

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Triphenyltellurium chloride

Ambika Chopra,^a Shalini Jain,^a Sanjay K. Srivastava,^a* Sushil K. Gupta^a and Ray I. Butcher^b

^aSchool of Studies in Chemistry, Jiwaji University, Gwalior 474011, India, and ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA

Correspondence e-mail: sksrivas7@yahoo.com

Received 13 February 2014; accepted 4 March 2014

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.005 Å; R factor = 0.034; wR factor = 0.077; data-to-parameter ratio = 17.9.

The asymmetric unit of the title compound, C₁₈H₁₅ClTe, contains two molecules which are in inverted orientations. The compound displays a tetrahedral geometry around the Te atom in spite of there being five electron domains. This is attributed to the fact that the lone pair is not sterically active. The dihedral angles between the three phenyl rings are 76.51 (16)/73.75 (16)/71.06 (17) and 78.60 (17)/77.67 (16)/ 79.11 $(16)^{\circ}$ in the two molecules. The crystal packing features eight C-H··· π interactions.

Related literature

For the first synthesis of the title compound, see: Günther et al. (1974). For related compounds, see: Klapötke et al. (2001); Naumann et al. (2002). For chalcogen-bearing compounds, see: Srivastava et al. (2010, 2011); Rastogi et al. (2011). For organotellurium(IV) derivatives that form metal complexes and supramolecular aggregations, see: Santos et al. (2007); Teikink & Zukerman-Schpector (2010). For their applications as antileishmanial and antibacterial agents, see: Lima et al. (2009); Soni et al. (2005).

organic compounds

12435 measured reflections

 $R_{\rm int} = 0.051$

361 parameters

 $\Delta \rho_{\rm max} = 0.98 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -1.24 \text{ e } \text{\AA}^{-3}$

6446 independent reflections

5854 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Experimental

Crystal data

C ₁₈ H ₁₅ ClTe	V = 3204.74 (9) Å ³
$M_r = 394.35$	Z = 8
Monoclinic, $P2_1/c$	Cu Ka radiation
a = 18.7514 (3) Å	$\mu = 16.07 \text{ mm}^{-1}$
b = 9.60800 (15) Å	T = 123 K
c = 18.4367 (3) Å	$0.25 \times 0.12 \times 0.08 \text{ mm}$
$\beta = 105.2453 \ (16)^{\circ}$	

Data collection

Agilent Xcalibur (Ruby, Gemini) diffractometer Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012)

 $T_{\min} = 0.215, T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.077$ S = 1.046446 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg1, Cg2, Cg3, Cg4, Cg5 and Cg6 are the centroids of the C1A-C6A, C7A-C12A, C13A-C18A, C1B-C6B, C7B-C12B and C13B-C18B phenyl rings, respectively.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2A - H2AA \cdots Cg2^{i}$	0.95	2.96	3.587 (4)	125
$C5A - H5AA \cdots Cg4$	0.95	2.65	3.497 (4)	149
$C10A - H10A \cdots Cg1^{ii}$	0.95	2.83	3.580 (4)	137
$C5B-H5BA\cdots Cg5^{iii}$	0.95	2.76	3.532 (4)	139
$C11A - H11A \cdots Cg3^{iv}$	0.95	2.91	3.601 (4)	131
$C12B - H12B \cdots Cg6^{v}$	0.95	2.95	3.671 (3)	134
$C14B - H14B \cdot \cdot \cdot Cg4^{vi}$	0.95	2.86	3.589 (4)	134
$C17B - H17B \cdots Cg2$	0.95	2.78	3.679 (4)	158

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $x, -y - \frac{1}{2}, z - \frac{1}{2}$; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (v) -x + 1, -y + 1, -z + 1; (vi) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

AC and SJ thank the JUG for the award of a University Fellowship. RJB acknowledges the NSF-MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer.

Supporting information for this paper is available from the IUCr electronic archives (Reference: JJ2184).

References

- Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Günther, W. H. H., Nepywoda, J. & Chu, J. Y. C. (1974). J. Organomet. Chem. 74, 79-84.
- Klapötke, T. M., Krumm, B., Mayer, P., Polborn, K. & Ruscitti, O. P. (2001). J. Fluorine Chem. 112, 207-212.

- Lima, C. B. C., Silva, W. W. A., Oliveira, R. L., Cunha, R. & Criorgio, S. (2009). *Korean J. Parasitol.* 47, 213–218.
- Naumann, D., Tyrra, W., Herrmann, R., Pantenburg, I. & Wickleder, M. S. (2002). Z. Anorg. Allg. Chem. 628, 833–842.
- Rastogi, R., Srivastava, S. K., Butcher, R. J. & Jasinski, J. P. (2011). J. Chem. Crystallogr. 41, 391–400.
- Santos, S. S., Lang, E. S. & Oliveira, G. M. (2007). J. Organomet. Chem. 692, 3081–3088.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Soni, D., Gupta, P. K., Kumar, Y. & Chandrashekhar, T. G. (2005). Indian J. Biochem. Biophys. 42, 398–400.
- Srivastava, S. K., Rastogi, R., Rajaram, P., Butcher, R. J. & Jasinski, J. P. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 455–462.
- Srivastava, K., Shah, P., Singh, H. B. & Butcher, R. J. (2011). Organometallics, **30**, 534–546.
- Teikink, E. R. T. & Zukerman-Schpector, J. (2010). Coord. Chem. Rev. 254, 46–76.

supporting information

Acta Cryst. (2014). E70, o421-o422 [doi:10.1107/S160053681400498X]

Triphenyltellurium chloride

Ambika Chopra, Shalini Jain, Sanjay K. Srivastava, Sushil K. Gupta and Ray J. Butcher

S1. Introduction

In recent years organotellurium compounds have been widely used as ligands forming complexes with supramolecular behaviour (Santos *et al.*, 2007; Teikink *et al.*, 2010; Srivastava *et al.*, 2011). These compounds have interesting applications as antileishmanial and antibacterial agents (Lima *et al.*, 2009; Soni *et al.*, 2005). The crystal structures of related compounds, tris(pentafluorophenyl)tellurium chloride, (C₆H₅)₃TeCl and tris(pentafluorophenyl)tellurium bromide, (C₆H₅)₃TeBr have been reported earlier (Klapötke *et al.*, 2001; Naumann *et al.*, 2002). As part of our investigations on the chalcogen bearing compounds (Srivastava *et al.* 2010; Rastogi *et al.* 2011), we herein report the synthesis and X-ray crystal structure analysis of the title compound, triphenyltellurium chloride.

S2. Experimental

S2.1. Synthesis and crystallization

The title compound was prepared by the modified procedure described earlier (Günther *et al.*,1974). A mixture of TeCl₄ (26.8 g, 0.1 mol) and AlCl₃ (39.9 g, 0.3 mol) in 300 mL dry benzene was placed into a 500 mL two-necked, round-bottom flask equipped with a magnetic stirring bar, a nitrogen inlet and a reflux condenser. The reflux condenser was connected with Tygon tubing to a gas dispersion tube immersed in water containing phenolphthalein indicator. The reaction mixture was heated to reflux under nitrogen. Vigorous hydrogen chloride evolution occurred immediately. The hydrogen chloride was swept through the condenser into phenolphthalein solution by nitrogen and titrated with NaOH solution. The reaction mixture was poured into 400 mL of ice and water, when three equivalents of HCl had evolved. A dark colored solid was separated by filtration of the quenched reaction mixture and dissolved in minimum amount of boiling water. The hot mixture was then quickly filtered to give a clear colorless solution. On cooling the filtrate, a white crystalline solid of triphenyltellurium chloride separated out. The compound was crystallized in ethanol and chloroform mixture (60:40) to give white crystals suitable for X-ray analysis in 72% yield. M.P. 249-250 °C. Anal. calc. for C₁₈H₁₅ClTe(%): C,54.82; H,3.83; Cl,8.99; Te,32.35. Found: C,54.88; H,3.86; Cl,9.16; Te,32.30.

S2.2. Refinement

H atoms were positioned geometrically and refined using the riding model, with C–H distance of 0.95 Å, with U_{iso} (H) = 1.20 U_{eq} (C) atoms.

S3. Results and discussion

The molecular structure of the title compound, C18H15ClTe, is shown in Fig.1. The asymmetric unit of the structure contains two molecules which are in inverted orientations. The molecule displays a tetrahedral geometry around the Te atom (sum of bond angles, 436.56°) in spite of being five electron domains. This attributes the fact that the lone pair is not sterically active. This is in contrast with the reported structure of distorted octahedral geometry for (C₆F₅)₃TeCl

(Klapotke *et al.*, 2001) and trigonal bipyramidal geometry for $(C_6F_5)_3$ TeBr (Naumann *et al.*, 2002). This clearly indicates that there is no effect of free electron pair at Te in the present structure. The dihedral angles between the mean planes of the three phenyl rings C7A–C12A, C1A–C6A, C13A–C18A in molecule A and C7B–C12B, C1B–C6B, C13B–C18B in molecule B are 76.51 (16)/73.75 (16) and 78.60 (17)/77.67 (16)°, respectively, in the two molecules indicating that there is no conjugation between three aromatic rings. The two phenyl rings at C7 and C13 are inclined at an angle of 71.06 (17)° in molecule A and 79.11 (16)° in molecule B. The crystal packing is stabilized by eight C—H··· π intermolecular interactions (Table 1, Fig.2).

Figure 1

Molecular structure of the title compound showing atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Packing diagram of $C_{18}H_{15}CITe$ viewed along b axis.

Triphenyltellurium chloride

Crystal data

C₁₈H₁₅ClTe $M_r = 394.35$ Monoclinic, $P2_1/c$ a = 18.7514 (3) Å b = 9.60800 (15) Å c = 18.4367 (3) Å $\beta = 105.2453$ (16)° V = 3204.74 (9) Å³ Z = 8 F(000) = 1536 $D_x = 1.635 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 8646 reflections $\theta = 3.0-75.3^{\circ}$ $\mu = 16.07 \text{ mm}^{-1}$ T = 123 KPrism, colorless $0.25 \times 0.12 \times 0.08 \text{ mm}$ Data collection

Agilent Xcalibur (Ruby, Gemini)	12435 measured reflections
diffractometer	6446 independent reflections
Radiation source: Enhance(Cu)X-ray Source	5854 reflections with $I > 2\sigma(I)$
Detector resolution: 10.5081 pixels mm ⁻¹	$R_{int} = 0.051$
ω scans	$\theta_{max} = 75.5^{\circ}, \ \theta_{min} = 4.9^{\circ}$
Absorption correction: multi-scan	$h = -23 \rightarrow 22$
(<i>CrysAlis PRO</i> ; Agilent, 2012)	$k = -11 \rightarrow 11$
$T_{\min} = 0.215, T_{\max} = 1.000$	$l = -15 \rightarrow 22$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wR(F^2) = 0.077$	$w = 1/[\sigma^2(F_o^2) + (0.0353P)^2]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
6446 reflections	$(\Delta/\sigma)_{max} = 0.002$
361 parameters	$\Delta\rho_{max} = 0.98$ e Å ⁻³
0 restraints	$\Delta\rho_{min} = -1.24$ e Å ⁻³
Special details	

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Te1	0.94906 (2)	0.68564 (2)	0.31239 (2)	0.01281 (7)	
Cl1A	0.89902 (5)	0.50007 (10)	0.36822 (5)	0.02617 (18)	
C1A	0.90760 (17)	0.8720 (3)	0.34765 (15)	0.0117 (5)	
C2A	0.95451 (18)	0.9705 (4)	0.39152 (17)	0.0174 (6)	
H2AA	1.0060	0.9520	0.4089	0.021*	
C3A	0.9264 (2)	1.0956 (4)	0.40997 (19)	0.0221 (7)	
H3AA	0.9586	1.1625	0.4395	0.027*	
C4A	0.8510(2)	1.1227 (4)	0.38521 (19)	0.0203 (7)	
H4AA	0.8318	1.2084	0.3976	0.024*	
C5A	0.80402 (18)	1.0247 (4)	0.34240 (17)	0.0177 (6)	
H5AA	0.7525	1.0427	0.3260	0.021*	
C6A	0.83215 (17)	0.9001 (4)	0.32338 (16)	0.0136 (6)	
H6AA	0.7997	0.8337	0.2936	0.016*	
C7A	0.90531 (16)	0.6542 (4)	0.19509 (16)	0.0132 (6)	
C8A	0.9106 (2)	0.7593 (4)	0.14490 (18)	0.0192 (6)	
H8AA	0.9337	0.8449	0.1632	0.023*	
C9A	0.8819 (2)	0.7394 (4)	0.06757 (18)	0.0241 (7)	
H9AA	0.8860	0.8112	0.0334	0.029*	
C10A	0.8474 (2)	0.6147 (4)	0.04067 (18)	0.0253 (8)	
H10A	0.8277	0.6015	-0.0119	0.030*	
C11A	0.84169 (19)	0.5095 (4)	0.0903 (2)	0.0217 (7)	

H11A	0.8182	0.4243	0.0717	0.026*
C12A	0.87045 (18)	0.5289 (4)	0.16747 (19)	0.0175 (6)
H12A	0.8664	0.4569	0.2014	0.021*
C13A	1.06448 (16)	0.6564 (3)	0.35559 (16)	0.0113 (5)
C14A	1.11265 (18)	0.6647 (4)	0.30923 (16)	0.0157 (6)
H14A	1.0936	0.6821	0.2570	0.019*
C15A	1.18813 (18)	0.6477 (4)	0.33918 (18)	0.0183 (6)
H15A	1.2206	0.6547	0.3076	0.022*
C16A	1.21641 (18)	0.6202 (4)	0.41587 (19)	0.0196 (7)
H16A	1.2681	0.6082	0.4363	0.023*
C17A	1,16919 (19)	0.6103 (4)	0.46211 (17)	0.0175 (6)
H17A	1.1884	0.5911	0.5141	0.021*
C18A	1 09335 (18)	0.6286(3)	0.43220 (16)	0.0143 (6)
H18A	1.05335 (10)	0.6220	0.4641	0.017*
Te2	0.45436(2)	0.55648(2)	0.33256(2)	0.017
CliB	0.19150(2) 0.40664(5)	0.33010(2) 0.72841(10)	0.39883(5)	0.01520(1)
C1B	0.40378(16)	0.72641(10) 0.5962(4)	0.37003(3)	0.02092(10)
C1D C2B	0.40378(10) 0.4015(2)	0.3902(4) 0.4914(4)	0.21742(10) 0.16450(18)	0.0139(0)
	0.4013 (2)	0.4914 (4)	0.1806	0.0191 (0)
C2P	0.4224	0.4030	0.1800	0.025
	0.3090 (2)	0.3143(4)	0.08827 (18)	0.0210 (7)
C/P	0.3080	0.4424	0.0528	0.020
	0.33823 (19)	0.6502	0.00430 (18)	0.0207 (7)
C5D	0.3139	0.0393	0.0127	0.023°
	0.33990 (18)	0.7490 (4)	0.0005	0.0180(0) 0.022*
	0.3191 0.27254(17)	0.0373	0.0993	0.022°
	0.37234(17) 0.2724	0.7237 (3)	0.19282 (17)	0.0140(0)
П0DA C7D	0.5/34	0.7980	0.2282	0.017°
	0.30983(10)	0.5920(5)	0.30148(10) 0.20504(15)	0.0110(5)
	0.00084 (17)	0.3893 (4)	0.30304 (13)	0.0138 (0)
H8BA	0.5800	0.5/1/	0.2546	0.01/*
C9B	0.68260 (19)	0.6128 (4)	0.32186 (17)	0.0182 (6)
HYBA	0.7073	0.6108	0.2830	0.022*
CIOB	0.72222 (18)	0.6392 (4)	0.39582 (18)	0.0188 (6)
HI0B	0.7740	0.6550	0.4075	0.023*
CHB	0.68595 (18)	0.6424 (4)	0.45235 (17)	0.0164 (6)
HIIB	0.7130	0.6611	0.5027	0.020*
C12B	0.60982 (18)	0.6181 (4)	0.43578 (16)	0.0148 (6)
H12B	0.5853	0.6194	0.4748	0.018*
C13B	0.41530 (17)	0.3643 (3)	0.36394 (15)	0.0121 (6)
C14B	0.46223 (18)	0.2532 (4)	0.39384 (17)	0.0173 (6)
H14B	0.5143	0.2645	0.4044	0.021*
C15B	0.4328 (2)	0.1266 (4)	0.40814 (19)	0.0229 (7)
H15B	0.4649	0.0514	0.4281	0.027*
C16B	0.3565 (2)	0.1092 (4)	0.39335 (18)	0.0219 (7)
H16B	0.3365	0.0222	0.4027	0.026*
C17B	0.30978 (19)	0.2199 (4)	0.36487 (18)	0.0205 (7)
H17B	0.2578	0.2090	0.3557	0.025*
C18B	0.33869 (17)	0.3461 (4)	0.34975 (16)	0.0145 (6)

supporting information

H18B	0.3063	0.42	08	0.3296	0.017*	
Atomic displacement parameters $(Å^2)$						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Te1	0.01195 (10)	0.01092 (11)	0.01414 (9)	0.00276 (7)	0.00093 (7)	0.00010 (6)
Cl1A	0.0262 (4)	0.0210 (4)	0.0342 (4)	0.0001 (3)	0.0131 (3)	0.0099 (3)
C1A	0.0140 (14)	0.0102 (14)	0.0114 (11)	0.0027 (11)	0.0043 (10)	-0.0017 (10)
C2A	0.0125 (14)	0.0214 (18)	0.0168 (13)	-0.0011 (13)	0.0010(11)	-0.0029 (12)
C3A	0.0222 (17)	0.0186 (18)	0.0268 (16)	-0.0052 (14)	0.0085 (13)	-0.0093 (14)
C4A	0.0259 (17)	0.0130 (16)	0.0254 (15)	0.0060 (13)	0.0131 (13)	-0.0020 (12)
C5A	0.0143 (15)	0.0195 (17)	0.0197 (13)	0.0084 (13)	0.0051 (11)	0.0036 (12)
C6A	0.0124 (14)	0.0135 (15)	0.0131 (12)	0.0006 (12)	0.0004 (10)	-0.0001 (11)
C7A	0.0080 (13)	0.0125 (15)	0.0176 (13)	0.0057 (11)	0.0008 (10)	-0.0012 (11)
C8A	0.0234 (17)	0.0118 (16)	0.0191 (14)	0.0002 (13)	0.0001 (12)	-0.0017 (12)
C9A	0.0317 (19)	0.0200 (18)	0.0170 (14)	0.0076 (15)	0.0002 (13)	0.0034 (13)
C10A	0.0245 (17)	0.029 (2)	0.0171 (14)	0.0161 (16)	-0.0045 (12)	-0.0083 (14)
C11A	0.0174 (16)	0.0165 (17)	0.0271 (16)	0.0042 (13)	-0.0014 (12)	-0.0115 (13)
C12A	0.0133 (14)	0.0129 (16)	0.0249 (15)	0.0009 (12)	0.0026 (12)	-0.0050 (12)
C13A	0.0082 (12)	0.0096 (14)	0.0134 (12)	0.0003 (11)	-0.0019 (10)	-0.0023 (10)
C14A	0.0189 (15)	0.0152 (16)	0.0122 (12)	0.0010 (12)	0.0027 (11)	-0.0017 (11)
C15A	0.0134 (14)	0.0190 (17)	0.0240 (15)	0.0018 (13)	0.0071 (12)	-0.0047 (13)
C16A	0.0110 (14)	0.0183 (17)	0.0250 (15)	0.0030 (13)	-0.0030 (12)	-0.0043 (13)
C17A	0.0177 (15)	0.0157 (16)	0.0136 (12)	0.0049 (13)	-0.0057 (11)	-0.0012 (11)
C18A	0.0165 (15)	0.0129 (15)	0.0130 (12)	0.0007 (12)	0.0031 (11)	-0.0015 (11)
Te2	0.01147 (10)	0.01182 (11)	0.01491 (10)	-0.00067 (7)	0.00070 (7)	0.00025 (6)
Cl1B	0.0253 (4)	0.0222 (4)	0.0349 (4)	0.0029 (3)	0.0109 (3)	-0.0098 (3)
C1B	0.0070 (13)	0.0157 (16)	0.0165 (13)	-0.0049 (12)	-0.0012 (10)	-0.0002 (12)
C2B	0.0233 (17)	0.0115 (16)	0.0204 (14)	-0.0034 (13)	0.0020 (12)	0.0003 (12)
C3B	0.0301 (18)	0.0161 (17)	0.0172 (14)	-0.0052 (14)	0.0038 (13)	-0.0037 (12)
C4B	0.0191 (16)	0.0219 (18)	0.0175 (14)	-0.0076 (14)	-0.0019 (12)	0.0066 (13)
C5B	0.0135 (15)	0.0165 (17)	0.0224 (15)	-0.0028 (12)	-0.0012 (12)	0.0078 (13)
C6B	0.0111 (13)	0.0098 (15)	0.0203 (14)	-0.0022 (12)	-0.0004 (11)	0.0013 (11)
C7B	0.0076 (12)	0.0088 (14)	0.0144 (12)	0.0018 (11)	-0.0011 (10)	0.0018 (10)
C8B	0.0166 (15)	0.0140 (15)	0.0091 (11)	-0.0023 (12)	0.0003 (10)	0.0027 (10)
C9B	0.0186 (15)	0.0202 (18)	0.0171 (14)	-0.0020 (13)	0.0070 (11)	0.0059 (12)
C10B	0.0139 (14)	0.0168 (17)	0.0228 (15)	-0.0017 (13)	-0.0002 (12)	0.0007 (12)
C11B	0.0138 (14)	0.0162 (16)	0.0157 (13)	-0.0014 (12)	-0.0024 (11)	-0.0029 (11)
C12B	0.0166 (15)	0.0159 (16)	0.0119 (12)	0.0028 (12)	0.0035 (11)	-0.0021 (11)
C13B	0.0152 (14)	0.0121 (15)	0.0081 (11)	-0.0024 (12)	0.0016 (10)	0.0029 (10)
C14B	0.0152 (15)	0.0185 (17)	0.0187 (13)	0.0029 (13)	0.0052 (11)	0.0033 (12)
C15B	0.0334 (19)	0.0160 (17)	0.0208 (14)	0.0064 (15)	0.0100 (13)	0.0056 (12)
C16B	0.0321 (19)	0.0182 (17)	0.0181 (14)	-0.0100 (14)	0.0116 (13)	-0.0001 (12)
C17B	0.0178 (16)	0.0253 (19)	0.0187 (13)	-0.0090 (14)	0.0056 (12)	-0.0025 (13)
C18B	0.0116 (14)	0.0165 (16)	0.0143 (12)	0.0000 (12)	0.0017 (10)	-0.0006 (11)

Geometric parameters (Å, °)

Te1—C13A	2.119 (3)	Te2—C7B	2.117 (3)
Te1—C1A	2.121 (3)	Te2—C1B	2.120 (3)
Te1—C7A	2.123 (3)	Te2—C13B	2.122 (3)
Te1—Cl1A	2.3720 (9)	Te2—Cl1B	2.3659 (9)
C1A—C6A	1.394 (4)	C1B—C2B	1.395 (5)
C1A—C2A	1.396 (4)	C1B—C6B	1.399 (5)
C2A—C3A	1.390 (5)	C2B—C3B	1.395 (5)
C2A—H2AA	0.9500	C2B—H2BA	0.9500
C3A—C4A	1.390 (5)	C3B—C4B	1.387 (5)
СЗА—НЗАА	0.9500	СЗВ—НЗВА	0.9500
C4A—C5A	1.386 (5)	C4B—C5B	1.385 (5)
C4A—H4AA	0.9500	C4B—H4BA	0.9500
C5A—C6A	1.390 (5)	C5B—C6B	1.403 (4)
С5А—Н5АА	0.9500	C5B—H5BA	0.9500
С6А—Н6АА	0.9500	C6B—H6BA	0.9500
C7A—C8A	1.390 (5)	C7B—C8B	1.395 (4)
C7A—C12A	1.400 (5)	C7B—C12B	1.401 (4)
C8A—C9A	1.398 (4)	C8B—C9B	1.390 (5)
C8A—H8AA	0.9500	C8B—H8BA	0.9500
C9A-C10A	1.390 (6)	C9B—C10B	1.394 (5)
С9А—Н9АА	0.9500	С9В—Н9ВА	0.9500
C10A—C11A	1.386 (6)	C10B—C11B	1.387 (5)
C10A—H10A	0.9500	C10B—H10B	0.9500
C11A—C12A	1.396 (5)	C11B—C12B	1.398 (5)
C11A—H11A	0.9500	C11B—H11B	0.9500
C12A—H12A	0.9500	C12B—H12B	0.9500
C13A—C18A	1.399 (4)	C13B—C14B	1.401 (5)
C13A—C14A	1.400 (4)	C13B—C18B	1.402 (4)
C14A—C15A	1.387 (5)	C14B—C15B	1.389 (5)
C14A—H14A	0.9500	C14B—H14B	0.9500
C15A—C16A	1.399 (5)	C15B—C16B	1.395 (6)
C15A—H15A	0.9500	C15B—H15B	0.9500
C16A—C17A	1.384 (5)	C16B—C17B	1.390 (6)
C16A—H16A	0.9500	C16B—H16B	0.9500
C17A—C18A	1.395 (5)	C17B—C18B	1.386 (5)
C17A—H17A	0.9500	C17B—H17B	0.9500
C18A—H18A	0.9500	C18B—H18B	0.9500
C13A—Te1—C1A	114.64 (12)	C7B—Te2—C1B	112.45 (11)
C13A—Te1—C7A	116.54 (11)	C7B—Te2—C13B	118.37 (12)
C1A—Te1—C7A	110.95 (11)	C1B—Te2—C13B	109.51 (11)
C13A—Te1—Cl1A	102.64 (9)	C7B—Te2—Cl1B	104.96 (9)
C1A—Te1—Cl1A	106.43 (9)	C1B—Te2—Cl1B	105.13 (10)
C7A—Te1—Cl1A	104.14 (10)	C13B—Te2—Cl1B	105.20 (9)
C6A—C1A—C2A	119.1 (3)	C2B—C1B—C6B	118.8 (3)
C6A—C1A—Te1	119.2 (2)	C2B—C1B—Te2	119.6 (2)

C2A—C1A—Te1	121.6 (2)	C6B—C1B—Te2	121.6 (2)
C3A—C2A—C1A	120.4 (3)	C1B—C2B—C3B	121.0 (3)
СЗА—С2А—Н2АА	119.8	C1B—C2B—H2BA	119.5
C1A—C2A—H2AA	119.8	C3B—C2B—H2BA	119.5
C2A—C3A—C4A	120.0 (3)	C4B—C3B—C2B	119.7 (3)
С2А—С3А—НЗАА	120.0	C4B—C3B—H3BA	120.2
С4А—С3А—НЗАА	120.0	C2B—C3B—H3BA	120.2
C5A—C4A—C3A	119.9 (3)	C5B—C4B—C3B	120.3 (3)
С5А—С4А—Н4АА	120.0	C5B—C4B—H4BA	119.8
СЗА—С4А—Н4АА	120.0	C3B—C4B—H4BA	119.8
C4A—C5A—C6A	120.1 (3)	C4B—C5B—C6B	120.0 (3)
С4А—С5А—Н5АА	119.9	C4B—C5B—H5BA	120.0
С6А—С5А—Н5АА	119.9	C6B—C5B—H5BA	120.0
C5A - C6A - C1A	120.4 (3)	C1B-C6B-C5B	120.2(3)
C5A—C6A—H6AA	119.8	C1B—C6B—H6BA	119.9
C1A - C6A - H6AA	119.8	C5B-C6B-H6BA	119.9
C8A - C7A - C12A	119.3 (3)	C8B - C7B - C12B	119.3 (3)
C8A - C7A - Te1	119.9(3)	$C8B - C7B - Te^{2}$	119.5(3)
C12A - C7A - Te1	120.7(2)	$C12B-C7B-Te^2$	119.1(2) 121.6(2)
C7A - C8A - C9A	120.7(2) 120.3(3)	C9B - C8B - C7B	121.0(2) 120.7(3)
C7A - C8A - H8AA	119.9	C9B = C8B = H8BA	119.6
C9A - C8A - H8AA	119.9	C7B - C8B - H8BA	119.6
C10A - C9A - C8A	120.0(3)	C8B - C9B - C10B	119.9 (3)
$C_{10A} - C_{9A} - H_{9A}$	120.0 (5)	C8B_C9B_H9BA	120.1
	120.0	C10B-C9B-H9BA	120.1
$C_{11}A - C_{10}A - C_{9}A$	120.0 120.2(3)	C11B-C10B-C9B	120.1 1199(3)
$C_{11}A_{-}C_{10}A_{-}H_{10}A$	110.0	C11B - C10B - H10B	120.0
$C_{10A} = C_{10A} = H_{10A}$	119.9	$C_{11D} = C_{10D} = H_{10D}$	120.0
$C_{3A} = C_{10A} = IIIO_{A}$	119.9	$C_{3}D_{-}C_{10}D_{-}H_{10}D_{-}$	120.0
C10A = C11A = H11A	119.9 (5)	C10B = C11B = C12B	110.4 (3)
C12A $C11A$ $H11A$	120.0	C10B - C11B - H11B	119.8
$C_{12}A = C_{11}A = M_{11}A$	120.0	C12B $C11B$ $C12B$ $C7B$	119.8
$C_{11A} = C_{12A} = C_{1A}$	120.3 (3)	$C_{11} = C_{12} = C$	119.8 (5)
CTA = C12A = H12A	119.9	CTD - C12D - H12D	120.1
C_{12A} C_{12A} C_{14A}	119.9	C/D - C12D - II12D	120.1
C18A = C13A = C14A	119.1(3) 110.4(2)	C14B $-C13B$ $-C18BC14B C13B T_{2}$	119.0(3) 123.0(2)
C18A - C13A - Te1	119.4(2) 121.5(2)	C14B - C13B - 162	123.0(2)
C14A - C13A - 161	121.3(2) 120.2(2)	C18B - C13B - 162	117.9(2)
C15A = C14A = U14A	120.3 (3)	C15B - C14B - C15B	120.2 (3)
C12A = C14A = H14A	119.8	C13B - C14B - H14B	119.9
C13A - C14A - H14A	119.8	C13B - C14B - H14B	119.9
C14A - C15A - C16A	120.1 (3)	C14B - C15B - C16B	120.4 (3)
CI4A—CI5A—HI5A	120.0	CI4B—CI5B—HI5B	119.8
C10A - C15A - H15A	120.0	CIOB-CIOB-HISB	119.8
C1/A— $C16A$ — $C15A$	120.1 (3)	CI/B—CI6B—CI5B	119.6 (3)
CI/A—CI6A—HI6A	119.9	C1/B—C16B—H16B	120.2
C15A—C16A—H16A	119.9	C15B—C16B—H16B	120.2
C16A—C17A—C18A	119.9 (3)	C18B—C17B—C16B	120.3 (3)
C16A—C17A—H17A	120.0	C18B—C17B—H17B	119.9

C18A—C17A—H17A	120.0	C16B—C17B—H17B	119.9
C17A—C18A—C13A	120.5 (3)	C17B—C18B—C13B	120.5 (3)
C17A—C18A—H18A	119.8	C17B—C18B—H18B	119.7
C13A—C18A—H18A	119.8	C13B—C18B—H18B	119.7
C6A—C1A—C2A—C3A	-0.7 (5)	C6B—C1B—C2B—C3B	0.2 (5)
Te1—C1A—C2A—C3A	176.0 (3)	Te2—C1B—C2B—C3B	-179.6 (3)
C1A—C2A—C3A—C4A	0.5 (5)	C1B—C2B—C3B—C4B	-0.2 (6)
C2A—C3A—C4A—C5A	0.3 (5)	C2B—C3B—C4B—C5B	0.3 (5)
C3A—C4A—C5A—C6A	-0.8 (5)	C3B—C4B—C5B—C6B	-0.4 (5)
C4A—C5A—C6A—C1A	0.6 (5)	C2B-C1B-C6B-C5B	-0.3 (5)
C2A—C1A—C6A—C5A	0.2 (5)	Te2—C1B—C6B—C5B	179.5 (2)
Te1—C1A—C6A—C5A	-176.6 (2)	C4B-C5B-C6B-C1B	0.4 (5)
C12A—C7A—C8A—C9A	-0.6 (5)	C12B—C7B—C8B—C9B	-0.1 (5)
Te1—C7A—C8A—C9A	180.0 (3)	Te2—C7B—C8B—C9B	179.8 (3)
C7A—C8A—C9A—C10A	0.6 (6)	C7B-C8B-C9B-C10B	-0.1 (5)
C8A—C9A—C10A—C11A	-0.4 (6)	C8B-C9B-C10B-C11B	-0.1 (6)
C9A—C10A—C11A—C12A	0.2 (5)	C9B-C10B-C11B-C12B	0.5 (6)
C10A—C11A—C12A—C7A	-0.2 (5)	C10B—C11B—C12B—C7B	-0.7 (5)
C8A—C7A—C12A—C11A	0.4 (5)	C8B—C7B—C12B—C11B	0.5 (5)
Te1-C7A-C12A-C11A	179.8 (2)	Te2-C7B-C12B-C11B	-179.4 (3)
C18A—C13A—C14A—C15A	-1.0 (5)	C18B—C13B—C14B—C15B	0.8 (4)
Te1—C13A—C14A—C15A	178.8 (3)	Te2-C13B-C14B-C15B	-175.3 (2)
C13A—C14A—C15A—C16A	0.9 (5)	C13B—C14B—C15B—C16B	-0.4 (5)
C14A—C15A—C16A—C17A	-0.2 (6)	C14B—C15B—C16B—C17B	-0.7 (5)
C15A—C16A—C17A—C18A	-0.3 (6)	C15B—C16B—C17B—C18B	1.3 (5)
C16A—C17A—C18A—C13A	0.2 (5)	C16B—C17B—C18B—C13B	-0.9 (5)
C14A—C13A—C18A—C17A	0.5 (5)	C14B—C13B—C18B—C17B	-0.2 (4)
Te1-C13A-C18A-C17A	-179.4 (3)	Te2-C13B-C18B-C17B	176.1 (2)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3, Cg4, Cg5 and Cg6 are the centroids of the C1A–C6A, C7A–C12A, C13A–C18A, C1B–C6B, C7B–C12B and C13B–C18B phenyl rings, respectively.

	D—H	H···A	D···A	D—H···A
$\overline{\text{C2}A-\text{H2}AA\cdots Cg2^{i}}$	0.95	2.96	3.587 (4)	125
C5A—H5AA…Cg4	0.95	2.65	3.497 (4)	149
C10A— $H10A$ ··· $Cg1$ ⁱⁱ	0.95	2.83	3.580 (4)	137
C5 <i>B</i> —H5 <i>BA</i> ··· <i>Cg</i> 5 ⁱⁱⁱ	0.95	2.76	3.532 (4)	139
C11 A —H11 A ··· $Cg3^{iv}$	0.95	2.91	3.601 (4)	131
C12B—H12B····Cg6 ^v	0.95	2.95	3.671 (3)	134
C14 B —H14 B ···C g 4 ^{vi}	0.95	2.86	3.589 (4)	134
C17 <i>B</i> —H17 <i>B</i> ··· <i>Cg</i> 2	0.95	2.78	3.679 (4)	158

Symmetry codes: (i) -*x*, *y*+1/2, -*z*+1/2; (ii) *x*, -*y*-1/2, *z*-1/2; (iii) -*x*+1, *y*+1/2, -*z*+1/2; (iv) -*x*, *y*-1/2, -*z*+1/2; (v) -*x*+1, -*y*+1, -*z*+1; (vi) -*x*+1, *y*-1/2, -*z*+1/2.