

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6,8-Dibromo-4-oxo-4*H*-chromene-3carbaldehyde

Yoshinobu Ishikawa

School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan

Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Received 6 February 2014; accepted 7 March 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.019; wR factor = 0.045; data-to-parameter ratio = 15.9.

In the title compound, $C_{10}H_4Br_2O_3$, the atoms of the 6,8dibromochromone unit are essentially coplanar [largest deviation from the mean planes = 0.1109 (3) Å] and the formyl group is twisted slightly with respect to the attached ring [C-C-C-O torsion angles = 11.5 (4) and -168.9 (3)°]. In the crystal, molecules are linked to each other through halogen bonds [Br···O = 3.118 (2) Å, C-Br···O = 162.37 (8) and C=O···Br = 140.20 (15)°]. The molecules are further assembled *via* π - π stacking interactions [centroid-centroid distance = 3.850 (2) Å].

Related literature

For the biological activity of the title compound, see: Kawase *et al.* (2007). For its use as a starting material for the synthesis of alkaline phosphatase inhibitorsrelated literature, see: al-Rashida *et al.* (2013). For a related structure, see: Ishikawa & Motohashi (2013). For halogen bonding, see: Auffinger *et al.* (2004); Metrangolo *et al.* (2005); Wilcken *et al.* (2013); Sirimulla *et al.* (2013).

 $M_{\rm w} = 331.95$

Experimental

Crystal data C₁₀H₄Br₂O₃ Monoclinic, $P2_1/c$ a = 11.910 (4) Å b = 3.8500 (12) Å c = 20.817 (6) Å $\beta = 95.69$ (3)° V = 949.8 (5) Å³

Data collection

Rigaku AFC-7R diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.086, T_{max} = 0.140$ 2871 measured reflections 2163 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.019$ 136 parameters

 $wR(F^2) = 0.045$ H-atom parameters constrained

 S = 1.06 $\Delta \rho_{max} = 0.37 \text{ e Å}^{-3}$

 2163 reflections
 $\Delta \rho_{min} = -0.46 \text{ e Å}^{-3}$

Data collection: *WinAFC* (Rigaku, 1999); cell refinement: *WinAFC*; data reduction: *WinAFC*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalStructure* (Rigaku, 2010); software used to prepare material for publication: *CrystalStructure*.

We acknowledge University of Shizuoka for instrumental support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: RN2123).

References

- al-Rashida, M., Raza, R., Abbas, G., Shah, M. S., Kostakis, G. E., Lecka, J., Sévigny, J., Muddassar, M., Papatriantafyllopoulou, C., & Iqbal, J. (2013). *Eur. J. Med. Chem.* 66, 438–449.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.
- Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, 01416.
- Kawase, M., Tanaka, T., Kan, H., Tani, S., Nakashima, H. & Sakagami, H. (2007). *In Vivo*, **21**, 829–834.
- Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791.
- Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388.

organic compounds

Z = 4Mo *K* α radiation

 $\mu = 8.54 \text{ mm}^-$

 $0.42 \times 0.25 \times 0.23 \text{ mm}$

1937 reflections with $F^2 > 2\sigma(F^2)$

3 standard reflections every 150

intensity decay: -0.1%

T = 100 K

 $R_{\rm int} = 0.010$

reflections

supporting information

Acta Cryst. (2014). E70, o439 [doi:10.1107/S1600536814005327]

6,8-Dibromo-4-oxo-4H-chromene-3-carbaldehyde

Yoshinobu Ishikawa

S1. Comment

The title compound shows tumor cell-cytotoxic, anti-HIV, anti-*Helicobacter pylori*, and urease inhibitory activities (Kawase *et al.* 2007). In addition, it is used as a starting material for the synthesis of alkaline phosphatase inhibitors (al-Rashida *et al.* 2013).

The atoms of 6,8-dibromo-chromone ring in the title compound is essentially coplanar, and the largest deviations is 0.1109 (3) Å for Br2. The formyl group is slightly twisted with respect to the attached ring $[C1-C2-C10-O3 = 11.5 (4)^{\circ}$ and $C3-C2-C10-O3 = -168.9 (3)^{\circ}]$.

In the crystal, the molecules are linked to each other through intermolecular interactions of the Br2 atom with the O3 atom of the formyl group [Br2···O3; 3.118 (2) Å, C7–Br2···O3ⁱ = 162.37 (8)°, Br2···Oⁱ–C10ⁱ = 140.20 (15)° (i): -*x* + 2, -*y* + 1, -*z* + 1], as shown in Fig. 1. The short contact and the geometry of the Br···O interactions come within the range of halogen bonding (Auffinger *et al.* 2004). The similar geometry is found in the crystal structure of 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa *et al.* 2013).

Halogen bonds have been found to occur in organic, inorganic, and biological systems, and have recently attracted much attention in medicinal chemistry, chemical biology, and supramolecular chemistry (Auffinger *et al.* 2004, Metrangolo *et al.* 2005, Wilcken *et al.* 2013, Sirimulla *et al.* 2013). Our analysis suggests that the strong inhibitory activity of the title compound against urease might be attributable to the halogen bond observed in the crystal, because 3-formylchromones without any halogen atom at the 8-position in the literature do not show the urease inhibitory activity (Kawase *et al.* 2007).

S2. Experimental

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a 2-butanone solution of commercially available title compound at room temperature.

S3. Refinement

The C(sp²)-bound hydrogen atoms were placed in geometrical positions [C—H 0.95 Å, $U_{iso}(H) = 1.2U_{eq}(C)$], and refined using a riding model.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius. The intermolecular interaction of the title compound is represented as dashed lines for Br…O.

6,8-Dibromo-4-oxo-4H-chromene-3-carbaldehyde

Crystal data $C_{10}H_4Br_2O_3$ $M_r = 331.95$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.910 (4) Å b = 3.8500 (12) Å c = 20.817 (6) Å $\beta = 95.69$ (3)° V = 949.8 (5) Å³ Z = 4

Data collection

Rigaku AFC-7R diffractometer ω scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.086, T_{\max} = 0.140$ 2871 measured reflections 2163 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.019$ $wR(F^2) = 0.045$ S = 1.06 F(000) = 632.00 $D_x = 2.321 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 25 reflections $\theta = 15.0-17.3^{\circ}$ $\mu = 8.54 \text{ mm}^{-1}$ T = 100 KBlock, colorless $0.42 \times 0.25 \times 0.23 \text{ mm}$

1937 reflections with $F^2 > 2\sigma(F^2)$ $R_{int} = 0.010$ $\theta_{max} = 27.5^{\circ}$ $h = -15 \rightarrow 15$ $k = -2 \rightarrow 4$ $l = -14 \rightarrow 26$ 3 standard reflections every 150 reflections intensity decay: -0.1%

2163 reflections 136 parameters 0 restraints

Primary atom site location: structure-invariant	H-atom parameters constrained
direct methods	$w = 1/[\sigma^2(F_o^2) + (0.0209P)^2 + 0.9331P]$
Secondary atom site location: difference Fourier	where $P = (F_o^2 + 2F_c^2)/3$
map	$(\Delta/\sigma)_{\text{max}} = 0.002$
Hydrogen site location: inferred from	$\Delta\rho_{\text{max}} = 0.37 \text{ e} \text{ Å}^{-3}$
neighbouring sites	$\Delta\rho_{\text{min}} = -0.46 \text{ e} \text{ Å}^{-3}$

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.573035 (18)	0.93086 (6)	0.699129 (10)	0.01429 (7)
Br2	0.985432 (18)	0.27016 (6)	0.660364 (10)	0.01402 (6)
O1	0.88801 (13)	0.2982 (5)	0.52224 (7)	0.0135 (4)
O2	0.59071 (14)	0.7059 (5)	0.43970 (8)	0.0183 (4)
O3	0.78264 (15)	0.1122 (6)	0.32871 (8)	0.0230 (4)
C1	0.85463 (19)	0.2641 (7)	0.45870 (10)	0.0137 (5)
C2	0.75650 (19)	0.3792 (7)	0.42904 (10)	0.0138 (5)
C3	0.67683 (19)	0.5722 (7)	0.46469 (10)	0.0132 (5)
C4	0.63812 (18)	0.7387 (6)	0.57688 (10)	0.0125 (5)
C5	0.67063 (18)	0.7382 (7)	0.64209 (10)	0.0122 (5)
C6	0.77314 (18)	0.5989 (7)	0.66820 (10)	0.0129 (5)
C7	0.84520 (18)	0.4570 (7)	0.62724 (10)	0.0123 (5)
C8	0.71085 (18)	0.5882 (7)	0.53541 (10)	0.0119 (5)
C9	0.81363 (18)	0.4500 (6)	0.56088 (10)	0.0111 (5)
C10	0.7291 (2)	0.3114 (7)	0.35894 (11)	0.0173 (5)
H1	0.9046	0.1492	0.4329	0.0165*
H4	0.5682	0.8381	0.5602	0.0149*
H6	0.7932	0.6016	0.7135	0.0155*
H10	0.6668	0.4296	0.3368	0.0208*

Fractional atomic coordinates and iso	otropic or equivalent isotropic	displacement parameters (\AA^2)
---------------------------------------	---------------------------------	-------------------------------------

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.01503 (11)	0.01571 (12)	0.01299 (11)	0.00054 (9)	0.00562 (8)	-0.00072 (9)
Br2	0.01206 (11)	0.01685 (12)	0.01260 (11)	0.00133 (9)	-0.00153 (8)	0.00018 (9)
01	0.0109 (8)	0.0193 (9)	0.0102 (7)	0.0017 (7)	0.0008 (6)	-0.0015 (7)
O2	0.0151 (8)	0.0233 (10)	0.0159 (8)	0.0032 (8)	-0.0015 (7)	0.0023 (8)
O3	0.0206 (9)	0.0327 (11)	0.0157 (8)	0.0031 (9)	0.0015 (7)	-0.0066 (8)
C1	0.0151 (11)	0.0162 (12)	0.0099 (10)	-0.0017 (10)	0.0013 (8)	-0.0029 (9)
C2	0.0142 (11)	0.0145 (12)	0.0128 (11)	-0.0025 (10)	0.0013 (9)	-0.0005 (9)
C3	0.0142 (11)	0.0137 (12)	0.0117 (10)	-0.0038 (10)	0.0013 (8)	0.0008 (9)
C4	0.0107 (10)	0.0117 (12)	0.0148 (11)	-0.0015 (9)	0.0003 (8)	0.0009 (9)
C5	0.0121 (11)	0.0114 (12)	0.0141 (10)	-0.0025 (10)	0.0072 (8)	-0.0014 (9)
C6	0.0150 (11)	0.0135 (12)	0.0103 (10)	-0.0022 (10)	0.0013 (8)	0.0006 (9)

supporting information

C7	0.0109 (10)	0.0123 (12)	0.0136 (11)	-0.0007 (9)	-0.0004 (8)	0.0012 (9)	
C8	0.0114 (10)	0.0125 (12)	0.0119 (10)	-0.0029 (10)	0.0017 (8)	0.0012 (9)	
C9	0.0108 (10)	0.0110 (11)	0.0122 (10)	-0.0008 (9)	0.0041 (8)	0.0002 (9)	
C10	0.0157 (11)	0.0241 (14)	0.0117 (11)	-0.0008 (11)	-0.0006 (9)	-0.0006 (10)	

Geometric parameters (Å, °)

Br1—C5	1.893 (3)	C4—C5	1.374 (3)
Br2—C7	1.885 (3)	C4—C8	1.407 (4)
01—C1	1.349 (3)	C5—C6	1.394 (3)
O1—C9	1.384 (3)	C6—C7	1.381 (4)
O2—C3	1.217 (3)	С7—С9	1.395 (3)
O3—C10	1.213 (4)	C8—C9	1.391 (3)
C1—C2	1.342 (3)	C1—H1	0.950
C2—C3	1.464 (4)	C4—H4	0.950
C2-C10	1.486 (3)	С6—Н6	0.950
C3—C8	1.489 (3)	C10—H10	0.950
Br2…O1	2.9940 (17)	C10O2 ^v	3.395 (4)
O1…C3	2.877 (3)	C10O3 ⁱⁱⁱ	3.223 (4)
O2…C1	3.561 (3)	Br1…H4	2.9089
O2…C4	2.858 (3)	Br1…H6	2.9009
O2…C10	2.898 (4)	Br2···H6	2.9323
O3…C1	2.818 (3)	O2…H4	2.5993
C1…C7	3.599 (4)	O2…H10	2.6314
C1…C8	2.753 (4)	O3…H1	2.4918
C2…C9	2.775 (3)	C1…H10	3.2748
C4…C7	2.801 (3)	C3…H1	3.2875
С5…С9	2.750 (4)	С3…Н4	2.6802
C6…C8	2.790 (3)	C3…H10	2.7091
$Br1 \cdots Br1^i$	3.4567 (8)	С4…Н6	3.2769
Br1…Br1 ⁱⁱ	3.4567 (8)	С6…Н4	3.2818
Br1…C5 ⁱⁱⁱ	3.563 (3)	С9…Н1	3.1918
Br2…O3 ^{iv}	3.118 (2)	С9…Н4	3.2814
Br2…C7 ^v	3.583 (3)	С9…Н6	3.2634
O1…O1 ^{vi}	3.298 (3)	C10…H1	2.5478
O1…C1 ^{vi}	3.486 (3)	H1…H10	3.4736
O1…C8 ^v	3.481 (3)	Br1…H10 ^{vii}	3.1969
O1…C9 ^v	3.498 (3)	Br1…H10 ^{xi}	3.0191
O2…C2 ⁱⁱⁱ	3.280 (3)	Br2…H1 ^{iv}	2.9314
O2…C3 ⁱⁱⁱ	3.513 (4)	$Br2\cdots H1^{vi}$	3.3140
O2…C4 ^{vii}	3.208 (3)	Br2…H6 ^{xii}	3.5908
O2…C4 ^{viii}	3.455 (3)	O1…H1 ^{iv}	3.0794
O2…C10 ⁱⁱⁱ	3.395 (4)	$O1$ ···H 1^{vi}	3.3226
O3…Br2 ^{iv}	3.118 (2)	O2…H4 ^{vii}	2.8234
O3…C2 ^v	3.543 (4)	O2…H4viii	2.5820
O3····C6 ^{ix}	3.430 (3)	O3····H6 ^{ix}	2.5500
O3…C10 ^v	3.223 (4)	O3…H10 ^v	2.9808

C1…O1 ^{vi}	3.486 (3)	C1…H1 ⁱⁱⁱ	3.5101
C1…C3 ^v	3.413 (4)	C2…H1 ⁱⁱⁱ	3.4467
C1···C8 ^v	3.577 (4)	C3…H4 ^{vii}	3.3142
C2…O2 ^v	3.280 (3)	C4…H4 ^v	3.5744
C2…O3 ⁱⁱⁱ	3.543 (4)	C8····H4 ^v	3.4152
C2···C3 ^v	3 353 (4)	C10····H6 ^{ix}	3 5682
$C3\cdots O2^{v}$	3 513 (4)	C10···H10 ^v	3 4959
$C3\cdots C1^{iii}$	3 413 (4)	H1Br2 ^{iv}	2.9314
C3···C2 ⁱⁱⁱ	3 353 (4)	H1Br2 ^{vi}	3 3140
$C4\cdots O2^{\text{vii}}$	3 208 (3)	H1···O1 ^{iv}	3 0794
$C4\cdots O2^{\text{viii}}$	3,455 (3)	$H1 \cdots O1^{v_i}$	3 3226
$C4\cdots C8^{iii}$	3 513 (4)		3 5101
	3.313(4)	$H1 \cdots C2^{v}$	3.4467
$C5 \dots Br^{1V}$	3.461(4)		2 8224
	3.505(3)		2.8234
	3.333(4)		2.3620
C3C7	5.495 (4) 2.420 (2)		3.5142
C603 ²	3.430(3)		3.5744
	5.555 (4) 2.520 (4)		3.4152
	3.539 (4)		3.1095
C/····Br2 ^m	3.583 (3)	H6Br2 ^{xm}	3.5908
	3.493 (4)		2.5500
	3.539 (4)		3.5682
C8…O1 ^m	3.481 (3)		3.5884
C8····C1 ^m	3.577 (4)		3.1969
C8···C4 ^v	3.513 (4)	H10····Br1 ^{xiv}	3.0191
C8…C9 ^m	3.558 (4)	H10····O3 ^m	2.9808
C9…O1 ⁱⁱⁱ	3.498 (3)	H10…C10 ⁱⁱⁱ	3.4959
C9····C4 ^v	3.481 (4)	$H10\cdots H6^{xiv}$	3.5884
C9…C8 ^v	3.558 (4)		
C1—O1—C9	117.88 (17)	C3—C8—C4	119.99 (19)
O1—C1—C2	125.3 (3)	C3—C8—C9	120.3 (2)
C1—C2—C3	120.9 (2)	C4—C8—C9	119.73 (19)
C1—C2—C10	119.3 (3)	O1—C9—C7	117.29 (19)
C3—C2—C10	119.8 (2)	O1—C9—C8	122.01 (19)
O2—C3—C2	124.0 (2)	С7—С9—С8	120.7 (2)
O2—C3—C8	122.7 (3)	O3—C10—C2	123.0 (3)
C2—C3—C8	113.31 (19)	O1—C1—H1	117.367
C5—C4—C8	118.4 (2)	C2—C1—H1	117.366
Br1—C5—C4	119.25 (17)	C5—C4—H4	120.820
Br1—C5—C6	118.34 (16)	C8—C4—H4	120.803
C4—C5—C6	122.4 (2)	С5—С6—Н6	120.481
C5—C6—C7	119.05 (19)	С7—С6—Н6	120.472
Br2—C7—C6	120.49 (16)	O3—C10—H10	118.496
Br2—C7—C9	119.78 (17)	С2—С10—Н10	118.482
C6-C7-C9	119.7 (2)		
C1—O1—C9—C7	174.68 (18)	C8—C4—C5—Br1	-178.77 (18)

C1—O1—C9—C8	-4.8 (3)	C8—C4—C5—C6	0.9 (4)
C9—O1—C1—C2	3.1 (4)	H4—C4—C5—Br1	1.2
C9—O1—C1—H1	-176.9	H4—C4—C5—C6	-179.1
O1—C1—C2—C3	2.7 (4)	H4—C4—C8—C3	-2.2
O1—C1—C2—C10	-177.74 (19)	H4—C4—C8—C9	178.8
H1—C1—C2—C3	-177.3	Br1-C5-C6-C7	179.91 (14)
H1-C1-C2-C10	2.3	Br1-C5-C6-H6	-0.1
C1—C2—C3—O2	174.2 (3)	C4—C5—C6—C7	0.3 (4)
C1—C2—C3—C8	-6.2 (4)	C4—C5—C6—H6	-179.8
C1-C2-C10-O3	11.5 (4)	C5—C6—C7—Br2	179.31 (18)
C1-C2-C10-H10	-168.5	C5—C6—C7—C9	-1.1 (4)
C3—C2—C10—O3	-168.9 (3)	H6—C6—C7—Br2	-0.7
C3—C2—C10—H10	11.1	Н6—С6—С7—С9	178.9
C10—C2—C3—O2	-5.4 (4)	Br2—C7—C9—O1	0.9 (3)
C10—C2—C3—C8	174.23 (19)	Br2—C7—C9—C8	-179.62 (14)
O2—C3—C8—C4	5.1 (4)	C6—C7—C9—O1	-178.7 (2)
O2—C3—C8—C9	-175.9 (2)	C6—C7—C9—C8	0.8 (4)
C2—C3—C8—C4	-174.51 (19)	C3—C8—C9—O1	0.8 (4)
C2—C3—C8—C9	4.5 (3)	C3—C8—C9—C7	-178.61 (19)
C5—C4—C8—C3	177.82 (19)	C4—C8—C9—O1	179.8 (2)
C5—C4—C8—C9	-1.2 (4)	C4—C8—C9—C7	0.4 (4)

Symmetry codes: (i) -x+1, y-1/2, -z+3/2; (ii) -x+1, y+1/2, -z+3/2; (iii) x, y+1, z; (iv) -x+2, -y, -z+1; (v) x, y-1, z; (vi) -x+2, -y+1, -z+1; (vii) -x+1, -y+1, -z+1; (viii) -x+1, -y+1, -z+1; (viii) -x+1, -y+1, -z+1; (viii) -x+1, -y+1/2, z-1/2; (x) x, -y+1/2, z+1/2; (xi) x, -y+3/2, z+1/2; (xii) -x+2, y-1/2, -z+3/2; (xiii) -x+2, y+1/2, -z+3/2; (xiv) x, -y+3/2, z-1/2.