of the title compound, $C_9H_9N_3O_2S$, is built up from fused five- and six-membered rings connected to methylsulfanyl and nitro groups, respectively. The mean plane through the fused ring system is inclined slightly relative to the plane passing through the nitro group [dihedral angle = 3.6 (2)°]. In the crystal, molecules are linked by $C-H \cdots O$ hydrogen bonds and π - π interactions between imidazole rings [inter-centroid distance = 3.667(3)Å], forming a threedimensional network.

Related literature

For the biological activity of benzimidazoles, see: Achar et al. (2010); Boiani & Gonzalez (2005); Ishida et al. (2006); Kamal et al. (2008); Kus et al. (2004); LaPlante et al. (2004).

Experimental

Crystal data $C_9H_9N_3O_2S$ $M_r = 223.25$ Monoclinic, $P2_1/c$

a = 11.7213 (4)
b = 11.8991(4)
c = 7.3025 (3) Å

$\beta = 103.523 \ (1)^{\circ}$
$V = 990.26 (6) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker X8 APEX diffractometer	11751 measured reflections
Absorption correction: multi-scan	2772 independent reflections
(SADABS; Bruker, 2009)	2350 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.658, T_{\max} = 0.746$	$R_{\rm int} = 0.025$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.116$ S = 1.072772 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C8-H8A\cdotsO1^{i}$	0.96	2.53	3.393 (2)	150
C3−H3···O2 ⁱⁱ	0.93	2.65	3.3038 (19)	128
$C9-H9A\cdots O2^{iii}$	0.96	2.67	3.563 (2)	155
			. 1	

Symmetry codes: (i) x + 1, y, z + 1; (ii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x, -y + 2, -z.

Data collection: APEX2 (Bruker, 2009): cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5298).

References

- Achar, K. C. S., Hosamani, K. M. & Seetharamareddy, H. R. (2010). Eur. J. Med Chem 45 2048-2054
- Boiani, M. & Gonzalez, M. (2005). Mini Rev. Med. Chem. 5, 409-424.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ishida, T., Suzuki, T., Hirashima, S., Mizutani, K., Yoshida, A., Ando, I., Ikeda, S., Adachi, T. & Hashimoto, H. (2006). Bioorg. Med. Chem. Lett. 16, 1859-1863
- Kamal, A., Kumar, P. P., Sreekanth, K., Seshadri, B. N. & Ramulu, P. (2008). Bioorg. Med. Chem. Lett. 18, 2594-2598.
- Kus, C., Ayhan-KIlcIgil, G., Eke, B. C. & Iscan, M. (2004). Arch. Pharm. Res. 27, 156-163.
- LaPlante, S. R., Jakalian, A., Aubry, N., Bousquet, Y., Ferland, J. M., Gillard, J., Lefebvre, S., Poirier, M., Tsantrizos, Y. S., Kukolj, G. & Beaulieu, P. L. (2004). Angew. Chem. Int. Ed. 43, 4306-4311.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

 $\mu = 0.31 \text{ mm}^{-1}$ T = 296 K

136 parameters

 $\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

H-atom parameters constrained

 $0.42 \times 0.31 \times 0.26 \text{ mm}$

supporting information

Acta Cryst. (2014). E70, o407 [doi:10.1107/S1600536814004723]

1-Methyl-2-methylsulfanyl-6-nitro-1H-benzimidazole

Mohamed El Ghozlani, El Mostapha Rakib, Abdelouahid Medaghri-Alaoui, Mohamed Saadi and Lahcen El Ammari

S1. Structural commentary

Benzimidazole derivatives are of wide interest because of their diverse biological activities and clinical applications. This fused-ring system exhibits a broad spectrum of biological activities, that is, anti-cancer, anti-viral, anti-bacterial, anti-inflammatory, anti-oxidant and anti-leukaemic (LaPlante *et al.*, 2004; Ishida *et al.*, 2006; Boiani & Gonzalez, 2005; Achar *et al.*, 2010; Kus *et al.*, 2004; Kamal *et al.*, 2008).

The molecule of the title compound, $C_9H_9N_3O_2S$, is formed by a fused five- and six-membered rings as shown in Fig.1. The mean plane through the fused ring system (N1,N2,C1 to C7) is slightly inclined relative to the mean plane passing through the nitro group with a dihedral angle of 3.6 (2)°. In the crystal, molecules are linked by C—H···O hydrogen bonds and π - π interactions between indazole rings [inter-centroid distance = 3.667 (3) Å], forming a three-dimensional network as shown in Fig.2 and Table 1.

S2. Synthesis and crystallization

To a solution of 5-nitro-1*H*-benzimidazole-2-thiol (5.12 mmol) in DMSO (15 ml) was added potassium carbonate (5.2 mmol). After 15 min. at 298 K, methyl iodide (7.68 mmol) was added drop wise. Upon disappearance of the starting material, as indicated by TLC, the resulting mixture was evaporated. The crude material was dissolved with EtOAc (60 ml), washed with water and brine, dried over MgSO₄ and the solvent was evaporated *in vacuo*. The resulting residue was purified by column chromatography (EtOAc/hexane 3/7). The title compound was recrystallized from acetone at room temperature giving colourless crystals (M.pt: 475 K, yield: 47%).

S3. Refinement

H atoms were located in a difference map and treated as riding with C-H = 0.96 Å and C-H = 0.93 Å for methyl- and aromatic-H, respectively. All hydrogen with $U_{iso}(H) = 1.5 U_{eq}$ for methyl-H and $U_{iso}(H) = 1.2 U_{eq}$ for aromatic-H.

Figure 1

Plot of the molecule of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

Figure 2

Partial crystal packing for the title compound showing molecules linked by π - π interactions and hydrogen bonds (dashed lines).

1-Methyl-2-methylsulfanyl-6-nitro-1*H*-benzimidazole

Crystal data	
$C_9H_9N_3O_2S$	$\beta = 103.523 \ (1)^{\circ}$
$M_r = 223.25$	V = 990.26 (6) Å ³
Monoclinic, $P2_1/c$	Z = 4
Hall symbol: -P 2ybc	F(000) = 464
a = 11.7213 (4) Å	$D_{\rm x} = 1.497 {\rm ~Mg} {\rm ~m}^{-3}$
b = 11.8991 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 7.3025 (3) Å	Cell parameters from 2772 reflections

 $\theta = 2.5 - 29.6^{\circ}$ $\mu = 0.31 \text{ mm}^{-1}$ T = 296 K

Data collection

Bruker X8 APEX
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min} = 0.658, \ T_{\max} = 0.746$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.116$	neighbouring sites
S = 1.07	H-atom parameters constrained
2772 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0644P)^2 + 0.2102P]$
136 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Block, colourless

 $R_{\rm int} = 0.025$

 $h = -16 \rightarrow 16$ $k = -16 \rightarrow 15$ $l = -10 \rightarrow 8$

 $0.42 \times 0.31 \times 0.26 \text{ mm}$

11751 measured reflections 2772 independent reflections 2350 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 29.6^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$

Refinement. Refinement of F^2 against all reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.37904 (11)	0.74865 (11)	0.42804 (17)	0.0319 (3)	
C2	0.21992 (11)	0.66649 (11)	0.29323 (17)	0.0315 (3)	
C3	0.13098 (12)	0.58951 (11)	0.2205 (2)	0.0385 (3)	
H3	0.1435	0.5126	0.2365	0.046*	
C4	0.02393 (12)	0.63119 (12)	0.1243 (2)	0.0388 (3)	
H4	-0.0373	0.5820	0.0752	0.047*	
C5	0.00707 (11)	0.74680 (12)	0.10023 (18)	0.0344 (3)	
C6	0.09247 (11)	0.82662 (11)	0.17081 (17)	0.0331 (3)	
H6	0.0793	0.9034	0.1538	0.040*	
C7	0.19868 (11)	0.78276 (10)	0.26849 (16)	0.0295 (3)	
C8	0.58418 (14)	0.64247 (14)	0.5740 (2)	0.0502 (4)	
H8A	0.6651	0.6472	0.6400	0.075*	
H8B	0.5788	0.6101	0.4518	0.075*	

H8C	0.5424	0.5961	0.6440	0.075*	
C9	0.32546 (14)	0.95396 (12)	0.3712 (3)	0.0487 (4)	
H9A	0.2561	0.9940	0.3088	0.073*	
H9B	0.3884	0.9716	0.3123	0.073*	
H9C	0.3470	0.9756	0.5013	0.073*	
N1	0.30262 (9)	0.83409 (9)	0.35759 (15)	0.0326 (2)	
N2	0.33342 (10)	0.64715 (10)	0.39349 (16)	0.0353 (2)	
N3	-0.10606 (11)	0.78650 (12)	-0.00931 (19)	0.0451 (3)	
01	-0.17998 (12)	0.71648 (13)	-0.0807 (2)	0.0775 (5)	
O2	-0.12317 (11)	0.88741 (11)	-0.02760 (19)	0.0610 (3)	
S 1	0.52130 (3)	0.78014 (3)	0.54830 (5)	0.04086 (13)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0322 (6)	0.0338 (6)	0.0290 (6)	-0.0034 (5)	0.0058 (4)	-0.0008 (5)
C2	0.0328 (6)	0.0299 (6)	0.0312 (6)	-0.0036 (4)	0.0066 (4)	-0.0010 (4)
C3	0.0407 (7)	0.0282 (6)	0.0445 (7)	-0.0073 (5)	0.0062 (5)	-0.0029 (5)
C4	0.0351 (6)	0.0374 (7)	0.0426 (7)	-0.0098(5)	0.0062 (5)	-0.0089 (6)
C5	0.0290 (6)	0.0422 (7)	0.0312 (6)	-0.0004 (5)	0.0053 (5)	-0.0059 (5)
C6	0.0342 (6)	0.0306 (6)	0.0340 (6)	0.0001 (5)	0.0068 (5)	-0.0027 (5)
C7	0.0311 (6)	0.0291 (6)	0.0281 (5)	-0.0047 (4)	0.0067 (4)	-0.0022 (4)
C8	0.0382 (7)	0.0525 (9)	0.0537 (9)	0.0044 (6)	-0.0016 (6)	-0.0025 (7)
С9	0.0460 (8)	0.0291 (7)	0.0657 (10)	-0.0091 (6)	0.0024 (7)	-0.0022 (6)
N1	0.0318 (5)	0.0282 (5)	0.0356 (5)	-0.0054 (4)	0.0032 (4)	-0.0020 (4)
N2	0.0338 (5)	0.0316 (5)	0.0379 (5)	-0.0027 (4)	0.0033 (4)	0.0007 (4)
N3	0.0337 (6)	0.0560 (8)	0.0427 (6)	0.0032 (5)	0.0032 (5)	-0.0095 (5)
01	0.0439 (7)	0.0760 (10)	0.0950 (11)	-0.0049 (6)	-0.0193 (7)	-0.0228 (8)
O2	0.0467 (6)	0.0567 (8)	0.0720 (8)	0.0149 (5)	-0.0012 (6)	-0.0006 (6)
S1	0.0342 (2)	0.0423 (2)	0.0412 (2)	-0.00665 (13)	-0.00108 (13)	-0.00503 (13)

Geometric parameters (Å, °)

C1—N2	1.3210 (17)	С6—Н6	0.9300
C1—N1	1.3730 (17)	C7—N1	1.3819 (15)
C1—S1	1.7342 (13)	C8—S1	1.7882 (17)
C2—N2	1.3796 (16)	C8—H8A	0.9600
C2—C3	1.3960 (17)	C8—H8B	0.9600
C2—C7	1.4098 (18)	C8—H8C	0.9600
C3—C4	1.379 (2)	C9—N1	1.4504 (17)
С3—Н3	0.9300	С9—Н9А	0.9600
C4—C5	1.395 (2)	C9—H9B	0.9600
C4—H4	0.9300	С9—Н9С	0.9600
C5—C6	1.3888 (18)	N3—O2	1.2196 (18)
C5—N3	1.4578 (18)	N3—O1	1.2270 (18)
C6—C7	1.3841 (17)		
N2—C1—N1	113.95 (11)	S1—C8—H8A	109.5

N2—C1—S1	126.34 (11)	S1—C8—H8B	109.5
N1-C1-S1	119.71 (10)	H8A—C8—H8B	109.5
N2—C2—C3	129.35 (12)	S1—C8—H8C	109.5
N2—C2—C7	110.56 (11)	H8A—C8—H8C	109.5
C3—C2—C7	120.09 (12)	H8B—C8—H8C	109.5
C4—C3—C2	117.86 (12)	N1—C9—H9A	109.5
С4—С3—Н3	121.1	N1—C9—H9B	109.5
С2—С3—Н3	121.1	H9A—C9—H9B	109.5
C3—C4—C5	120.27 (12)	N1—C9—H9C	109.5
С3—С4—Н4	119.9	Н9А—С9—Н9С	109.5
С5—С4—Н4	119.9	H9B—C9—H9C	109.5
C6—C5—C4	123.99 (12)	C1—N1—C7	105.98 (10)
C6—C5—N3	117.79 (13)	C1—N1—C9	127.50 (11)
C4—C5—N3	118.20 (12)	C7—N1—C9	126.52 (12)
C7—C6—C5	114.64 (12)	C1—N2—C2	104.24 (11)
С7—С6—Н6	122.7	O2—N3—O1	122.70 (14)
С5—С6—Н6	122.7	O2—N3—C5	118.97 (13)
N1—C7—C6	131.58 (12)	O1—N3—C5	118.32 (14)
N1—C7—C2	105.28 (11)	C1—S1—C8	100.32 (7)
C6—C7—C2	123.13 (11)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H…A
C8—H8A····O1 ⁱ	0.96	2.53	3.393 (2)	150
С3—Н3…О2 ^{іі}	0.93	2.65	3.3038 (19)	128
C9—H9A···O2 ⁱⁱⁱ	0.96	2.67	3.563 (2)	155

Symmetry codes: (i) *x*+1, *y*, *z*+1; (ii) –*x*, *y*-1/2, –*z*+1/2; (iii) –*x*, –*y*+2, –*z*.